首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The establishment of trophectoderm (TE) manifests as the formation of epithelium, and is dependent on many structural and regulatory components that are commonly found and function in many epithelial tissues. However, the mechanism of TE formation is currently not well understood. Prickle1 (Pk1), a core component of the planar cell polarity (PCP) pathway, is essential for epiblast polarization before gastrulation, yet the roles of Pk family members in early mouse embryogenesis are obscure. Here we found that Pk2(-/-) embryos died at E3.0-3.5 without forming the blastocyst cavity and not maintained epithelial integrity of TE. These phenotypes were due to loss of the apical-basal (AB) polarity that underlies the asymmetric redistribution of microtubule networks and proper accumulation of AB polarity components on each membrane during compaction. In addition, we found GTP-bound active form of nuclear RhoA was decreased in Pk2(-/-) embryos during compaction. We further show that the first cell fate decision was disrupted in Pk2(-/-) embryos. Interestingly, Pk2 localized to the nucleus from the 2-cell to around the 16-cell stage despite its cytoplasmic function previously reported. Inhibiting farnesylation blocked Pk2's nuclear localization and disrupted AB cell polarity, suggesting that Pk2 farnesylation is essential for its nuclear localization and function. The cell polarity phenotype was efficiently rescued by nuclear but not cytoplasmic Pk2, demonstrating the nuclear localization of Pk2 is critical for its function.  相似文献   

3.
Development of an animal embryo involves the coordination of cell divisions, a variety of inductive interactions and extensive cellular rearrangements. One of the biggest challenges in developmental biology is to explain the relationships between these processes and the mechanisms that regulate them. Teleost embryos provide an ideal subject for the study of these issues. Their optical lucidity combined with modern techniques for the marking and observation of individual living cells allow high resolution investigations of specific morphogenetic movements and the construction of detailed fate maps. In this review we describe the patterns of cell divisions, cellular movements and other morphogenetic events during zebrafish early development and discuss how these events relate to the formation of restricted lineages.  相似文献   

4.
Cell polarity is crucial for many functions including cell migration, tissue organization and asymmetric cell division. In animal cells, cell polarity is controlled by the highly conserved PAR (PARtitioning defective) proteins. par genes have been identified in Caenorhabditis elegans in screens for maternal lethal mutations that disrupt cytoplasmic partitioning and asymmetric division. Although PAR proteins were identified more than 20 years ago, our understanding on how they regulate polarity and how they are regulated is still incomplete. In this chapter we review our knowledge of the processes of cell polarity establishment and maintenance, and asymmetric cell division in the early C. elegans embryo. We discuss recent findings that highlight new players in cell polarity and/or reveal the molecular details on how PAR proteins regulate polarity processes.  相似文献   

5.
Cellular asymmetries have been proposed to play a role in plant embryogenesis. Genetic studies of Arabidopsis and other experimental approaches in several plant species have addressed the origins of cellular asymmetry in specific cases. Although zygote polarity, which precedes the formation of the apical—basal axis of the embryo, is normally aligned with that of the surrounding maternal tissue, isolated single somatic cells that give rise to embryos in culture appear to become polar in the absence of maternal factors. Gene expression patterns reveal the developmental consequences of cellular asymmetries occurring at later stages of embryogenesis. Genetic evidence suggests that these cellular asymmetries are established in response to as yet unidentified signals from adjacent cells.  相似文献   

6.
Membrane topography and organization of cortical cytoskeletal elements and organelles during early embryogenesis of the mouse have been studied by transmission and scanning electron microscopy with improved cellular preservation. At the four- and early eight-cell stages, blastomeres are round, and scanning electron microscopy shows a uniform distribution of microvilli over the cell surface. At the onset of morphogenesis, a reorganization of the blastomere surface is observed in which microvilli becomes restricted to an apical region and the basal zone of intercellular contact. As the blastomeres spread on each other during compaction, many microvilli remain in the basal region of imminent cell-cell contacts, but few are present where the cells have completed spreading on each other. Microvilli on the surface of these embryos contain linear arrays of microfilaments with lateral cross bridges. Microtubules and mitochondria become localized beneath the apposed cell membranes during compaction. Arrays of cortical microtubules are aligned parallel to regions of apposed membranes. During cytokinesis, microtubules become redistributed in the region of the mitotic spindle, and fewer microvilli are present on most of the cell surface. The cell surface and cortical changes initiated during compaction are the first manifestations of cell polarity in embryogenesis. These and previous findings are interpreted as evidence that cell surface changes associated with trophoblast development appear as early as the eight-cell stage. Our observations suggest that morphogenesis involves the activation of a developmental program which coordinately controls cortical cytoplasmic and cell surface organization.  相似文献   

7.
8.
9.
Our understanding of how meiotic maturation is regulated in Xenopus laevis continues to flourish. Premature initiation of maturation is prevented by the cAMP-dependent protein kinase, which inhibits the synthesis of Mos and potently blocks activation of cdc25. The autoamplification of maturation promoting factor (MPF) activity can be explained by the ability of MPF to directly activate cdc25. Later, in Meiosis II, the contribution of Mos to cytostatic factor (CSF) appears to be mediated through its activation of the mitogen-activated protein kinase, and cdk2 has been added to the active components of CSF. A model is presented illustrating the pathways of meiotic reinitiation, and indicating gaps in our knowledge.  相似文献   

10.
11.
Beginning with the first mitotic division in a Caenorhabditis elegans embryo, asymmetric cleavages establish much of the body plan. Although they share a common axis of polarity, at least three kinds of asymmetric cell division occur: two are under intrinsic control, while a third requires an inductive signal and may operate repeatedly throughout development.  相似文献   

12.
Cell polarity, which directs the orientation of asymmetric cell division and segregation of fate determinants, is a fundamental feature of development and differentiation. Regulators of polarity have been extensively studied, and the critical importance of the Par (partitioning-defective) complex as the polarity machinery is now recognized in a wide range of eukaryotic systems. The Par polarity module is evolutionarily conserved, but its mechanism and cooperating factors vary among different systems. Here we describe the cloning and characterization of a pond snail Lymnaea stagnalis homologue of partitioning-defective 6 (Lspar6). The protein product LsPar6 shows high affinity for microtubules and localizes to the mitotic apparatus during embryonic cell division. In vitro assays revealed direct binding of LsPar6 to tubulin and microtubules, which is the first evidence of the direct interaction between the two proteins. The interaction is mediated by two distinct regions of LsPar6 both located in the N-terminal half. Atypical PKC, a functional partner of Par6, was also found to localize to the mitotic spindle. These results suggest that the L. stagnalis Par complex employs the microtubule network in cell polarity processes during the early embryogenesis. Identical sequence and localization of LsPar6 for the dextral and the sinistral snails exclude the possibility of the gene being the primary determinant of handedness.  相似文献   

13.
Cell polarity: fixing cell polarity with Pins   总被引:2,自引:0,他引:2  
A protein complex is assembled in a step-wise manner at the apical pole of Drosophila neuroblasts. This complex organizes the apical-basal polarity of asymmetrically dividing neuroblasts, and may act via G-protein signalling.  相似文献   

14.
Growth factors and proto-oncogenes play an important role in the regulation of embryonic growth and differentiation as well as in tumorigenesis. Insulin and insulin-like growth factor I (IGF I) are secreted by embryonic tissues during the prepancreatic stage of mouse development. Measureable amounts of these factors were found in 8- to 12-day-old embryos. Embryonic cells derived from 8- to 10-day-old embryos secrete insulin and IGF I in serum-free medium. Relatively high levels of c-myc, c-fos and c-H-ras oncoproteins were also detected in 8- to 12-day-old embryos. Insulin and IGF I, when added to the culture of embryonic cells, stimulate their proliferation. Similar results were obtained in some animal or human tumors. Murine myeloid leukemias and melanoma B 16 secrete a substance immunologically cross reactive with insulin (SICRI) both in vivo and in serum-free media. In culture, the DNA synthesis rate per leukemic or melanoma cell is proportional to cell density and is reduced by antiinsulin serum in case of leukemic cells. Human hemangiosarcoma secrete IGF I, which also plays a role as an autocrine factor. Purified IGF I efficiently induce c-myc and c-fos mRNA, which is among the earliest events following growth factor stimulation, leading to mitosis. These results lead us to the conclusion that IGF I and insulin together with oncoproteins stimulate the growth of embryonic and tumor cells, which is indirect evidence for a paracrine (or autocrine) type of action.  相似文献   

15.
We describe the spatial and temporal patterns of cell division in the early Xenopus embryo, concentrating on the period between the midblastula transition and the early tailbud stage. Mitotic cells were identified using an antibody recognising phosphorylated histone H3. At least four observations are of interest. First, axial mesodermal cells, including prospective notochord, stop dividing after involution and may not divide thereafter. Second, cell division is more pronounced in the neural plate than in nonneural ectoderm, and the pattern of cell division becomes further refined as neurogenesis proceeds. Third, cells in the cement gland cease proliferation completely as they begin to accumulate pigment. Finally, the precursors of peripheral sensory organs such as the ear and olfactory placode undergo active cell proliferation when they arise from the sensorial layer of the ectoderm. These observations and others should provide a platform to study the relationship between the regulation of developmental processes and the cell cycle during Xenopus embryogenesis.  相似文献   

16.
Cell surface carbohydrates undergo marked alterations during mouse embryogenesis. In preimplantation embryos, many carbohydrate markers show stage-specific expression in diverse ways. In early postimplantation embryos, certain carbohydrate markers are localized in defined regions in the embryo. Important carriers of stage-specific carbohydrates are the lactoseries structure (Gal beta 1----4GlcNAc) and the globoseries structure (Gal alpha 1----4Gal). Notably, the glycoprotein-bound large carbohydrate of poly-N-acetyllactosamine-type ([Gal beta 1----4GlcNAc beta 1----3]n) carries a number of markers preferentially expressed in early embryonic cells. These markers are of practical value in analyzing embryogenesis and cell differentiation. For example, in order to monitor in vitro differentiation of multipotential embryonal carcinoma cells, stage-specific embryonic antigen-1 (SSEA-1) and the Lotus agglutinin receptor have been used as markers of the undifferentiated cells, and the Dolichos agglutinin receptor has been used as a marker of extraembryonic endoderm cells. Developmental control of cell surface carbohydrates is attained by controlled expression of activities of key glycosyltransferases; for example, the activity of N-acetylglucosaminide alpha 1----3 fucosyltransferase is lost during in vitro differentiation of embryonal carcinoma cells to parietal endoderm cells, in parallel to the disappearance of SSEA-1. Accumulating evidence suggests that poly-N-acetyllactosamine-type glycans that are abundant in early embryonic cells are involved in cell surface recognition of these cells.  相似文献   

17.
Apical-basal polarity of epithelial cells is critical for their symmetric versus asymmetric division and commonly thought to be established in interphase. In a novel type of cell division termed "mirror-symmetric", apical cell constituents accumulate during M-phase at the cleavage furrow, resulting in epithelial daughter cells with opposite apical-basal polarity.  相似文献   

18.
Expression of p53 during mouse embryogenesis.   总被引:13,自引:0,他引:13  
By in situ hybridisation we have examined the expression of p53 during mouse embryogenesis from day 8.5 to day 18.5 post coitum (p.c.). High levels of p53 mRNA were detected in all cells of the day 8.5 p.c. and 10.5 p.c. mouse embryo. However, at later stages of development, expression became more pronounced during differentiation of specific tissues e.g. of the brain, liver, lung, thymus, intestine, salivary gland and kidney. In cells undergoing terminal differentiation, the level of p53 mRNA declined strongly. In the brain, hybridisation signals were also observed in postmitotic but not yet terminally differentiated cells. Therefore, gene expression of p53 does not appear to be linked with cellular proliferation in this organ. A proposed role for p53 in cellular differentiation is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号