首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present an initial evaluation of relationships among a diverse sample of 215 species of snakes (8% of the world snake fauna) representing nine of the 16 commonly-recognized families. Allelic variation at four slow-evolving. protein-coding loci, detected by starch-gel electrophoresis, was found to be informative for estimating relationships among these species at several levels. The numerous alleles detected at these loci [ Arp -2 (42 alleles). Ltlh -2 (43), Mdh -1 (29), Pgm (Z)] provided unexpected clarity in partitioning these taxa. Most congeneric species and several closely-related genera have the same allele at all four loci or differ at only a single locus. At thc other extreme are those species with three or four unique alleles; these taxa cannot be placed in this analysis. Species sharing two or three distinctive alleles are those most clearly separated into clades. Typhlopids, pythonids, viperids, and elapids were resolved into individual clades. whereas bods were separated into boincs and erycines, and colubrids appeared as scveral distinct clades (colubrines, natricines, psammophines, homalopsines, and xenodontines). Viperids were recognized as a major division containing three separate clades: Asian and American crotalines. Pabearctic and Oriental viperines, and Ethiopian causines. The typhlopids were found to be the basal clade, with the North American erycine boid Chrrrino and the West Indian woodsnakes Tropidophi, Y near the base. A number of species and some small clades were not allocated because of uninformative (common, unique, or conflicting) alleles. Of the 21 S species examined, five to eight appear to have been misplaced in the analysis of these electrophoretic data.  相似文献   

2.
3.
The goal of the Hungate1000 project is to generate a reference set of rumen microbial genome sequences. Toward this goal we have carried out a meta-analysis using information from culture collections, scientific literature, and the NCBI and RDP databases and linked this with a comparative study of several rumen 16S rRNA gene-based surveys. In this way we have attempted to capture a snapshot of rumen bacterial diversity to examine the culturable fraction of the rumen bacterial microbiome. Our analyses have revealed that for cultured rumen bacteria, there are many genera without a reference genome sequence. Our examination of culture-independent studies highlights that there are few novel but many uncultured taxa within the rumen bacterial microbiome. Taken together these results have allowed us to compile a list of cultured rumen isolates that are representative of abundant, novel and core bacterial species in the rumen. In addition, we have identified taxa, particularly within the phylum Bacteroidetes, where further cultivation efforts are clearly required.This information is being used to guide the isolation efforts and selection of bacteria from the rumen microbiota for sequencing through the Hungate1000.  相似文献   

4.
Microorganisms residing in the rumens of cattle represent a rich source of lignocellulose-degrading enzymes, since their diet consists of plant-based materials that are high in cellulose and hemicellulose. In this study, a metagenomic library was constructed from buffalo rumen contents using pCC1FOS fosmid vector. Ninety-three clones from the pooled library of approximately 10,000 clones showed degrading activity against AZCL-HE-Cellulose, whereas four other clones showed activity against AZCL-Xylan. Contig analysis of pyrosequencing data derived from the selected strongly positive clones revealed 15 ORFs that were closely related to lignocellulose-degrading enzymes belonging to several glycosyl hydrolase families. Glycosyl hydrolase family 5 (GHF5) was the most abundant glycosyl hydrolase found, and a majority of the GHF5s in our metagenomes were closely related to several ruminal bacteria, especially ones from other buffalo rumen metagenomes. Characterization of BT-01, a selected clone with highest cellulase activity from the primary plate screening assay, revealed a cellulase encoding gene with optimal working conditions at pH 5.5 at 50 °C. Along with its stability over acidic pH, the capability efficiently to hydrolyze cellulose in feed for broiler chickens, as exhibited in an in vitro digestibility test, suggests that BT-01 has potential application as a feed supplement.  相似文献   

5.

Background

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a prokaryotic adaptive defence system that provides resistance against alien replicons such as viruses and plasmids. Spacers in a CRISPR cassette confer immunity against viruses and plasmids containing regions complementary to the spacers and hence they retain a footprint of interactions between prokaryotes and their viruses in individual strains and ecosystems. The human gut is a rich habitat populated by numerous microorganisms, but a large fraction of these are unculturable and little is known about them in general and their CRISPR systems in particular.

Results

We used human gut metagenomic data from three open projects in order to characterize the composition and dynamics of CRISPR cassettes in the human-associated microbiota. Applying available CRISPR-identification algorithms and a previously designed filtering procedure to the assembled human gut metagenomic contigs, we found 388 CRISPR cassettes, 373 of which had repeats not observed previously in complete genomes or other datasets. Only 171 of 3,545 identified spacers were coupled with protospacers from the human gut metagenomic contigs. The number of matches to GenBank sequences was negligible, providing protospacers for 26 spacers.Reconstruction of CRISPR cassettes allowed us to track the dynamics of spacer content. In agreement with other published observations we show that spacers shared by different cassettes (and hence likely older ones) tend to the trailer ends, whereas spacers with matches in the metagenomes are distributed unevenly across cassettes, demonstrating a preference to form clusters closer to the active end of a CRISPR cassette, adjacent to the leader, and hence suggesting dynamical interactions between prokaryotes and viruses in the human gut. Remarkably, spacers match protospacers in the metagenome of the same individual with frequency comparable to a random control, but may match protospacers from metagenomes of other individuals.

Conclusions

The analysis of assembled contigs is complementary to the approach based on the analysis of original reads and hence provides additional data about composition and evolution of CRISPR cassettes, revealing the dynamics of CRISPR-phage interactions in metagenomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-202) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/humann. This provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future metagenomic studies.  相似文献   

8.
Freshwater ecosystems are critical but fragile environments directly affecting society and its welfare. However, our understanding of genuinely freshwater microbial communities, constrained by our capacity to manipulate its prokaryotic participants in axenic cultures, remains very rudimentary. Even the most abundant components, freshwater Actinobacteria, remain largely unknown. Here, applying deep metagenomic sequencing to the microbial community of a freshwater reservoir, we were able to circumvent this traditional bottleneck and reconstruct de novo seven distinct streamlined actinobacterial genomes. These genomes represent three new groups of photoheterotrophic, planktonic Actinobacteria. We describe for the first time genomes of two novel clades, acMicro (Micrococcineae, related to Luna2,) and acAMD (Actinomycetales, related to acTH1). Besides, an aggregate of contigs belonged to a new branch of the Acidimicrobiales. All are estimated to have small genomes (approximately 1.2 Mb), and their GC content varied from 40 to 61%. One of the Micrococcineae genomes encodes a proteorhodopsin, a rhodopsin type reported for the first time in Actinobacteria. The remarkable potential capacity of some of these genomes to transform recalcitrant plant detrital material, particularly lignin‐derived compounds, suggests close linkages between the terrestrial and aquatic realms. Moreover, abundances of Actinobacteria correlate inversely to those of Cyanobacteria that are responsible for prolonged and frequently irretrievable damage to freshwater ecosystems. This suggests that they might serve as sentinels of impending ecological catastrophes.  相似文献   

9.
Clustered regularly interspaced short palindromic repeats (CRISPR) constitute a bacterial and archaeal adaptive immune system that protect against bacteriophage (phage). Analysis of CRISPR loci reveals the history of phage infections and provides a direct link between phage and their hosts. All current tools for CRISPR identification have been developed to analyse completed genomes and are not well suited to the analysis of metagenomic data sets, where CRISPR loci are difficult to assemble owing to their repetitive structure and population heterogeneity. Here, we introduce a new algorithm, Crass, which is designed to identify and reconstruct CRISPR loci from raw metagenomic data without the need for assembly or prior knowledge of CRISPR in the data set. CRISPR in assembled data are often fragmented across many contigs/scaffolds and do not fully represent the population heterogeneity of CRISPR loci. Crass identified substantially more CRISPR in metagenomes previously analysed using assembly-based approaches. Using Crass, we were able to detect CRISPR that contained spacers with sequence homology to phage in the system, which would not have been identified using other approaches. The increased sensitivity, specificity and speed of Crass will facilitate comprehensive analysis of CRISPRs in metagenomic data sets, increasing our understanding of phage-host interactions and co-evolution within microbial communities.  相似文献   

10.
Advances in high-throughput sequencing(HTS)have fostered rapid developments in the field of microbiome research,and massive microbiome datasets are now being generated.However,the diversity of software tools and the complexity of analysis pipelines make it difficult to access this field.Here,we systematically summarize the advantages and limitations of micro-biome methods.Then,we recommend specific pipelines for amplicon and metagenomic analyses,and describe commonly-used software and databases,to help researchers select the appropriate tools.Furthermore,we introduce statistical and visualization methods suit-able for microbiome analysis,including alpha-and beta-diversity,taxonomic composition,difference compar-isons,correlation,networks,machine learning,evolu-tion,source tracing,and common visualization styles to help researchers make informed choices.Finally,a step-by-step reproducible analysis guide is introduced.We hope this review will allow researchers to carry out data analysis more effectively and to quickly select the appropriate tools in order to efficiently mine the bio-logical significance behind the data.  相似文献   

11.
The temporal sequence of microbial establishment in the rumen of the neonatal ruminant has important ecological and pathophysiological implications. In this study, we characterized the rumen microbiota of pre-ruminant calves fed milk replacer using two approaches, pyrosequencing of hypervariable V3-V5 regions of the 16S rRNA gene and whole-genome shotgun approach. Fifteen bacterial phyla were identified in the microbiota of pre-ruminant calves. Bacteroidetes was the predominant phylum in the rumen microbiota of 42-day-old calves, representing 74.8% of the 16S sequences, followed by Firmicutes (12.0%), Proteobacteria (10.4%), Verrucomicrobia (1.2%) and Synergistetes (1.1%). However, the phylum-level composition of 14-day-old calves was distinctly different. A total of 170 bacterial genera were identified while the core microbiome of pre-ruminant calves included 45 genera. Rumen development seemingly had a significant impact on microbial diversity. The dazzling functional diversity of the rumen microbiota was reflected by identification of 8298 Pfam and 3670 COG protein families. The rumen microbiota of pre-ruminant calves displayed a considerable compositional heterogeneity during early development. This is evidenced by a profound difference in rumen microbial composition between the two age groups. However, all functional classes between the two age groups had a remarkably similar assignment, suggesting that rumen microbial communities of pre-ruminant calves maintained a stable function and metabolic potentials while their phylogenetic composition fluctuated greatly. The presence of all major types of rumen microorganisms suggests that the rumen of pre-ruminant calves may not be rudimentary. Our results provide insight into rumen microbiota dynamics and will facilitate efforts in formulating optimal early-weaning strategies.  相似文献   

12.
While current major national research efforts (i.e., the NIH Human Microbiome Project) will enable comprehensive metagenomic characterization of the adult human microbiota, how and when these diverse microbial communities take up residence in the host and during reproductive life are unexplored at a population level. Because microbial abundance and diversity might differ in pregnancy, we sought to generate comparative metagenomic signatures across gestational age strata. DNA was isolated from the vagina (introitus, posterior fornix, midvagina) and the V5V3 region of bacterial 16S rRNA genes were sequenced (454FLX Titanium platform). Sixty-eight samples from 24 healthy gravidae (18 to 40 confirmed weeks) were compared with 301 non-pregnant controls (60 subjects). Generated sequence data were quality filtered, taxonomically binned, normalized, and organized by phylogeny and into operational taxonomic units (OTU); principal coordinates analysis (PCoA) of the resultant beta diversity measures were used for visualization and analysis in association with sample clinical metadata. Altogether, 1.4 gigabytes of data containing >2.5 million reads (averaging 6,837 sequences/sample of 493 nt in length) were generated for computational analyses. Although gravidae were not excluded by virtue of a posterior fornix pH >4.5 at the time of screening, unique vaginal microbiome signature encompassing several specific OTUs and higher-level clades was nevertheless observed and confirmed using a combination of phylogenetic, non-phylogenetic, supervised, and unsupervised approaches. Both overall diversity and richness were reduced in pregnancy, with dominance of Lactobacillus species (L. iners crispatus, jensenii and johnsonii, and the orders Lactobacillales (and Lactobacillaceae family), Clostridiales, Bacteroidales, and Actinomycetales. This intergroup comparison using rigorous standardized sampling protocols and analytical methodologies provides robust initial evidence that the vaginal microbial 16S rRNA gene catalogue uniquely differs in pregnancy, with variance of taxa across vaginal subsite and gestational age.  相似文献   

13.
Metagenomic insights into the fibrolytic microbiome in yak rumen   总被引:1,自引:0,他引:1  
X Dai  Y Zhu  Y Luo  L Song  D Liu  L Liu  F Chen  M Wang  J Li  X Zeng  Z Dong  S Hu  L Li  J Xu  L Huang  X Dong 《PloS one》2012,7(7):e40430
The rumen hosts one of the most efficient microbial systems for degrading plant cell walls, yet the predominant cellulolytic proteins and fibrolytic mechanism(s) remain elusive. Here we investigated the cellulolytic microbiome of the yak rumen by using a combination of metagenome-based and bacterial artificial chromosome (BAC)-based functional screening approaches. Totally 223 fibrolytic BAC clones were pyrosequenced and 10,070 ORFs were identified. Among them 150 were annotated as the glycoside hydrolase (GH) genes for fibrolytic proteins, and the majority (69%) of them were clustered or linked with genes encoding related functions. Among the 35 fibrolytic contigs of >10 Kb in length, 25 were derived from Bacteroidetes and four from Firmicutes. Coverage analysis indicated that the fibrolytic genes on most Bacteroidetes-contigs were abundantly represented in the metagenomic sequences, and they were frequently linked with genes encoding SusC/SusD-type outer-membrane proteins. GH5, GH9, and GH10 cellulase/hemicellulase genes were predominant, but no GH48 exocellulase gene was found. Most (85%) of the cellulase and hemicellulase proteins possessed a signal peptide; only a few carried carbohydrate-binding modules, and no cellulosomal domains were detected. These findings suggest that the SucC/SucD-involving mechanism, instead of one based on cellulosomes or the free-enzyme system, serves a major role in lignocellulose degradation in yak rumen. Genes encoding an endoglucanase of a novel GH5 subfamily occurred frequently in the metagenome, and the recombinant proteins encoded by the genes displayed moderate Avicelase in addition to endoglucanase activities, suggesting their important contribution to lignocellulose degradation in the exocellulase-scarce rumen.  相似文献   

14.
Extremophiles - The sedimentary Marl mudstone soil is composed primarily of CaCO3, and is an important pedologic and geomorphologic element known as Marl, extensively dispersed in slopes and ridges...  相似文献   

15.
Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H(2)S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.  相似文献   

16.
Viruses of the Bacteria and Archaea play important roles in microbial evolution and ecology, and yet viral dynamics in natural systems remain poorly understood. Here, we created de novo assemblies from 6.4 Gbp of metagenomic sequence from eight community viral concentrate samples, collected from 12 h to 3 years apart from hypersaline Lake Tyrrell (LT), Victoria, Australia. Through extensive manual assembly curation, we reconstructed 7 complete and 28 partial novel genomes of viruses and virus-like entities (VLEs, which could be viruses or plasmids). We tracked these 35 populations across the eight samples and found that they are generally stable on the timescale of days and transient on the timescale of years, with some exceptions. Cross-detection of the 35 LT populations in three previously described haloviral metagenomes was limited to a few genes, and most previously sequenced haloviruses were not detected in our samples, though 3 were detected upon reducing our detection threshold from 90% to 75% nucleotide identity. Similar results were obtained when we applied our methods to haloviral metagenomic data previously reported from San Diego, CA: 10 contigs that we assembled from that system exhibited a variety of detection patterns on a timescale of weeks to 1 month but were generally not detected in LT. Our results suggest that most haloviral populations have a limited or, possibly, a temporally variable global distribution. This study provides high-resolution insight into viral biogeography and dynamics and it places "snapshot" viral metagenomes, collected at a single time and location, in context.  相似文献   

17.
Soil microbial communities have great potential for bioremediation of recalcitrant aromatic compounds. However, it is unclear which taxa and genes in the communities, and how they contribute to the bioremediation in the polluted soils. To get clues about this fundamental question here, time-course (up to 24 weeks) metagenomic analysis of microbial community in a closed soil microcosm artificially polluted with four aromatic compounds, including phenanthrene, was conducted to investigate the changes in the community structures and gene pools. The pollution led to drastic changes in the community structures and the gene sets for pollutant degradation. Complete degradation of phenanthrene was strongly suggested to occur by the syntrophic metabolism by Mycobacterium and the most proliferating genus, Burkholderia. The community structure at Week 24 (∼12 weeks after disappearance of the pollutants) returned to the structure similar to that before pollution. Our time-course metagenomic analysis of phage genes strongly suggested the involvement of the ‘kill-the-winner’ phenomenon (i.e. phage predation of Burkholderia cells) for the returning of the microbial community structure. The pollution resulted in a decrease in taxonomic diversity and a drastic increase in diversity of gene pools in the communities, showing the functional redundancy and robustness of the communities against chemical disturbance.  相似文献   

18.
19.
The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities for future targeted mechanistic studies of the microbial ecology of the human microbiome.  相似文献   

20.
The cellulosome is an extracellular multi‐enzyme complex that is considered one of the most efficient plant cell wall‐degrading strategies devised by nature. Its unique modular architecture, achieved by high affinity and specific interaction between protein modules (cohesins and dockerins) enables formation of various enzyme combinations. Extensive research has been dedicated to the mechanistic nature of the cellulosome complex. Nevertheless, little is known regarding its distribution and abundance among microbes in natural plant fibre‐rich environments. Here, we explored these questions in bovine rumen microbial communities, specialized in efficient degradation of lignocellulosic plant material. We bioinformatically screened for cellulosomal modules in this complex environment using a previously published ultra‐deep fibre‐adherent rumen metagenome. Intriguingly, a large portion of the functions of the dockerin‐containing proteins were related to alternative biological processes, and not necessarily to the classic fibre degradation function. Our analysis was experimentally validated by characterizing specific interactions between selected cohesins and dockerins and revealed that cellulosome is a more generalized strategy used by diverse bacteria, some of which were not previously associated with cellulosome production. Remarkably, our results provide additional proof of similarity among rumen microbial communities worldwide. This study suggests a broader and widespread role for the cellulosomal machinery in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号