首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Hill DA  Imbalzano AN 《Biochemistry》2000,39(38):11649-11656
The physical structure and the compact nature of the eukaryotic genome present a functional barrier for any cellular process that requires access to the DNA. The linker histone H1 is intrinsically involved in both the determination of and the stability of higher order chromatin structure. Because histone H1 plays a pivotal role in the structure of chromatin, we investigated the effect of histone H1 on the nucleosome remodeling activity of human SWI/SNF, an ATP-dependent chromatin remodeling complex. The results from both DNase I digestion and restriction endonuclease accessibility assays indicate that the presence of H1 partially inhibits the nucleosome remodeling activity of hSWI/SNF. Neither H1 bound to the nucleosome nor free H1 affected the ATPase activity of hSWI/SNF, suggesting that the observed inhibition of hSWI/SNF nucleosome remodeling activity depends on the structure formed by the addition of H1 to nucleosomes.  相似文献   

2.
The high mobility group proteins 1 and 2 (HMG1/2) and histone B4 are major components of chromatin within the nuclei assembled during the incubation of Xenopus sperm chromatin in Xenopus egg extract. To investigate their potential structural and functional roles, we have cloned and expressed Xenopus HMG1 and histone B4. Purified histone B4 and HMG1 form stable complexes with nucleosomes including Xenopus 5S DNA. Both proteins associate with linker DNA and stabilize it against digestion with micrococcal nuclease, in a similar manner to histone H1. However, neither histone B4 nor HMG1 influence the DNase I or hydroxyl radical digestion of DNA within the nucleosome core. We suggest that HMG1/2 and histone B4 have a shared structural role in organizing linker DNA in the nucleosome.  相似文献   

3.
4.
The effects of VirTis shearing on chromatin subunit structure were investigated by enzymatic digestion, thermal denaturation, and electron microscopy. While initial rates of micrococcal nuclease and DNase I digestion were greater postshearing, limit digest values were similar to those for unsheared chromatin. Fractionated chromatin digestion kinetics varied with sedimentation. Digestion of all chromatins produced monomer and dimer DNA fragment lengths, but only unsheared chromatins exhibited higher order nucleosome oligomer lengths. Mononucleosomes and core particles were resolved in digests of sheared and gradient fractions analyzed by electrophoresis. All chromatins exposed to DNase I showed discrete 10-base pair nicking patterns. The presence of nucleosomes was confirmed by electron microscopy. Electron microscopy and histone content of gradient fractions showed that nucleosome density along the chromatin axis increased in rapidly sedimenting fractions. Thermal denaturation detected no appreciable generation of protein-free DNA fragments as a result of shearing. The results indicate that VirTis blending conserves subunit structure with loss of less than 12–15% of nucleosome structure.  相似文献   

5.
6.
In the nucleus of eukaryotic cells, histone proteins organize the linear genome into a functional and hierarchical architecture. In this paper, we use the crystal structures of the nucleosome core particle, B-DNA and the globular domain of H5 linker histone to build the first all-atom model of compact chromatin fibers. In this 3D jigsaw puzzle, DNA bending is achieved by solving an inverse kinematics problem. Our model is based on recent electron microscopy measurements of reconstituted fiber dimensions. Strikingly, we find that the chromatin fiber containing linker histones is a polymorphic structure. We show that different fiber conformations are obtained by tuning the linker histone orientation at the nucleosomes entry/exit according to the nucleosomal repeat length. We propose that the observed in vivo quantization of nucleosomal repeat length could reflect nature's ability to use the DNA molecule's helical geometry in order to give chromatin versatile topological and mechanical properties.  相似文献   

7.
We digested polyoma virus nucleoprotein complex, isolated from disrupted virions, with micrococcal nuclease and DNase I. The results were compared with digestions of chromatin from mouse nuclei. The nucleosome "core" structures were similar, but the spacing of the nucleosomes in the isolated polymoma nucleoprotein complexes was irregular, whereas in mouse chromatin it was regular. The average nucleosome repeat length in each case was 190 to 200 base pairs. This figure suggests that, unless there are substantial stretches of free DNA, the polyoma nucleoprotein complex contains about 26 nucleosomes. The commonly used method of preparing the nucleoprotein complex by disruption of virions at pH 10.2 may lead to significant damage to the structure. Such damage may be more clearly revealed by the susceptibility of the DNA to nuclease digestion than by the usual criteria of sedimentation velocity and buoyant density.  相似文献   

8.
9.
Rat liver telomeric DNA is organised into nucleosomes characterised by a shorter and more homogeneous average nucleosomal repeat than bulk chromatin as shown by Makarov et al. (1). The latter authors were unable to detect the association of any linker histone with the telomeric DNA. We have confirmed these observations but show that in sharp contrast chicken erythrocyte telomeric DNA is organised into nucleosomes whose spacing length and heterogeneity are indistinguishable from those of bulk chromatin. We further show that chicken erythrocyte telomeric chromatin contains chromatosomes which are preferentially associated with histone H1 relative to histone H5. This contrasts with bulk chromatin where histone H5 is the more abundant species. This observation strongly suggests that telomeric DNA condensed into nucleosome core particles has a higher affinity for H1 than H5. We discuss the origin of the discrimination of the lysine rich histones in terms of DNA sequence preferences, telomere nucleosome preferences and particular constraints of the higher order chromatin structure of telomeres.  相似文献   

10.
The yeast GAL1-10 UAS region readily accepts nucleosomes in vitro   总被引:2,自引:0,他引:2  
M Rainbow  J Lopez  D Lohr 《Biochemistry》1989,28(18):7486-7490
To test if the absence of nucleosomes on the UAS region of the yeast GAL1-10 genes in vivo could be due to a low inherent affinity of this DNA for histones, DNA fragments containing the UAS and various amounts of flanking DNA were reconstituted into chromatin. Restriction enzyme and DNase I digestion analyses show that DNA in the UAS becomes protected against digestion in the reconstitutes. Thus, nucleosomes can assemble on the UAS region in vitro. The level of protection of the UAS and of the flanking DNA regions is comparable and remains so at various levels of nucleosome loading, suggesting that the UAS DNA has no tendency to exclude nucleosomes. In fact, DNase I results suggest that the UAS elements themselves preferentially bind histones.  相似文献   

11.
The effects of inhibiting histone deacetylation on the maturation of newly replicated chromatin have been examined. HeLa cells were labeled with [3H]thymidine in the presence or absence of sodium butyrate; control experiments demonstrated that butyrate did not significantly inhibit DNA replication for at least 70 min. Like normal nascent chromatin, chromatin labeled for brief periods (0.5-1 min) in the presence of butyrate was more sensitive to digestion with DNase I and micrococcal nuclease than control bulk chromatin. However, chromatin replicated in butyrate did not mature as in normal replication, but instead retained approximately 50% of its heightened sensitivity to DNase I. Incubation of mature chromatin in butyrate for 1 h did not induce DNase I sensitivity: therefore, the presence of sodium butyrate was required during replication to preserve the increased digestibility of nascent chromatin DNA. In contrast, sodium butyrate did not inhibit or retard the maturation of newly replicated chromatin when assayed by micrococcal nuclease digestion, as determined by the following criteria: 1) digestion to acid solubility, 2) rate of conversion to mononucleosomes, 3) repeat length, and 4) presence of non-nucleosomal DNA. Consistent with the properties of chromatin replicated in butyrate, micrococcal nuclease also did not preferentially attack the internucleosomal linkers of chromatin regions acetylated in vivo. The observation of a novel chromatin replication intermediate, which is highly sensitive to DNase I but possesses normal resistance to micrococcal nuclease, suggests that nucleosome assembly and histone deacetylation are not obligatorily coordinated. Thus, while deacetylation is required for chromatin maturation, histone acetylation apparently affects chromatin organization at a level distinct from that of core particle or linker, possibly by altering higher order structure.  相似文献   

12.
There is evidence that HMGB proteins facilitate, while linker histones inhibit chromatin remodelling, respectively. We have examined the effects of HMG-D and histone H1/H5 on accessibility of nucleosomal DNA. Using the 601.2 nucleosome positioning sequence designed by Widom and colleagues we assembled nucleosomes in vitro and probed DNA accessibility with restriction enzymes in the presence or absence of HMG-D and histone H1/H5. For HMG-D our results show increased digestion at two spatially adjacent sites, the dyad and one terminus of nucleosomal DNA. Elsewhere varying degrees of protection from digestion were observed. The C-terminal acidic tail of HMG-D is essential for this pattern of accessibility. Neither the HMG domain by itself nor in combination with the adjacent basic region is sufficient. Histone H1/H5 binding produces two sites of increased digestion on opposite faces of the nucleosome and decreased digestion at all other sites. Our results provide the first evidence of local changes in the accessibility of nucleosomal DNA upon separate interaction with two linker binding proteins.  相似文献   

13.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

14.
MacroH2A histones have an unusual hybrid structure, consisting of an N-terminal domain that is approximately 65% identical to a full-length histone H2A and a large C-terminal nonhistone domain. To develop an in vitro approach for investigating the effects of macroH2A proteins on chromatin structure and function, we reconstituted nucleosomes with recombinant macroH2A1.2, substituting for conventional H2A. Recombinant macroH2A1.2 was able to efficiently replace both of the conventional H2As in reconstituted nucleosomes. The substitution of macroH2A1.2 for H2A did not appear to grossly perturb the basic structure of the nucleosome core, as assessed by sedimentation and by digestion with micrococcal nuclease or DNase I. However, two differences were observed. First, the region around the midpoint of the nucleosomal core DNA was more resistant to digestion by DNase I in nucleosome core particles reconstituted with macroH2A1.2. Second, preparations of core particles reconstituted with macroH2A1.2 had a greater amount of material that sedimented more rapidly than mononucleosomes, suggesting that macroH2A1.2 may promote interactions between nucleosomes. Recombinant macroH2A proteins should be valuable tools for examining the effects of macroH2A on nucleosome and chromatin structure.  相似文献   

15.
DNase I was used to footprint the 147 bp DNA fragment of the nucleosome in whole chicken erythrocyte nuclei. It was found that the higher-order structure imposes an additional protection on nucleosomes at sites close to the entry and exit points of the linker DNA, around the dyad axis (site S 0). The observed protection is extended up to 20 bp on either side of S 0. It is partial (∼50%) and most probably reflects a full protection of different regions in alternatively oriented nucleosomes. These are the same regions which interact with linker histones. The results strongly support the findings by simulation of DNase I digests of unlabelled oligonucleosome fragments in the 30 nm fibre that in all nucleosomes sites S −5 to S −3 and S +3 to S +5 ara on the outside of the fibre exposed to DNase I.  相似文献   

16.
Organization of internucleosomal DNA in rat liver chromatin   总被引:6,自引:1,他引:5       下载免费PDF全文
A detailed analysis of the length distribution of DNA in nucleosome dimers trimmed with exonuclease III and S1 nuclease suggests that the previously described variation of internucleosomal distance in rat liver occurs, at least for a subset of the nucleosomes, by integral multiples of the helical repeat of the DNA. Results obtained upon digestion of chromatin with DNase II further suggest that lengths of internucleosomal DNA are integral multiples of the helical repeat of the DNA plus approximately 5 bp. Restraints imposed by these features on the arrangement of nucleosomes along the fiber are discussed.  相似文献   

17.
 本文在前文~[2]的基础上进一步以MCN和DNaseⅠ为探针研究大鼠脑神经元终末分化后不同生理时期染色质构象,结果表明:MCN酶解DNA产物PAGE显示脑老化过程大脑皮层及小脑神经元染色质核小体单体DNA分别保持在176bp和215bp水平,核小体连接DNA长度存在组织差异,但不受老化影响;<2>DNaseⅠ酶解DNA产物PAGE显示各年龄组大脑皮层及小脑神经元染色质DNA存在10bp间隔重复结构和相同的泳动区带分布特征,提示脑老化中染色质具有稳定的B型双螺旋结构和一致的螺线管卷曲形式。染色质DNaseⅠ降解率随年龄增加而降低,提示老化导致活性染色质区域减少,老化过程脑神经元染色质构象改变成为其转录功能减退的结构基础。  相似文献   

18.
We found that Drosophila embryo extract contains a protein activity (or activities) that can destabilize nucleosomes, resulting in increased sensitivity to DNase I, release of nucleosomal supercoiling, high levels of conformational flexibility of DNA and more diffuse micrococcal nuclease digestion patterns. Incorporation of histone H1 did not significantly affect this nucleosome remodelling. Remodelling occurs more efficiently in hyperacetylated chromatin. It was shown previously that hyperacetylated chromatin, reconstituted in a Drosophila embryo cell-free system, exhibits increased DNase I sensitivity and a high degree of conformational flexibility of DNA. The present data suggest that the more diffuse structure of acetylated chromatin is a result of chromatin remodelling by protein activities in the Drosophila embryo extract. Received: 4 November 1998 / Accepted: 10 May 1999  相似文献   

19.
S Y Lan  M J Smerdon 《Biochemistry》1985,24(26):7771-7783
We have investigated the distribution in nucleosome core DNA of nucleotides incorporated by excision repair synthesis occurring immediately after UV irradiation in human cells. We show that the differences previously observed for whole nuclei between the DNase I digestion profiles of repaired DNA (following its refolding into a nucleosome structure) and bulk DNA are obtained for isolated nucleosome core particles. Analysis of the differences obtained indicates that they could reflect a significant difference in the level of repair-incorporated nucleotides at different sites within the core DNA region. To test this possibility directly, we have used exonuclease III digestion of very homogeneous sized core particle DNA to "map" the distribution of repair synthesis in these regions. Our results indicate that in a significant fraction of the nucleosomes the 5' and 3' ends of the core DNA are markedly enhanced in repair-incorporated nucleotides relative to the central region of the core particle. A best fit analysis indicates that a good approximation of the data is obtained for a distribution where the core DNA is uniformly labeled from the 5' end to position 62 and from position 114 to the 3' end, with the 52-base central region being devoid of repair-incorporated nucleotides. This distribution accounts for all of the quantitative differences observed previously between repaired DNA and bulk DNA following the rapid phase of nucleosome rearrangement when it is assumed that linker DNA and the core DNA ends are repaired with equal efficiency and the nucleosome structure of newly repaired DNA is identical with that of bulk chromatin. Furthermore, the 52-base central region that is devoid of repair synthesis contains the lowest frequency cutting sites for DNase I in vitro, as well as the only "internal" locations where two (rather than one) histones interact with a 10-base segment of each DNA strand.  相似文献   

20.
Presence of non-histone proteins in nucleosomes   总被引:3,自引:0,他引:3  
It has been established that nucleosomes are made of histones and DNA fragments. The purpose of this work to establish whether some non-histone proteins are also present in these chromatin subunits. We have found that nucleosome preparations contain phosphorylated non-histone proteins and protein kinases by sucrose gradient analysis. In order to establish whether these proteins are actually bound to nucleosomes or if they represent unbound or aggregated proteins, the following experiments were performed. (a) Free non-histone proteins and proteins released from chromatin by DNase overdigestion were analyzed by sucrose gradient centrifugation. No phosphoproteins but some phosvitin kinase activity was found in the part of the gradient which contained the nucleosomes. It could be assumed that part of the phosphoproteins are bound to nucleosomes. (b) A digestion of nucleosomes with DNase I suppressed the phosvitin kinase activity in the 11-S region of the gradient. (c) High ionic strength, which extracted non-histone proteins, suppressed the phosvitin kinase activity in the nucleosome region. Part of phosvitin kinase and of nuclear phosphoproteins are therefore bound to nucleosomes and are released by nuclease digestion and by high ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号