首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.  相似文献   

3.
4.
Galvin BD  Kim S  Horvitz HR 《Genetics》2008,179(1):403-417
Two types of cell death have been studied extensively in Caenorhabditis elegans, programmed cell death and necrosis. We describe a novel type of cell death that occurs in animals containing mutations in either of two genes, lin-24 and lin-33. Gain-of-function mutations in lin-24 and lin-33 cause the inappropriate deaths of many of the Pn.p hypodermal blast cells and prevent the surviving Pn.p cells from expressing their normal developmental fates. The abnormal Pn.p cells in lin-24 and lin-33 mutant animals are morphologically distinct from the dying cells characteristic of C. elegans programmed cell deaths and necrotic cell deaths. lin-24 encodes a protein with homology to bacterial toxins. lin-33 encodes a novel protein. The cytotoxicity caused by mutation of either gene requires the function of the other. An evolutionarily conserved set of genes required for the efficient engulfment and removal of both apoptotic and necrotic cell corpses is required for the full cell-killing effect of mutant lin-24 and lin-33 genes, suggesting that engulfment promotes these cytotoxic cell deaths.  相似文献   

5.
6.
Genetic control of programmed cell death in the nematode C. elegans   总被引:41,自引:0,他引:41  
H M Ellis  H R Horvitz 《Cell》1986,44(6):817-829
The wild-type functions of the genes ced-3 and ced-4 are required for the initiation of programmed cell deaths in the nematode Caenorhabditis elegans. The reduction or loss of ced-3 or ced-4 function results in a transformation in the fates of cells that normally die; in ced-3 or ced-4 mutants, such cells instead survive and differentiate, adopting fates that in the wild type and associated with other cells. ced-3 and ced-4 mutants appear grossly normal in morphology and behavior, indicating that programmed cell death is not an essential aspect of nematode development. The genes ced-3 and ced-4 define the first known step of a developmental pathway for programmed cell death, suggesting that these genes may be involved in determining which cells die during C. elegans development.  相似文献   

7.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death, which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insight into the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells.  相似文献   

8.
T cell-containing lymphoid populations produce a nonantigen-specific mediator(s) (NSM) which can replace T cell helper function in vitro in the response of B cells to sheep red blood cells (SRBC), but not to the hapten-protein conjugate, trinitrophenyl-keyhole limpet hemocyanin, (TNP-KLH). NSM produced under three conditions: 1) stimulation of KLH-primed cells with KLH; 2) allogeneic stimulation of normal spleen cells; and 3) stimulation of normal spleen cells with Con A (but not PHA) are indistinguishable on the basis of their biologic activity and m.w., estimated as 30 to 40,000 daltons by G-200 chromatography. Production of NSM is dependent on the presence of T cells. The action of NSM on B cells responding to SRBC in the presence of 2-mercaptoethanol is unaffected by severe macrophage depletion. Extensive absorption of NSM with SRBC failed to remove its activity, confirming its nonantigen-specific nature.  相似文献   

9.
10.
In Caenorhabditiselegans, motorneuron apoptosis is regulated via a ces-2–ces-1–egl-1 pathway. We tested whether human CEM lymphoblastic leukemia cells undergo apoptosis via an analogous pathway. We have previously shown that E4BP4, a ces-2 ortholog, mediates glucocorticoid (GC)-dependent upregulation of BIM, an egl-1 ortholog, in GC-sensitive CEM C7-14 cells and in CEM C1-15mE#3 cells, which are sensitized to GCs by ectopic expression of E4BP4. In the present study, we demonstrate that the human ces-1 orthologs, SLUG and SNAIL, are not significantly repressed in correlation with E4BP4 expression. Expression of E4BP4 homologs, the PAR family genes, especially HLF, encoding a known anti-apoptotic factor, was inverse to that of E4BP4 and BIM. Expression of pro- and anti-apoptotic genes in CEM cells was analyzed via an apoptosis PCR Array. We identified BIRC3 and BIM as genes whose expression paralleled that of E4BP4, while FASLG, TRAF4, BCL2A1, BCL2L1, BCL2L2 and CD40LG as genes whose expression was opposite to that of E4BP4.  相似文献   

11.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insightinto the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
13.
Mutations in the genes ced-3 and ced-4 prevent almost all of the programmed cell deaths that occur during Caenorhabditis elegans development. To determine the sites of action of these two genes, we performed genetic mosaic analyses. We generated C. elegans animals that carried a free chromosomal duplication bearing either ced-3(+) or ced-4(+) in an otherwise homozygous ced-3 or ced-4 genetic background. We used other genes on the duplication as markers to identify genetic mosaic animals in which the duplication was present in some but not all cells. The patterns of cell death survivors in these mosaic animals indicated that the products of both ced-3 and ced-4 function within dying cells to cause cell death.  相似文献   

14.
Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell corpses in parallel to the canonical apoptosis pathway involving CED-3 activation.  相似文献   

15.
16.
Post-embryonic development in the ventral cord of Caenorhabditis elegans.   总被引:15,自引:0,他引:15  
56 nerve cells are added to the ventral cord and associated ganglia of Caenorhabditis elegans at about the time of the first larval moult. These cells are produced by the uniform division of 13 neuroblasts followed by a defined pattern of cell deaths. Comparison with the data in the previous paper suggests that there is a relationship between the ancestry of a cell and its function. The significance of programmed cell death is discussed.  相似文献   

17.
18.
19.
SUMMARY: The biochemical basis of programmed cell death is poorly understood in mammals. The cell surface receptor Fas/APO-1 (CD95) is one molecule known to be central to a number of mammalian cell death processes. Several studies in the past year have led to insights about the role of Fas/APO-1 in vivo and have also given some clues about the biochemical components of the Fas/APO-1 death pathway. This article reviews those studies and discuss models of Fas/APO-1 signaling and function. BACKGROUND: Cell death occurs as a normal process in a wide variety of developmental and homeostatic contexts in metazoan organisms (1); it represents the timely and appropriate fate for many or even the majority of cells born in certain organ systems. Despite the importance and ubiquitous nature of such physiologic, or "programmed", cell death, little is known about the molecular events that mediate this process. That a conserved biochemical pathway exists is suggested by the observation that programmed cell death is almost always accompanied by a consistent set of morphologic changes, an appearance known as apoptosis (2). The identification of the genes that control programmed cell death in higher eukaryotes has been hampered by several inherent difficulties. First, the genetic tools so useful in dissecting cell death pathways in Caenorhabditis elegans (3) and Drosophila (4) have not been available in higher eukaryotes. Second, the death-inducing properties of such genes makes genetic selection an impractical means of identification. Third, it appears that many cell death genes are constitutively expressed and present in an inactive form (5), making it unlikely that they could be discovered by techniques relying upon differential gene expression. Finally, genes identified by virtue of an ability to induce death when overexpressed must be subjected to rigorous criteria to determine whether the cell death is of physiologic importance, since it is likely that overexpression of certain proteins may lead to toxic effects that are distinct from the in vivo roles of those proteins. Two approaches to date have yielded the most information about cell death processes: (i) identification of cell death genes by classical genetic means coupled with characterization of their mammalian homologs and (ii) screening for proteins capable of inducing cell death directly in mammalian cells. The Fas antigen/APO-1 is an example of a protein discovered using the latter approach, as it was first discovered as an inducer of cell death and later shown to be necessary and sufficient for certain programmed deaths in vivo. More recent studies have connected Fas to elements of cell death pathways in other species. It has been proposed that Fas is related to the Drosophila cell death protein Reaper, and that in signaling cell death Fas relies upon a relative of the C. elegans cell death protein CED-3. Fas may therefore represent an evolutionarily conserved component of a universal cell death pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号