首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most other studies the release of amino acid neurotransmitters and modulators in vitro has been studied mostly using labeled preloaded compounds. For several reasons the estimated release may not reliably reflect the release of endogenous compounds. The magnitudes of the release cannot thus be quite correctly estimated using radioactive labels. The basal and K+-evoked release of the neuroactive endogenous amino acids γ-aminobutyrate (GABA), glycine, taurine, glutamate and aspartate was now studied in slices from the striatum from 7-day-old to 3-month-old mice under control (normoxic) and ischemic conditions. The release of alanine, threonine and serine was assessed as control. GABA and glutamate release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite. Ischemia markedly enhanced the release of all these three amino acids. The release of aspartate and glycine was markedly enhanced as well whereas no effects were discernible in the release of glutamine, alanine, serine and threonine. K+ stimulation (50 mM) enhanced the release of GABA, glutamate, taurine, aspartate and glycine in most cases, except with taurine in 3-month-old mice under the ischemic conditions and with aspartate in 7-day-old mice under the control conditions. K+ stimulation did not affect the release of glutamine, alanine, serine or threonine. The results on endogenous amino acids are qualitatively similar to those obtained in our earlier experiments with labeled preloaded amino acids. In conclusion, in developing mice only inhibitory taurine is released in such amounts that may counteract the harmful effects of excitatory amino acids in ischemia.  相似文献   

2.
Glutamate is the main excitatory transmitter in the brain stem, regulating many vital sensory and visceral processes. Taurine is inhibitory and functions as a neuromodulator and regulator of cell volumes in the brain, being especially important in the developing brain. Taurine release is markedly enhanced under ischemic conditions in many brain areas, providing protection against excitotoxicity. The involvement of glutamate receptors in the release of preloaded [3H]taurine was now characterized under ischemic conditions in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice. The ionotropic glutamate receptor agonists N-methyl-d-aspartate, kainate, and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate had no effect on ischemic taurine release in the immature brain stem, whereas in adults the release was enhanced in a receptor-mediated manner. The metabotropic receptor agonists of group I, (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate and (S)-3,5-dihydroxyphenylglycine, potentiated both basal and K+-stimulated release in both age groups. The group III agonist l(+)-2-amino-4-phosphonobutyrate also enhanced the release. In both cases the effects were receptor-mediated, being reduced by the respective antagonists. The results show that activation of glutamate receptors in the ischemic brain stem generally enhances the release of taurine. This is beneficial to neurons in ischemia, offering protection against excitotoxicity and preventing neuronal damage.  相似文献   

3.
Developmental changes in the levels of the excitatory amino acids l-glutamate (Glu) and l-Aspartate (Asp) and inhibitory amino acids glycine (Gly) and γ-amino butyric acid (GABA), as well as taurine and its related amino acids l-methionine (Met), l-cysteine (Cys) and l-serine (Ser) in the brain and pectoralis muscle at various embryonic stages and hatch in broiler and layer type chickens were determined. Brain concentrations of Asp, GABA and taurine were higher than those in the muscle, but the difference in the two types was small. The concentrations of the precursors of taurine including Met, Cys and Ser were lower than that of taurine. In conclusion, the synthesis of some amino acids and their metabolites such as Asp, GABA and taurine in the chick embryo is very high in order to support brain development.  相似文献   

4.
The releases of endogenous glutamate, aspartate, GABA and taurine from hippocampal slices from 7-day-, 3-, 12-, and 18-month-old mice were investigated under cell-damaging conditions using a superfusion system. The slices were superfused under hypoxic conditions in the presence and absence of glucose and exposed to hydrogen peroxide. In the adult hippocampus under normal conditions the basal release of taurine was highest, with a response only about 2-fold to potassium stimulation (50 mM). The low basal releases of glutamate, aspartate, and GABA were markedly potentiated by K+ ions. In general, the release of the four amino acids was enhanced under all above cell-damaging conditions. In hypoxia and ischemia (i.e., hypoxia in the absence of glucose) the release of glutamate, aspartate and GABA increased relatively more than that of taurine, and membrane depolarization by K+ markedly potentiated the release processes. Taurine release was doubled in hypoxia and tripled in ischemia but K+ stimulation was abolished. In both the mature and immature hippocampus the release of glutamate and aspartate was greatly enhanced in the presence of H2O2, that of aspartate particularly in developing mice. In the immature hippocampus the increase in taurine release was 10-fold in hypoxia and 30-fold in ischemia, and potassium stimulation was partly preserved. The release processes of the four amino acids in ischemia were all partially Ca2+-dependent. High concentrations of excitatory amino acids released under cell-damaging conditions are neurotoxic and contribute to neuronal death during ischemia. The substantial amounts of the inhibitory amino acids GABA and taurine released simultaneously may constitute an important protective mechanism against excitatory amino acids in excess, counteracting their harmful effects. In the immature hippocampus in particular, the massive release of taurine under cell-damaging conditions may have a significant function in protecting neural cells and aiding in preserving their viability.  相似文献   

5.
The novel neurotransmitter/neuromodulator nitric oxide (NO), which is linked to the activation of the N-methyl-D-aspartate class of glutamate receptors, has been shown to modify transmitter release in brain tissue. Release of the inhibitory amino acid taurine is also markedly enhanced by N-methyl-D-aspartate and NO-producing agents under normal conditions in the mouse hippocampus. The release of preloaded [3H]taurine from hippocampal slices from adult (3-month-old) and developing (7-day-old) mice was characterized under ischemic conditions in the presence of different NO-generating compounds, hydroxylamine, sodium nitroprusside, and S-nitroso-N-acetylpenicillamine (SNAP), using a superfusion system. The ischemia-induced taurine release at both ages was markedly enhanced by 1.0 mM nitroprusside and 1.0 mM SNAP, whereas 5.0 mM hydroxylamine was effective only in adults. The nitroprusside- and SNAP-induced releases were reduced by the inhibitors of NO synthase (nitroarginine and 7-nitroindazole) and NO-sensitive soluble guanylyl cyclase [1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one], suggesting involvement of the NO/cGMP pathway. The release in ischemia in the absence of Na+ was modified by NO compounds only in adults; the 0.1 mM N-methyl-D-aspartate stimulated taurine release at both ages. The enhanced release of taurine associated with NO production could be beneficial to brain tissue under cell-damaging conditions and corroborates the neuroprotective role of this amino acid, particularly in the immature brain.  相似文献   

6.
The spontaneous and potassium- or veratrine-stimulated efflux of [35S]hypotaurine from superfused cerebral cortex slices of adult mice was compared with the release of [3H]taurine and [3H]GABA. Initially GABA was the fastest released. Hypotaurine was, however, eventually released fastest, since its spontaneous efflux did not slow down during superfusions as did taurine and GABA effluxes. More than 60 % of all preloaded labelled amino acids still remained in the slices after 80-min superfusions. The effluxes of all three amino acids were stimulated by potassium and veratrine depolarizations: GABA efflux most and hypotaurine efflux least. The veratrine-stimulated release of taurine was long-lasting, while all other responses started and ended abruptly. With respect to efflux properties hypotaurine resembled more GABA than taurine.  相似文献   

7.
Changes in content of selected neuroactive amino acids [glutamic acid, aspartic acid, glycine, gamma-aminobutyric acid (GABA) and taurine] and acetylcholine (ACh) in the rat hippocampus following transient forebrain ischemia were investigated using male Wistar rats. Rats were allowed to survive for 1 or 5 days following 10 or 20 min of 4-vessel occlusion, and killed by a focused microwave irradiation. A significant reduction in all neuroactive amino acids examined except GABA was noted in the hippocampus on the fifth day. One day after the 4-vessel occlusion for 10 min, no significant effect on the content of neuroactive amino acids in all brain areas was observed. gamma-Aminobutyric acid content in the hippocampus was only significantly reduced on the fifth day after the occlusion for 20 min. Similarly, a significant decrease in ACh content in the hippocampus was observed on the fifth day after the occlusion for 20 min. Considering the data that a significant loss of neuronal cells in the hippocampus (delayed neuronal death) was detected only 5 days after the 4-vessel occlusion, it can be said that the alterations in the hippocampus of neuroactive amino acids such as glutamic acid, aspartic acid, glycine and taurine are more sensitive than those in GABA and ACh against cerebral ischemia. A possible correlation of these changes of neuroactive amino acids in the occurrence of delayed neuronal death in the hippocampus is also suggested.  相似文献   

8.
The properties of l-[3H]glutamate release with an emphasis on the modulation by inhibitory amino acids of the potassium-induced release were studied with cerebellar granule cells from 7-day-old rats cultured for 7 or 14 days. Spontaneous glutamate release from cells grown for 7 days was fast, being slightly enchanced in Na+-free medium. l-Glutamate, kainate and quisqualate stimulated the release whereas N-methyl-d-aspartate and taurine were without any effect. The potassium-evoked glutamate release was Ca2+-dependent and potentiated by l-glutamate and quisqualate. Stimulated release was strongly depressed by glutamatediethylester. This inhibition was antagonized by GABA but not by taurine. GABA and its structural analogues taurine, hypotaurine, β-alanine and glycine were all equally effective in depressing stimulated glutamate release. The inhibition by GABA could be blocked by GABA antagonist. Both K+-evoked release and the kainate-induced release of glutamate were significantly greater in 14-day-old than in 7-day-old cultures, but the other properties of release were similar. The demonstration of calcium-dependent and potassium-stimulated glutamate release from cerebellar granule cells is consonant with the proposed neurotransmitter role of glutamate in these cells. The release could be modulated by both glutamatergic substances and inhibitory amino acids, the effect of GABA probably being mediated by GABAergic receptors.  相似文献   

9.
Summary. Taurine has been thought to function as a regulator of neuronal activity, neuromodulator and osmoregulator. Moreover, it is essential for the development and survival of neural cells and protects them under cell-damaging conditions. Taurine is also involved in many vital functions regulated by the brain stem, including cardiovascular control and arterial blood pressure. The release of taurine has been studied both in vivo and in vitro in higher brain areas, whereas the mechanisms of release have not been systematically characterized in the brain stem. The properties of release of preloaded [3H]taurine were now characterized in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. In general, taurine release was found to be similar to that in other brain areas, consisting of both Ca2+-dependent and Ca2+-independent components. Moreover, the release was mediated by Na+-, Cl-dependent transporters operating outwards, as both Na+-free and Cl -free conditions greatly enhanced it. Cl channel antagonists and a Cl transport inhibitor reduced the release at both ages, indicating that a part of the release occurs through ion channels. Protein kinases appeared not to be involved in taurine release in the brain stem, since substances affecting the activity of protein kinase C or tyrosine kinase had no significant effects. The release was modulated by cAMP second messenger systems and phospholipases at both ages. Furthermore, the metabotropic glutamate receptor agonists likewise suppressed the K+-stimulated release at both ages. In the immature brain stem, the ionotropic glutamate receptor agonists N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) potentiated taurine release in a receptor-mediated manner. This could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.  相似文献   

10.
Saransaari P  Oja SS 《Amino acids》2007,32(3):439-446
Summary. Taurine has been thought to be essential for the development and survival of neural cells and to protect them under cell-damaging conditions. In the brain stem taurine regulates many vital functions, including cardiovascular control and arterial blood pressure. We have recently characterized the release of taurine in the adult and developing brain stem under normal conditions. Now we studied the properties of preloaded [3H]taurine release under various cell-damaging conditions (hypoxia, hypoglycemia, ischemia, the presence of metabolic poisons and free radicals) in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. Taurine release was greatly enhanced under these cell-damaging conditions, the only exception being the presence of free radicals in both age groups. The ischemia-induced release was characterized to consist of both Ca2+-dependent and -independent components. Moreover, the release was mediated by Na+-, Cl-dependent transporters operating outwards, particularly in the immature brain stem. Cl channel antagonists reduced the release at both ages, indicating that a part of the release occurs through ion channels, and protein kinase C appeared to be involved. The release was also modulated by cyclic GMP second messenger systems, since inhibitors of soluble guanylyl cyclase and phosphodiesterases suppressed ischemic taurine release. The inhibition of phospholipases also reduced taurine release at both ages. This ischemia-induced taurine release could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.  相似文献   

11.
The effect of depolarizing potassium concentration on the release of [14C]glycine, [3H]GABA, and [35S]taurine was investigated in the whole chick retina and in a synaptosomal fraction prepared from the chick retina. In the whole retina, increasing potassium concentration above 40 mM resulted in an increased release of the three amino acids. The release of glycine was the most stimulated and that of taurine, the least. The potassium-evoked release of glycine and GABA was calcium dependent. In the synaptosomal fraction, 68.5 mM potassium significantly stimulated the efflux of GABA and glycine by a calcium-dependent mechanism. The release of taurine from this fraction was unaffected by high potassium.  相似文献   

12.
Summary. In order to characterize the possible regulation of taurine release by GABAergic terminals, the effects of several agonists and antagonists of GABA receptors on the basal and K+-stimulated release of [3H]taurine were investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice using a superfusion system. Taurine release was concentration-dependently potentiated by GABA, which effect was reduced by phaclofen, saclofen and (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) at both ages, suggesting regulation by both GABAB and GABAC receptors. The involvement of GABAA receptors could not be excluded since the antagonist bicuculline was able to affect both basal and K+-evoked taurine release. Furthermore, several GABAB receptor effectors were able to inhibit K+-stimulated taurine release in the adults, while the GABAC receptor agonists trans-4-aminocrotonic acid (TACA) and cis-4-aminocrotonic acid (CACA) potentiated this release. The potentiation of taurine release by agents acting on the three types of GABA receptors in both adult and developing hippocampus further indicates the involvement of transporters operating in an outward direction. This inference is corroborated by the moderate but significant inhibition of taurine uptake by the same compounds. Received June 28, 1999, Accepted August 31, 1999  相似文献   

13.
Hypotaurine uptake was compared to taurine and GABA uptakes in brain slices under identical experimental conditions. The slices effectively concentrated both hypotaurine and GABA from the medium, whereas taurine was taken up more slowly. The uptakes of these three structurally related amino acids were all saturable, consisting of one low-and one high-affinity transport component. The kinetic parameters of hypotaurine uptake were of the same order of magnitude as those of GABA uptake. All uptake systems were sensitive to temperature, metabolic poisons, and sodium omission. Hypotaurine uptake was inhibited by GABA,l-2,4-diaminobutyric acid (l-DABA), cysteic acid, and -alanine, but not by taurine. Taurine uptake was strongly reduced by hypotaurine, -alanine, andl-DABA, as well as by GABA, whereas GABA uptake was affected only by cystamine,l-DABA, and nipecotic acid.The uptake processes of hypotaurine, taurine, and GABA were thus fairly similar and showed properties characteristic for neurotransmitter uptake. Hypotaurine uptake resembled more GABA than taurine uptake. The present inhibition studies suggest that there may exist only one common two-component transport system for these three amino acids.  相似文献   

14.
P. Saransaari  S. S. Ojal 《Amino acids》1997,13(3-4):323-335
Summary Taurine is a neuromodulator and osmoregulator in the central nervous system, also protecting neural cells against excitotoxicity. The effects of the ionotropic glutamate receptor agonists N-methyl-D-aspartate (NMDA), kainate and 2-amino-3-hydroxy-5-methyl-4-imidazolepropionate (AMPA) on [3H]taurine release from hippocampal slices from 3-month-old and 7-day-old mice were studied in cell-damaging conditions. Neural cell injury was induced by superfusing the slices in hypoxic, hypoglycemic and ischemic conditions and by exposing them to metabolic poisons, free radicals and oxidative stress. The release of taurine was greatly enhanced in these conditions at both ages, except in oxidative stress. In normal conditions the three glutamate agonists potentiated taurine release in the immature hippocampus in a receptor-mediated manner, but kainate receptors did not participate in the regulation in the adults. The ability of the agonists to evoke taurine release varied in the cell-damaging conditions, but the glutamate-receptor-activated release was generally operating in the immature hippocampus. This glutamate-receptor-evoked massive release of taurine could have significant neuroprotective effects, particularly in the developing hippocampus, countering the harmful actions of the simultaneously liberated excitatory amino acids.  相似文献   

15.
The influx of36Cl was studied in membrane vesicles prepared from different brain regions from 3-day-old and adult mice. In both age groups the influx was enhanced about threefold by -aminobutyric acid (GABA), which effect was blocked by bicuculline and picrotoxin but not by baclofen, characteristic of a GABAA receptor-mediated event. In samples from the adult brain stem the GABA stimulation was smaller than in samples from the other brain regions. Most of the compounds studied apparently act at the same receptor site with the following order of efficacy: muscimol > GABA > -alanine > hypotaurine > taurine. A number of anticonvulsant taurine derivatives were not effective and glycine only in the brain stem. The weak modulatory effects of taurine could be of significance in vivo since depolarizing stimuli release massive amounts of taurine in developing brain tissue.  相似文献   

16.
Metabotropic glutamate receptors have recently been envisaged as involved in both potentiation and prevention of ischemic and excitotoxic neuronal damage. The release of the inhibitory amino acid taurine is markedly enhanced in ischemia in both the immature and mature mouse hippocampus. The modulation of [3H]taurine release by metabotropic receptor agonists and antagonists was studied in hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. Agonists of group I, II and III metabotropic glutamate receptors generally reduced the ischemia-induced release in adult animals. In the immature hippocampus the group I agonists (S)-3,5-dihydroxyphenylglycine and (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate, which mainly enhance neuronal excitation, potentiated initial taurine release in ischemia. Ionotropic glutamate receptor agonists also enhance the ischemia-induced taurine release in developing mice. This glutamate-activated taurine release may thus constitute an important protective mechanism against excitotoxicity in the immature hippocampus.  相似文献   

17.
In the brain stem glycine is associated with multiple sensory and visceral regulations, being involved in, for instance, cardiovascular, respiratory and auditory functions. We here studied the mechanisms of the release of preloaded [3H]glycine from mouse brain stem slices in a superfusion system. A depolarizing concentration of K+ ions (50 mM) evoked glycine release, but in the absence of Ca2+ the effect was attenuated, indicating that a part of the evoked release represents Ca2+-dependent exocytosis. The Ca2+-independent release was enhanced by omission of Na+ and Cl. The stimulatory effect of extracellular glycine confirmed the involvement of transporters functioning in a reverse direction. A part of the release is mediated by Na+ and Cl channels, since it was inhibited by the inhibitors of these, riluzole and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulphonate, respectively. Glycine release was potentiated by the activation of protein kinase C and diminished by increasing cyclic guanosine monophosphate levels with a phosphodiesterase inhibitor, zaprinast. The release was also modulated by the phospholipase inhibitor quinacrine and the tyrosine kinase inhibitor genistein. Adenosine A1 receptors likewise regulate glycine release, since it was enhanced by their agonist R(−)N6-(2-phenylisopropyl)adenosine, which effect was blocked by the antagonist 8-cyclopentyl-1,3-dipropylxanthine. The ionotropic glutamate receptor agonists N-methyl-d-aspartate, kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate failed to have any effects contrary to their effects in higher brain regions, e.g., in the hippocampus. The group I and III metabotropic glutamate receptor agonists (S)-3,5-dihydroxyphenylglycine and O-phospho-l-serine, respectively, increased the release in a receptor-mediated manner. Glycine release in the brain stem was also markedly enhanced by cell-damaging conditions, including hypoxia, hypoglycemia and ischemia.  相似文献   

18.
GABA is the inhibitory neurotransmitter in most brain stem nuclei. The properties of release of preloaded [3H]GABA were now investigated with slices from the mouse brain stem under normal and ischemic (oxygen and glucose deprivation) conditions, using a superfusion system. The ischemic GABA release increased about fourfold in comparison with normal conditions. The tyrosine kinase inhibitor genistein had no effect on GABA release, while the phospholipase inhibitor quinacrine reduced both the basal and K+-evoked release in normoxia and ischemia. The activator of protein kinase C (PKC) 4β-phorbol 12-myristate 13-acetate had no effects on the releases, whereas the PKC inhibitor chelerythrine reduced the basal release in ischemia. When the cyclic guanosine monophosphate (cGMP) levels were increased by superfusion with zaprinast and other phosphodiesterase inhibitors, GABA release was reduced under normal conditions. The NO donors S-nitroso-N-acetylpenicillamine (SNAP) and hydroxylamine (HA) enhanced the basal and K+-stimulated release by acting directly on presynaptic terminals. Under ischemic conditions GABA release was enhanced when cGMP levels were increased by zaprinast. This effect was confirmed by inhibition of the release by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The NO-producing agents SNAP, HA, and sodium nitroprusside potentiated GABA release in ischemia. These effects were reduced by the NO synthase inhibitor NG-nitro-l-arginine, but not by ODQ. The results show that particularly NO and cGMP regulate both normal and ischemic GABA release in the brain stem. Their effects are however complex.  相似文献   

19.
The inhibitory neuromodulator adenosine has been thought to act as an endogenous neuroprotectant against cerebral ischemia and neuronal damage. The release of preloaded [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice was characterized using a superfusion system under various cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of free radicals and metabolic poisons. The release of adenosine was greatly potentiated under the above conditions at both ages, with free radicals, metabolic poisons, and ischemia generally having the strongest stimulatory effects. Depolarization by K+ ions (50 mM) could then evoke more release of adenosine only in the immature hippocampus. Omission of Ca2+ from the superfusion media had no effect on the ischemia-induced release in the adults, indicating that it occurs by a Ca2+-independent system. In contrast, the release in the immature hippocampus was partially dependent on extracellular Ca2+. Furthermore, the ischemia-induced adenosine release was reduced in Na+-deficient media and enhanced by ouabain at both ages, pointing to the involvement of Na+-dependent transporters. The release was also reduced by Cl channel blockers, thus indicating that a part of the evoked release occurs through anion channels. Another inhibitory neuromodulator and cell volume regulator, taurine, was seen to enhance adenosine release in ischemia at both ages. The simultaneous release of taurine and adenosine under cell-damaging conditions could constitute an important protective mechanism against excessive amounts of excitatory amino acids, counteracting their harmful effects and preventing excitation from reaching neurotoxic levels.  相似文献   

20.
The spontaneous and stimulated release of taurine and hypotaurine from astrocytes in primary cultures were investigated. Spontaneous efflux was slow, less than one half of preloaded labeled taurine and hypotaurine still remaining in the cells after a 60-min efflux period. The release processes of both amino acids were in principle similar. No homo- or heteroexchange with extracellularly added taurine, hypotaurine or GABA could be detected, and depolarizing potassium concentrations failed to stimulate taurine or hypotaurine release. On the other hand, omission of calcium ions from medium increased efflux of taurine and hypotaurine about three- and twofold, respectively, in both high-K+ and normal-K+ media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号