首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pro-drugs of dexamethasone, a potent glucocorticoid, are frequently used as anti-inflammatory steroids in equine veterinary practice. In the present study the biotransformation and urinary excretion of tritium labelled dexamethasone were investigated in cross-bred castrated male horses after therapeutic doses. Between 40-50% of the administered radioactivity was excreted in the urine within 24 h; a further 10% being excreted over the next 3 days. The urinary radioactivity was largely excreted in the unconjugated steroid fraction. In the first 24 h urine sample, 26-36% of the total dose was recovered in the unconjugated fraction, 8-13% in the conjugated fraction and about 5% was unextractable from the urine. The metabolites identified by microchemical transformations and thin-layer chromatography were unchanged dexamethasone, 17-oxodexamethasone, 11-dehydrodexamethasone, 20-dihydrodexamethasone, 6-hydroxydexamethasone and 6-hydroxy-17-oxodexamethasone together accounting for approx 60% of the urinary activity. About 25% of the urinary radioactivity associated with polar metabolites still remains unidentified.  相似文献   

2.
Dexamethasone is a potent and widely used anti-inflammatory and immunosuppressive drug. However, recent evidences suggest that dexamethasone cause pathologic cardiac remodeling, which later impairs cardiac function. The mechanism behind the cardiotoxic effect of dexamethasone is elusive. The present study aimed to verify if dexamethasone-induced cardiotoxicity would be associated with changes in the cardiac net balance of calcium handling protein and calcineurin signaling pathway activation. Wistar rats (~400 g) were treated with dexamethasone (35 µg/g) in drinking water for 15 days. After dexamethasone treatment, we analyzed cardiac function, cardiomyocyte diameter, cardiac fibrosis, and the expression of proteins involved in calcium handling and calcineurin signaling pathway. Dexamethasone-treated rats showed several cardiovascular abnormalities, including elevated blood pressure, diastolic dysfunction, cardiac fibrosis, and cardiomyocyte apoptosis. Regarding the expression of proteins involved in calcium handling, dexamethasone increased phosphorylation of phospholamban at threonine 17, reduced protein levels of Na+/Ca2+ exchanger, and had no effect on protein expression of Serca2a. Protein levels of NFAT and GATA-4 were increased in both cytoplasmic and nuclear faction. In addition, dexamethasone increased nuclear protein levels of calcineurin. Altogether our findings suggest that dexamethasone causes pathologic cardiac remodeling and diastolic dysfunction, which is associated with impaired calcium handling and calcineurin signaling pathway activation.  相似文献   

3.
Sanner BM  Meder U  Zidek W  Tepel M 《Steroids》2002,67(8):715-719
Since prednisolone and dexamethasone are known as potent anti-inflammatory agents, the effects of prednisolone and dexamethasone on production of intracellular reactive oxygen species (ROS) were investigated in human platelets. Platelet ROS were measured using the intracellular fluorescent dye dichlorofluorescein diacetate after activation of protein kinase C by phorbol-12-myristate-13-acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG). NAD(P)H oxidase activity was measured photometrically. PMA and OAG significantly increased ROS in platelets (P<0.001). Prednisolone or dexamethasone concentration-dependently reduced the PMA-induced ROS production. The PMA-induced ROS increase was significantly reduced in the presence of 10 micromol/l prednisolone to 9+/-1% (n=31; P<0.001) or in the presence of 10 micromol/l dexamethasone to 9+/-1% (n=24; P<0.001). The inhibitory effect of prednisolone or dexamethasone could also be observed in the presence of the glucocorticoid receptor inhibitor, mifepristone (RU486). Administration of testosterone or aldosterone did not significantly reduce PMA-induced ROS increase. Prednisolone had no effect on platelet NAD(P)H oxidase activity. The inhibition of oxidative phosphorylation by sodium azide reduced platelets ROS to 8+/-1% (n=35). It is concluded that glucocorticoids, prednisolone and dexamethasone, directly inhibit production of intracellular ROS. This effect may contribute to the anti-inflammatory actions of these agents.  相似文献   

4.
P Vadas 《Life sciences》1982,30(2):155-162
The effects of steroidal and non-steroidal anti-inflammatory agents on extracellular phospholipase A2 (PLA2) activity were investigated. Enzyme release was inhibited by 5 x 10(-8) M dexamethasone but not by indomethacin, whereas the soluble extracellular enzyme was inactivated by mepacrine but not by dexamethasone or indomethacin. PLA2, released into the interstitium by activated macrophages is both pro-inflammatory and vasoactive. The anti-inflammatory efficacy of steroidal and non-steroidal drugs may partially reside in their ability to inhibit the release of PLA2, or inactivate preformed extracellular PLA2 in chronically inflamed sites.  相似文献   

5.
Airway smooth muscle is actively involved in the inflammatory process in diseases such as chronic obstructive pulmonary disease and asthma by 1) contributing to airway narrowing through hyperplasia and hypertrophy and 2) the release of GM-CSF and G-CSF, which promotes the survival and activation of infiltrating leukocytes. Thus, the identification of novel anti-inflammatory pathways in airway smooth muscle will have important implications for the treatment of inflammatory airway disease. This study identifies such a pathway in the activation of peroxisome proliferator-activated receptors (PPARs). PPAR ligands are known therapeutic agents in the treatment of diabetes; however, their role in human airway disease is unknown. We demonstrate, for the first time, that human airway smooth muscle cells express PPAR alpha and -gamma subtypes. Activation of PPAR gamma by natural and synthetic ligands inhibits serum-induced cell growth more effectively than does the steroid dexamethasone, and induces apoptosis. Moreover, PPAR gamma activation, like dexamethasone, inhibits the release of GM-CSF. However, PPAR gamma ligands, but not dexamethasone, similarly inhibits G-CSF release. These results reveal a novel anti-inflammatory pathway in human airway smooth muscle, where PPAR gamma activation has additional anti-inflammatory effects to those of steroids. Hence, PPAR ligands might act as potential treatments in human respiratory diseases.  相似文献   

6.
Wang X  Nelin LD  Kuhlman JR  Meng X  Welty SE  Liu Y 《Life sciences》2008,83(19-20):671-680
AIMS: We have previously shown that glucocorticoids induce the expression of MAP kinase phosphatase (Mkp)(a)-1 in innate immune cells. Since Mkp-1 is a critical negative regulator of the innate immune response, we hypothesize that Mkp-1 plays a significant role in the anti-inflammatory action of glucocorticoids. The specific aim of the present study is to understand the role of Mkp-1 in the anti-inflammatory function of glucocorticoids. MAIN METHODS: Wild-type and Mkp-1(-/-) mice were treated with different doses of dexamethasone and then challenged with different doses of lipopolysaccharide (LPS). The survival and blood cytokines were assessed. The effects of dexamethasone on cytokine production in wild-type and Mkp-1(-/-) primary macrophages ex vivo were also examined. KEY FINDINGS: We found that dexamethasone induced the expression of Mkp-1 in vivo. Dexamethasone treatment completely protected wild-type mice from the mortality caused by a relatively high dose of LPS. However, dexamethasone treatment offered only a partial protection to Mkp-1(-/-) mice. Dexamethasone attenuated TNF-alpha production in both wild-type and Mkp-1(-/-) mice challenged with LPS, although TNF-alpha production in Mkp-1(-/-) mice was significantly more robust than that in wild-type mice. Dexamethasone pretreatment shortened the duration of p38 and JNK activation in LPS-stimulated wild-type macrophages, but had little effect on p38 or JNK activation in similarly treated Mkp-1(-/-) macrophages. SIGNIFICANCE: Our results indicate that the inhibition of p38 and JNK activities by glucocorticoids is mediated by enhanced Mkp-1 expression. These results demonstrate that dexamethasone exerts its anti-inflammatory effects through both Mkp-1-dependent and Mkp-1-indepent mechanisms.  相似文献   

7.
Previous studies have demonstrated that exposure of guinea pig macrophages to a primary signal, such as lipopolysaccharide (LPS), stimulates the synthesis of prostaglandin E2 (PGE2) which, in turn, elevates cAMP levels resulting in the production of the enzyme, collagenase. The potential of regulating the biochemical events in this activation sequence was examined with the anti-inflammatory agents dexamethasone and colchicine, which suppress the destructive sequelae in chronic inflammatory lesions associated with the degradation of connective tissue. The addition of dexamethasone with LPS to macrophage cultures resulted in a dose-dependent inhibition of PGE2 and collagenase production, which was reversed by the exogenous addition of phospholipase A2. Collagenase production was also restored in dexamethasone-treated cultures by the addition of products normally produced as a result of phospholipase action, such as arachidonic acid, PGE2 or dibutyryl-cAMP. Since the effect of dexamethasone was thus linked to phospholipase A2 inhibition, mepacrine, a phospholipase inhibitor, was also tested. Mepacrine, like dexamethasone, caused a dose-dependent inhibition of PGE2 and collagenase. In addition to corticosteroid inhibition, colchicine was also found to block collagenase production. However, this anti-inflammatory agent had no effect on PGE2 synthesis. Colchicine was effective only when added at the onset of culture and not 24 h later, implicating a role for microtubules in the transmission of the activation signal rather than enzyme secretion. The failure of lumicolchicine to inhibit collagenase activity provided additional evidence that microtubules are involved in the activation of macrophages. These findings demonstrate that dexamethasone and colchicine act at specific steps in the activation sequence of guinea pig macrophages to regulate collagenase production.  相似文献   

8.
Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories “inflammation”, “growth”, “apoptosis” and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis.  相似文献   

9.
Pterocarpanquinone (+/−)-LQB-118 presents antineoplastic and antiparasitic properties and also shows great inhibitory effect on TNF-α release in vitro. Here, its anti-inflammatory activity was evaluated in a lipopolysaccharide (LPS)-induced lung inflammation model in C57BL/6 mice. LPS inhalation induced a marked neutrophil infiltration to the lungs which was reduced by intraperitoneal treatment with (+/−)-LQB-118 in a similar manner to that of dexamethasone and even better than that of acetylsalicylic acid. Moreover, (+/−)-LQB-118 administration resulted in decrease of NF-κB activation and KC level in lungs, with a pronounced inhibitory effect on TNF-α release, measured in bronchoalveolar lavage fluid. Trying to understand the anti-inflammatory mechanism by which (+/−)-LQB-118 acts, we performed a molecular modeling analysis, including docking to estrogen receptors α and β. Results suggested that (+/−)-LQB-118 may bind to both receptors, with a similar orientation to 17-β-estradiol. Together, these results showed that (+/−)-LQB-118 exhibits an anti-inflammatory effect, most likely by inhibiting TNF-α release and NF-κB activation, which may be related to the estrogen receptor binding.  相似文献   

10.
Activation of vascular endothelium plays an essential role in vasoocclusion in sickle cell disease. The anti-inflammatory agents dexamethasone and adhesion molecule-blocking antibodies were used to inhibit endothelial cell activation and hypoxia-induced vasoocclusion. Transgenic sickle mice, expressing human alpha-, beta(S)-, and beta(S-Antilles)-globins, had an activated vascular endothelium in their liver, lungs, and skin, as exhibited by increased activation of NF-kappaB compared with normal mice. NF-kappaB activation increased further in the liver and skin after sickle mice were exposed to hypoxia. Sickle mice had decreases in red blood cell (RBC) velocities and developed vasoocclusions in subcutaneous venules in response to hypoxia. Dexamethasone pretreatment prevented decreases in RBC velocities and inhibited vasoocclusions and leukocyte-endothelium interactions in venules after hypoxia. Dexamethasone treatment inhibited NF-kappaB, VCAM-1, and ICAM-1 expression in the liver, lungs, and skin of sickle mice after hypoxia-reoxygenation. VCAM-1 or ICAM-1 blockade with monoclonal antibodies mimicked dexamethasone by inhibiting vasoocclusion and leukocyte adhesion in sickle mice, demonstrating that endothelial cell activation and VCAM-1 and ICAM-1 expression are necessary for hypoxia-induced vasoocclusion in sickle mice. VCAM-1, ICAM-1, and vasoocclusion increased significantly 3 days after dexamethasone discontinuation, possibly explaining rebounds in vasoocclusive crises observed after withdrawal of glucocorticosteroids in sickle patients. We conclude that anti-inflammatory treatments that inhibit endothelial cell activation and adhesion molecule expression can inhibit vasoocclusion in sickle cell disease. Rebounds in vasoocclusive crises after dexamethasone withdrawal are caused by rebounds in endothelial cell activation.  相似文献   

11.
A sensitive radioimmunoassay for dexamethasone 17,21-dipropionate and its four metabolites in human plasma and urine has been developed using single anti-dexamethasone antiserum. The antiserum was obtained by immunizing rabbits with dexamethasone-3-oxime-bovine serum albumin conjugate. All of the endogenous steroids tested cross-reacted less than 0.07%. Before radioimmunoassay, dexamethasone 17,21-dipropionate and dexamethasone 17-propionate were hydrolyzed to dexamethasone, and 6 beta-OH-dexamethasone 17-propionate was hydrolyzed to 6 beta-OH-dexamethasone in 3% ammonia/methanol at 5 C for 16 h. A standard curve was established with a useful range between 0.005 and 2 ng in the case of dexamethasone, between 0.05 and 5 ng in the case of 6 beta-OH-dexamethasone. Measurement of plasma concentrations and percent urinary excretion of the metabolites in healthy men was performed following occlusive dressing of dexamethasone 17,21-dipropionate cream and ointment. The main metabolites in plasma were dexamethasone 17-propionate and dexamethasone, which increased gradually and reached maximum levels (160-200 pg/mL) at 24-32 h after application. The major metabolites observed in urine were 6 beta-OH-dexamethasone 17-propionate and 6 beta-OH-dexamethasone. Total percentage of their urinary excretions within 72 h after application amounted to 0.28-0.50% of the dose administered.  相似文献   

12.
The antigen stimulation of RBL-2H3 cells induced interleukin 13 (IL-13) production, which was inhibited by the steroidal anti-inflammatory drug dexamethasone and by the c-Jun N-terminal kinase (JNK) inhibitor SP600125. Dexamethasone did not inhibit the antigen-induced phosphorylation of JNK but inhibited that of c-Jun. In a cell-free system, the phosphorylation of glutathione S-transferase-fused c-Jun by recombinant JNK was not inhibited by dexamethasone but was inhibited by the addition of recombinant glucocorticoid receptor (GR). These findings suggest that the inhibition of antigen-induced IL-13 production by dexamethasone is due to the GR-mediated inhibition of c-Jun phosphorylation induced by JNK.  相似文献   

13.
Glucocorticoids effectively mediate the resolution of inflammation, but long-term use of glucocorticoids inevitably causes metabolic side effects. However, it is unknown if metabolic effectors such as Dexras1, a dexamethasone-stimulated protein, play a role in the anti-inflammatory outcome of dexamethasone. Here, we demonstrate that Dexras1 is required for the dexamethasone-induced upregulation of annexin A1 expression, but is not involved in the reduction of inflammation as evidenced by decreased pro-inflammatory parameters. In the absence of Dexras1, lipopolysaccharide (LPS)-induced interleukin-6 expression was suppressed when murine macrophage RAW264.7 cells were treated with dexamethasone. Similar observations were made in the blood of Dexras1 knockout mice. Furthermore, dexamethasone suppressed the LPS-stimulated increase of NFκB-p65 in both control and Dexras1-absent RAW264.7 cells. Interestingly, depletion of Dexras1 resulted in the loss of pERK production. These results suggest that Dexras1 is involved primarily in the metabolic side effects and its inhibition preserves the anti-inflammatory action of glucocorticoids. Thus, the inhibition of Dexras1 will be an excellent target for reducing steroid-induced side effects.  相似文献   

14.
Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS)-induced inflammation model was established in marmoset monkeys (Callithrix jacchus) to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS) were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4) inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-1 beta (MIP-1β) were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL) was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50)). LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.  相似文献   

15.
To study the anti-inflammatory mechanisms of glucocorticoids, we have compared the effects of intratracheal carrageenin (2.5 mg) on control rats and those in which inflammation was subdued by prior dexamethasone treatment (10 mg/l in drinking water). Inflammation was maximal 48 h post-carrageenin. After dexamethasone, carrageenin caused tittle inflammation or oedema (wet lung (mg), n = 6, mean +/- S.E.M.; control, 995 +/- 51; carrageenin + dexamethasone, 1144 +/- 83; compared with carrageenin alone, 1881 +/- 198), but rats had more lung lavage neutrophils than those given carrageenin alone (PMN x 10(6) /lung, mean +/- S.E.M.; control, 0.055 +/- 0.003; carrageenin + dexamethasone, 8.54 +/- 1.52; compared with carrageenin alone, 6.30 +/- 1.71). Proteolysis and partial inactivation of the anti-inflammatory mediator, lipocortin 1 (Lcl), in carrageenin-instilled rats was offset in those also given dexamethasone, by increased Lc1 levels (intact Lc1 ng/ml lavage fluid, n = 4, mean +/- S.E.M.; control 24 +/- 6; carrageenin 15 +/- 4; carrageenin + dexamethasone, 40 +/- 15). Maintenance of sufficient intact (fully active) extracellular Lc1 may contribute to the actions of glucocorticoids.  相似文献   

16.
The stress-activated protein kinase p38 stabilizes a number of mRNAs encoding inflammatory mediators, such as cyclooxygenase 2 (Cox-2). In HeLa cells the anti-inflammatory glucocorticoid dexamethasone destabilizes Cox-2 mRNA by inhibiting p38 function. Here we demonstrate that this effect is phosphatase dependent. Furthermore, in HeLa cells dexamethasone induced the sustained expression of mitogen-activated protein kinase phosphatase 1 (MKP-1), a potent inhibitor of p38 function. The inhibition of p38 and the induction of MKP-1 by dexamethasone occurred with similar dose dependence and kinetics. No other known p38 phosphatases were induced by dexamethasone, and other cell types which failed to express MKP-1 also failed to inhibit p38 in response to dexamethasone. The proinflammatory cytokine interleukin 1 (IL-1) induced MKP-1 expression in a p38-dependent manner and acted synergistically with dexamethasone to induce MKP-1 expression. In HeLa cells treated with IL-1 or IL-1 and dexamethasone, the dynamics of p38 activation mirrored the expression of MKP-1. These observations suggest that MKP-1 participates in a negative-feedback loop which regulates p38 function and that dexamethasone may inhibit proinflammatory gene expression in part by inducing MKP-1 expression.  相似文献   

17.
In chronic inflammatory diseases, the endothelium is an attractive target for pharmacological intervention because it plays an important role in leukocyte recruitment. Hence, inhibition of endothelial cell activation and consequent leukocyte infiltration may improve therapeutic outcome in these diseases. We report on a drug targeting strategy for the selective delivery of the anti-inflammatory drug dexamethasone to activated endothelial cells, using an E-selectin-directed drug-Ab conjugate. Dexamethasone was covalently attached to an anti-E-selectin Ab, resulting in the so-called dexamethasone-anti-E-selectin conjugate. Binding of the conjugate to E-selectin was studied using surface plasmon resonance and immunohistochemistry. Furthermore, internalization of the conjugate was studied using confocal laser scanning microscopy and immuno-transmission electron microscopy. It was demonstrated that the dexamethasone-anti-E-selectin conjugate, like the unmodified anti-E-selectin Ab, selectively bound to TNF-alpha-stimulated endothelial cells and not to resting endothelial cells. After binding, the conjugate was internalized and routed to multivesicular bodies, which is a lysosome-related cellular compartment. After intracellular degradation, pharmacologically active dexamethasone was released, as shown in endothelial cells that were transfected with a glucocorticoid-responsive reporter gene. Furthermore, intracellularly delivered dexamethasone was able to down-regulate the proinflammatory gene IL-8. In conclusion, this study demonstrates the possibility to selectively deliver the anti-inflammatory drug dexamethasone into activated endothelial cells, using an anti-E-selectin Ab as a carrier molecule.  相似文献   

18.
19.
小鼠应急时相反应蛋白SIP24/24p3有抗炎症和特异性诱导白细胞凋亡的功能,其在体内的表达是高度特异性的。为研究SIP24/24p3的调控因子及机制,我们在小鼠Balb/c3T3和BNL细胞培养中通过灵敏的弱S代谢标记方法检测SIP24/24p3蛋白的表达水平,定量观测分析了糖皮质激素化合物dexamethasone对SIP24/24p3的诱导作用及其与炎症因子白介素6(IL-6)和肿瘤坏死因子α(TNF-α)的协同调控作用。结果显示:(1)在Balb/c3T3和BNL细胞中,dexamethasone对SIP24/24p3都有明显诱导作用,这种诱导作用在BNL细胞中尤其显著;(2)在Balb/c3T3和BNL细胞中dexamethasone与IL-6协同诱导SIP24/24p3;(3)在Balb/c 3T3细胞中dexamethasone与TNF-α对SIP24/24p3有协同诱导效应,而在BNL细胞中dexamethasone与TNF-α对SIP24/24p3的诱导表现为相加效应;(4)在Balb/c3T3和BNL细胞中dexamethasone与IL-6/TNF-α对SIP24/24p3的诱导分别表现出协同和相加效应。多种因子对SIP24/24p3的协同诱导调控有助于阐明其在体内的高度特异表达及机制,SIP24/24p3在不同细胞中的不同表达格局也对体内应急时相反应蛋白在肝脏外和肝脏内的表达方式及诱导机制有提示作用。SIP24/24p3能同时被炎症因子和抗炎症因子诱导的事实显示了其在炎症全过程中的重要作用。  相似文献   

20.
We tested the hypothesis that maternal glucocorticoid treatment modulates 17-kDa myosin light chain (myosin LC17) isoform expression and contractile dynamics in fetal ovine carotid arteries. In the single course group, ewes received 6 mg dexamethasone or placebo over 48 h. In the repeated course group, ewes received 6 mg dexamethasone or placebo weekly for 5 wk. In response to 1 microM phenylephrine, arteries from fetuses of dexamethasone-treated ewes exhibited biphasic contractions, characterized by an intermediate relaxation phase. The relaxation rate constant was significantly higher in arteries from the fetuses of dexamethasone than placebo-treated ewes. The observed biphasic contractions suggest the appearance of functional sarcoplasmic reticulum in the arteries from the fetuses of dexamethasone-treated ewes. The myosin LC17(a) isoform expression was lower in the arteries from the fetuses of the placebo-treated ewes than in those from the ewes. Repeated maternal administration of dexamethasone induced an almost twofold increase in myosin LC17(a) isoform expression in the fetal arteries. In contrast, maternal myosin LC17a isoform expression was not affected by dexamethasone treatment. We speculate that dexamethasone-induced increases in fetal myosin LC17(a) isoform expression represent accelerated differentiation of a subpopulation of vascular smooth muscle cells from the fetal to adult phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号