首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have purified glutaminase 65-fold from cow brain; the final specific activity is 24 μmol/min/mg. The enzyme is stable between pH 7.5 and 9.0 and has maximal activity at pH 8.8. It requires Pi for activity. The dependence of activity on Pi concentration is sigmoidal; 50 mmPi gives half-maximal velocity at pH 8.8. At 0.2 mPi, pH 8.8, the dependence of activity on glutamine concentration is hyperbolic; the observed KGln was 30 mm. Increasing Pi concentrations increase the apparent Vm and decrease the apparent KGln. NH4+ does not inhibit at concentrations up to 0.1 m. Glutamic acid inhibits competitively with respect to glutamine; at 0.2 mPi pH 8.8, KGln was 30 mm and KGlu was 19 mm. The results are consistent with a model in which NH4+ is released irreversibly from the enzyme-substrate complex and is the first product released. The activity of glutaminase appears to be independent of the nature of the buffer with which it is equilibrated before being assayed.  相似文献   

2.
The levels of cyclic 2,3-diphosphoglycerate (cDPG) in methanogenic bacteria are governed by the antagonistic activities of cDPG synthetase and cDPG hydrolase. In this paper we focus on the synthetase from Methanobacterium thermoautotrophicum. The cytoplasmic 150 kDa enzyme catalyzed cDPG synthesis from 2,3-diphosphoglycerate (apparent Km=21 mM), Mg2+ (Km=3.1 mM) and ATP (Km=1–2 mM). In batch-fed cultures, the enzyme was constitutively present (6–6.5 nmol per min per mg protein) during the different growth phases. In continuous cultures, activity decreased in response to phosphate limitation. The synthetase reaction proceeded with maximal rate at pH 6 and at 65° C and was specifically dependent on high (>0.3M) K+ concentrations. The reaction conditions remarkably contrasted to those of cDPG degradation catalyzed by the previously described membrane-bound cDPG hydrolase.Abbreviations cDPG Cyclic 2,3-diphosphoglycerate - 2,3-DPG 2,3-Diphosphoglycerate - 2-PG 2-Phosphoglycerate - 3-PG 3-Phosphoglycerate  相似文献   

3.
Choline kinase (EC 2.7.1.32; ATP: choline phosphotransferase) was purified 200-fold from an extract of acetone powder of rabbit brain by a combination of acid precipitation, ammonium sulphate precipitation, DEAE cellulose chromatography, and ultrafiltration. Maximal activity of 243 nmol of phosphorylcholine synthesized. min?1 mg?l of protein occurred at pH 9.5–10.0 in the presence of 10 mm MgS04, 10 mm choline and 0.005% (w/v) bovine serum albumin. 2-Aminoethanol, 2-methylaminoethanol, and 2-dimethylaminoethanol were also phosphorlyated by the enzyme preparation. The enzyme quantitatively converted low concentrations of choline (2.5–50 μm ) to phosphorylcholine [32P] in the presence of ATP [y32P], and may, therefore, be used to measure small amounts of choline acetylcholine. There were two Km values for choline at pH 9.5; 32 μm and 0.31 mm . At pH 7.4, the higher Km was not observed and enzyme activity was maximal with 0.1 mm choline. The Km for ATP was 1.1 mm . Enzyme activity was inhibited by ATP (20 mm ), AMP, ADP, cytidine diphosphocholine (1 or 10 mm ), and activated by choline esters (1.0 mm ), NaCl or KCl(200 mm ).  相似文献   

4.
Adenine uptake into human blood platelets is a carrier-mediated process with a Km of 159±21 nM and a V of 100±10 pmoles/min per 109 platelets (in citrated platelet-rich plasma). The Q10 was 2.53±0.22. A pH optimum was found at 7.5. Washing of the platelets increased the Km to 453±33 nM and V to 397±38 pmoles/min per 109 platelets. The change in shape induced in platelets by ADP was accompanied by an increase in V (2 times) and Km (1.5 times).Guanine (Ki 50 μM), hypoxanthine (Ki 390 μM), adenine-N′-oxide (Ki 40 μM), adenosine (Ki 100 μM), RA 233 (Ki 75 μM) and papaverine (Ki 15 μM) acted as competitive inhibitors. Adenosine at low concentrations, and prostaglandin E1 gave inhibition at only high adenine levels. A similar inhibition was obtained with 2-deoxy-d-glucose. Sulfhydryl-group inhibitors, pyrimidines and ouabain had no effect.  相似文献   

5.
The activities and subcellular distribution of five glycosyltransferases involved in the biosynthesis of chondroitin sulfate by a transplantable rat chondrosarcoma were compared with the activities and distribution of the corresponding enzymes of normal embryonic rat and chick cartilage.Two important differences were found: 1) UDP-d-xylose:core protein β-d-xylosyltransferase was found in concentrations 10–15 times higher in the chondrosarcoma, and 2) all five glycosyltransferases were found to be more soluble in the chondrosarcoma. More than 90% of the xylosyltransferase activity could be extracted from the tumor without rupturing cells. This transferase exhibited optimal activity in solutions of 0.25 m KCl. The Km for the exogenous protein acceptor obtained by Smith degradation of bovine chondroitin sulfate-proteoglycan was 300 μg/ml; the Km for Ser-Gly-Gly, 30 mm. The activity of xylosyltransferase was maximal at pH 6.5 and was dependent upon the presence of Mg2+ or Mn2+. The Km for UDP-xylose was 5 × 10?5, m. In view of the extraordinarily high level of xylosyltransferase activity found in the chondrosarcoma the authenticity of the xylosyl transfer reaction was verified by chemical characterization of [14C]xylose-labeled products.  相似文献   

6.
Fischer RA  Hsiao TC 《Plant physiology》1968,43(12):1953-1958
The stimulation by KCl of stomatal opening in isolated epidermal strips of Vicia faba was examined. In dark + normal air the opening response was maximal at 100 mm KCl while in light + CO2-free air it was maximal at about 10 mm KCl. CO2-free air was more influential than light in reducing the KCl concentration required for maximal opening. K+ was essential while Cl seemed to be of secondary importance in these processes.  相似文献   

7.
Uptake of phosphate ions by 1 mm segments of isolated maize root cortex layers was studied. Cortex segments (from roots of 8 days old maize plants) absorb phosphate ions from 1 mM KH2PO4 in 0.2 mM CaSCO4 at the average rate of 34.3 ±3.2 μg Pi g?1 (fr. m.) h?1,i.e. 0.35± 0.02 μmol Pi g?1 (fr. m.) h?1. Phosphate uptake considerably increases after a certain period of “augmentation”,i.e. washing in aerated 0.2 mM CaSO4. This increase is completely blocked by the presence of 10 μg ml?1 cycloheximide. The relation of uptake rate to phosphate concentration in the medium was shown to have 3 phases in the concentration range of 0.02 - 40 mM. Transition points were found between 0.8–1 mM and 10–20 mM. Following Km and Vmax values were found: Km[mM] : 0.37 - 3.82 - 27.67 Vmax[μg Pi g?1 (fr. m.) h?1] : 3.33 - 39.40 - 66.67 We have found no sharp pH optimum for phosphate uptake. It proceeds at almost constant rate till pH 6.0 and then the uptake rate drops with increasing pH. At low phosphate concentrations (1 mM) the lowest uptake rate was found at 5 and 13 °C, while the uptake is higher at 5 °C than at 13 °C at phosphate concentrations higher than 1 mM. At these concentrations uptake rate at 35 °C is lower than at 25 °C. Phosphate uptake considerably decreased in anaerobic conditions. DNP and iodoacetate (0.1 mM) completely blocked phosphate uptake from 1 mM KH2PO4, while uptake from 5 and 10 mM KH2PO4 was left unaffected by these substances. The inhibitors of active - SH groups NEM and PCMB inhibited phosphate uptake: 10?3 M NEM by 81.6%, 104 M NEM by 42% and 10?4 M PCMB by 42%.  相似文献   

8.
Fluorescein isothiocyanate (FITC) reactivity with the (Na+ + K+)-ATPase was studied at pH 6.5 and 9.0. Reaction with FITC is nearly complete in 30 min and is irreversible at both pH values. Differential inhibition of enzyme activity is observed at the two pH values as follows: at pH 6.5 the maximal inhibition reached is only 35–45% of the ATPase or p-nitrophenylphosphatase activities, whereas at pH 9.0 ATPase activity can be completely inhibited while maximal phosphatase inhibition is ca. 50%. At all concentrations of FITC tested, more FITC is incorporated into the enzyme at pH 9.0 than at 6.5. At both pH values NaCl increases the inhibition due to FITC while KCl protects against the inhibition. ATP protects the enzyme at both pH values with a K0.5 in the range of 8–20 μm. Enzyme that is partially inactivated at either pH shows no significant change in the K0.5 values for Na+ or K+ or in the Km app for ATP or p-nitrophenylphosphate for the remaining activity. The binding of 48VO4 is not changed by reaction with FITC at either pH, while [3H]ouabain binding is inhibited after reaction at pH 9.0 only in the presence of Mg+2 + Na+ + ATP. [3H]Ouabain binding in the presence of Mg+2 + inorganic phosphate is not inhibited by FITC reaction. Enzyme reacted at both pH values exhibits the expected fluorescein fluorescence (λex = 490, λem = 520) but only with enzyme reacted at pH 9.0 is fluorescence quenching by K+ or reversal by Na+ observed. These results suggest that different classes of amino groups react with FITC at the two pH values tested, and that these groups have distinct roles in the different activities of the enzyme.  相似文献   

9.
Cyclic 2,3-diphosphoglycerate (cDPG) hydrolase activity was demonstrated in cofactor-free extract of Methanobacterium thermoautotrophicum (strain H), but not in crude extract. Only after ultrafiltration or dialysis of crude extract cDPG hydrolase activity could be shown. cCPG hydrolysis was optimal at pH 6.0 and 60°C. Hydrolysis of cDPG occurred under nitrogen or hydrogen atmosphere and was completely inhibited by oxygen. Phosphate and potassium chloride were also strong inhibitors: 50% inhibition occurred at 0.6–0.7 mM phosphate or 0.2 M KCl. The enzyme was localized in the membrane fraction and could be solubilized for approximately 60% by treatment with 25 mM of the detergent CHAPS. The K m and the V max for cDPG were determined at 60°C and were 59 mM and 216 mU/mg, respectively. Furthermore, cDPG hydrolase was dependent on the presence of Co2+. The role of cDPG and cDPG hydrolase is discussed.Abbreviations cDPG cyclic 2,3-diphosphoglycerate - 2,3-DPG 2,3-diphosphoglycerate - 2-PG 2-phosphoglycerate - 3-PG 3-phosphoglycerate - PG phosphoglycerate - PEP phosphoenolpyruvate - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate - TRIS tris(hydroxymethyl)-aminomethane - DTT dithiothreitol - CHAPS 3-([3-cholamidopropyl]-dimethylammonio)-1-propanesulfonate - MOPS 3-(N-morpholino) propanesulfonic acid  相似文献   

10.
The effect of metal ions on human activated Factor X (Factor Xa) hydrolysis of the chromogenic substrate benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide (S2222) was studied utilizing initial rate enzyme kinetics. The divalent metal ions Ca2+, Mn2+, and Mg2+ enhanced Factor Xa amidolytic activity with Km values of 30 μm, 20 μm, and 1.4 mm, respectively. Na+ activation of Factor Xa amidolytic activity was also found. The Km for Na+ activation was 0.31 m. Both the divalent metal ions and Na+ increased the affinity of Factor Xa for S2222 and had no effect on the maximal velocity of the reaction. Other monovalent cations were unable to activate Factor Xa. However, K+ was a competitive inhibitor of the Na+ activation (Ki = 0.14 m). Lanthanide ions inhibited Factor Xa amidolytic activity. Gd3+ inhibition of Factor Xa hydrolysis of S2222 was noncompetitive and had a Ki of 3 μm. The lanthanide ion inhibition could not be reversed by Ca2+ even when Ca2+ was present in a 1000-fold excess over its Km indicating nonidentity of the Factor Xa lanthanide and Ca2+ binding sites. It is concluded that the Factor Xa Ca2+ binding sites have characteristics different from those previously described for the Factor X molecule and that Mg2+, Na+, and K+ may be physiological regulators of Factor Xa activity.  相似文献   

11.
Xanthosine 5′-phosphate (XMP)-amidotransferase catalyzes the formation of guanosine 5′-phosphate (GMP) by aminating XMP with either the amide group of glutamine (amidotransferase) or ammonia (aminase). The glutamine-supported activity of the purified enzyme from Escherichia coli has been studied, and its properties have been compared with those of other amidotransferases. The following results have been obtained. (i) The glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), irreversibly inhibits the amidotransferase activity. A maximal rate of inhibition by DON is achieved in the presence of XMP, ATP, and Mg2+ with a pseudo-first-order rate constant of 0.276 min?1. (ii) The total number of sulfhydryl groups is approximately 22 per dimer (126,000 Mr). In the absence of substrates, about 8 sulfhydryl groups per dimer are titratable with 5,5-dithiobis(2-nitrobenzoic acid) (DTNB), and in the presence of XMP, ATP, and Mg2+ an additional 6 cysteine residues per dimer become exposed. When the amidotransferase activity is inactivated by DON, only 8 sulfhydryl groups are titratable. DTNB, p-chloromercuribenzoate, and bromopyruvate all selectively inactivate the amidotransferase activity. These results are consistent with the hypothesis that cysteine residues which are exposed by the substrates are involved in the amidotransferase activity. (iii) The purified XMP amidotransferase contains a glutaminase activity which can be measured in the absence of GMP formation. The glutaminase activity requires XMP, Mg2+, and either psicofuranine, an analog of adenosine, or inorganic pyrophosphate (PPi) and is inhibited by p-chloromercuribenzoate and DON. Maximal stimulation is observed with 100 μm psicofuranine or PPi, and there is no further stimulation in the presence of both effectors. The apparent Km is 31 μm with PPi and 13 μm with psicofuranine; the V for glutamine hydrolysis is about 60% of the rate of the amidotransferase activity. The cooperative interactions between the binding of PPi and psicofuranine have been confirmed. In the presence of 2.5 μm psicofuranine the Km for PPi is reduced 20-fold, but the maximal velocity is unchanged. Similarly, the apparent Km for psicofuranine is reduced by low concentrations (10 μm) of PPi. The “uncoupling” of the hydrolysis of glutamine from the amination of XMP is the basis for the reported inhibitory effects of psicofuranine and PPi on the amidotransferase activity. (iv) Tris buffer selectively inhibits the XMP-amidotransferase activity by inhibiting the glutaminase activity. This inhibition is time dependent and reversible and may explain the previous reports on the inability of this enzyme to use glutamine as a substrate.  相似文献   

12.
High-affinity cyclic AMP phosphodiesterase purified to homogeneity from dog kidney was studied with respect to its stability, its catalytic and kinetic properties, and its sensitivity to pharmacological agents. The enzyme was shown to rapidly lose activity upon dilution to low protein concentrations in aqueous media, but this activity loss was largely prevented by the presence of bovine serum albumin or ethylene glycol. Similarly, maximum activity required bovine serum albumin to be present during incubation for activity analysis. Enzyme activity required a divalent cation; Mg2+, Mn2+, and Co2+ each supported activity, but highest activity was obtained with Mg2. The temperature optimum ranged from 30 to 45 °C and depended on substrate concentration; the Ea = 10,600 cal/mol. The pH optimum of the enzyme was broad, with a maximum from pH 8.0 to 9.5. The enzyme exhibits linear Michaelis-Menton kinetics for hydrolysis of cyclic AMP at all substrate concentrations tested and for hydrolysis of cyclic GMP at > 20 μm. The Km for cyclic AMP hydrolysis was 2 μm, and that for cyclic GMP hydrolysis was 312 μm. The Ki values for the competitive inhibition of hydrolysis of each substrate by the other were similar to their Km values suggesting a single active site. Cyclic AMP hydrolysis was weakly inhibited by cyclic GMP, cyclic IMP, adenine, and adenosine, but was not inhibited by the mono-, di, or trinucleotides of adenosine, guanosine, or inosine. Activity was competitively inhibited with Ki values in the micromolar range by drugs representative of methylxanthines, isoquinolines, pyrazolopyridines, imidazolidinones, triazolopyrimidines, pyridylethylenediamines, phenothiazines, and calcium antagonists. The results are discussed with reference to the similarities and differences between high- and low-affinity phosphodiesterase forms.  相似文献   

13.
The maximal velocity, V, for isocitrate cleavage by isocitrate lyase from Neurospora crassa is dependent on two dissociable groups with pKa values of 6.1 and 8.6. A dissociable group with a pKa of 8.5 on the enzyme-substrate complex affects the pKm for isocitrate. The pKi for homoisocitrate is affected in a like manner. The pH dependence of the pKi's for succinate, a product of isocitrate cleavage, and the succinate analog maleate is similar to the pH dependence of the pKm of isocitrate below pH 7.3, but is markedly different above this pH. Both the Km for isocitrate and the Ki for succinate were dependent upon Mg2+ concentration. The pKi for oxalate, an analog of glyoxylate which is also a product of isocitrate cleavage, is dependent on a group with a pKa of 6.8 on the enzyme-inhibitor complex. The pH dependence of the pKi for phosphoenolpyruvate, which binds to the succinate site, suggests that it is dependent on two dissociable groups, one on phosphoenolpyruvate and one, by analogy to the pKm for isocitrate, on the enzyme-glyoxylate-inhibitor complex.  相似文献   

14.
The initial velocity pattern has been determined for uridine-cytidine kinase purified from the murine mast cell neoplasm P815. With either uridine or cytidine as phosphate acceptor, and ATP as phosphate donor, the pattern observed was one of intersecting lines, ruling out a ping-pong reaction mechanism, and suggesting that the reaction probably proceeds by the sequential addition of both substrates to the enzyme to form a ternary complex, followed by the sequential release of the two products. This pattern was obtained whether the reaction was run in 0.01 m potassium phosphate buffer, pH 7.5, or in 0.1 m Tris-HCl, pH 7.2. When analyzed by the Sequen computer program, the data indicated an apparent Km of the enzyme for uridine of 1.5 × 10?4m, an apparent Km for cytidine of 4.5 × 10?5m, and a Km for ATP, with uridine or cytidine as phosphate acceptor, of 3.6 × 10?3m or 2.1 × 10?3m, respectively. The V was 1.83 μmol phosphorylated/min/mg enzyme protein for the uridine kinase reaction and 0.91 μmol for the cytidine kinase reaction.  相似文献   

15.
(i) Three forms of cyclic AMP phosphodiesterases (3′,5′-cyclic AMP 5′-nucleotidohydrolase, EC 3.1.4.17), F1, F2-I and F2-II, were partially purified from the soluble fraction of rat pancreas in the presence of excess protease inhibitors by DEAE-cellulose column chromatography and gel filtration and were characterized. (ii) F2-II, which was purified 31-fold, exhibited a single peak of activity on both polyacrylamide-gel electrophoresis and isoelectric focusing. The enzyme had a molecular weight of about 70,000, an isoelectric point of 3.9, and an optimal pH around 8.5 and required Mg2+ or Mn2+ but not Ca2+ for activity. The Km values of this enzyme for cyclic AMP and cyclic GMP were 1 and 50 μm, respectively, while V values of this enzyme for cyclic AMP and cyclic GMP were 36.1 and 12.6 nmol min?1 (mg of protein)?1, respectively. Cyclic GMP competitively inhibited hydrolysis of cyclic AMP by this enzyme. Ro20-1724 [4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone] also inhibited hydrolysis of cyclic AMP competitively, with a Ki value of 1 μm. (iii) Fraction F1, which was purified 10-fold, had a molecular weight of more than 500,000 and required Mg2+ for activity. Its Km values for cyclic AMP were 1 and 5 μm. Its Km value for cyclic GMP was 45 μm. Fraction F2-I, which was purified 26-fold, had a molecular weight of about 70,000. The ratio of the initial velocity of hydrolysis of cyclic GMP to that of cyclic AMP was 0.5 at a substrate concentration of 1 μm.  相似文献   

16.
Some properties of a ficin-papain inhibitor from avian egg white   总被引:3,自引:0,他引:3  
A procedure has been established for the isolation, from sheep liver, of 6-phosphogluconate dehydrogenase which is homogeneous according to the criteria of the analytical ultracentrifuge, and isoelectric focusing. A systematic determination of the effects of pH, ionic strength, metal ions, and temperature, on the kinetic parameters of the isolated 6-phosphogluconate dehydrogenase has been carried out. Double-reciprocal plots of enzyme rate measurements as a function of substrate concentration indicate Km values of 15 μm for 6-phosphogluconate, and 7 μm for NADP+, under optimum assay conditions, and show no effect of the concentration of one substrate on the Km of the other substrate under the assay conditions employed. Ionic strength, monovalent and divalent metals, are apparently interchangeable in their ability to activate the enzyme, and act by decreasing the Km values of the enzyme, not by increasing the reaction rate. Concentrations of metals above the optimum are strongly inhibitory. Plots of ?log Km vs pH show inflection points at 8.3 for 6-phosphogluconate, and 6.5 for NADP+. At low substrate concentrations the pH optimum of the enzyme is at pH 7.7, but plots of V vs pH increase up to pH 9.1 (the enzyme is unstable at higher pH values). An Arrhenius plot shows a straight line between temperatures of 8.6 and 39.4 °C, and an energy of activation of 15,450 cal mole?1.  相似文献   

17.
A 3-O-methyltransferase which catalyzes the methylation of caffeic acid to ferulic acid using S-adenosyl-l-methionine as methyl donor has been isolated and purified about 60-fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The enzyme utilized, in addition to caffeic acid (Km = 133 μM), 5-hydroxyferulic acid (Km = 55 μM), 3,4,5-trihydroxy-cinnamic acid (Km = 100 μM), and protocatechualdehyde (Km = 50 μM) as substrates. Methylation proceeded only in the meta position. The enzyme was unable to catalyze the methylation of ferulic acid, of ortho-, meta-, and para-coumaric acids, and of the flavonoid compounds quercetin and luteolin. The methylation of caffeic acid and 5-hydroxyferulic acid showed a pH optimum at 6.5–7.0. No stimulation of the reaction velocity was observed when Mg2+ ions were added. EDTA did not inhibit the reaction. The Km for S-adencsyl-l-methionine was 15 μm. S-Adenosyl-l-homocysteine was a potent competitive inhibitor of S-adenosyl-l-methionine (Ki = 6.9 μM).  相似文献   

18.
The specific activity of rat poly(adenosine diphosphate ribose) glycohydrolase was higher in the testis than in the liver, brain, spleen or kidney. The enzyme was found primarily in the soluble fraction of the testis. When the soluble enzyme was chromatographed on phosphocellulose, the activity eluted in two peaks, at 0.22 and 0.34 m KCl, respectively, referred to in the present study as enzyme A and B. Enzyme A has an optimal pH of 7.25 and was stimulated by 150 mm KCl. The optimal pH of enyzme B was 6.5, but it was not stimulated by KCl. For maximal activity both enzymes required 10 mm 2-mercaptoethanol, and they were strongly inhibited by 100 μmp-chloromercuribenzoate. The Km values of enzyme A and B for poly(adenosine diphosphate ribose) were 1.52 and 0.70 μm, respectively. Ribose 5′-phosphate, guanosine 3′,5′-monophosphate, adenosine 3′,5′-monophosphate and adenosine diphosphate ribose inhibited both enzymes. The two latter nucleotides behave as noncompetitive inhibitors. Denatured DNA and the homopolypurines poly(G), poly(I) and poly(A) were very potent inhibitors of both glycohydrolases. The mode of hydrolysis of poly(adenosine diphosphate ribose) by glycohydrolases A and B was exoglycosidic, yielding adenosine diphosphate ribose as the final product.  相似文献   

19.
1. The enzyme 6-phosphogluconate dehydrogenase from digestive gland ofMytilus galloprovincialis was purified to homogeneity by the criterion of polyacrylamide-gel electrophoresis.2. The enzyme was purified 229-fold with a final specific activity of 2.3 μmol of NADP+ reduced/min per mg of protein and overall yield of 10%.3. The molecular weight of the native enzyme is estimated to be 100, 000 from gel-filtration studies.4. The influence of pH and MgCl2 concentration on enzyme activity have been studied and the results have been compared to those reported by other authors for enzymes from different sources.5. TheKmvalues for 6-phosphogluconate and NADP+ at room temperature (20°C) are approx. 20 and 40 μM respectively.6. NADPH was an inhibitor strictly competitive with respect to NADP+ (Ki = 14 μM) and non-competitive with respect to 6-phosphogluconate (Ki = 45 μM).  相似文献   

20.
The transport of l-arginine by rabbit spermatozoa was found to proceed by saturable, chemically specific mechanisms. Kinetic analysis of initial rates of transport at substrate concentrations from 1.0 μm to 1.0 μm indicate the presence of two saturable transport components. A low-affinity component has an apparent Km of 0.64 μm and an apparent V of 43.4 nmol/108 cells/30 s. A second, high-affinity component has an apparent Km of 4.0 μm and an apparent V of 425 pmol/108 cells/30 s. Rabbit spermatozoa actively transported l-arginine in a range of pH values from 6.5 to 10.5 with a pH optimum for the low-affinity component of 7.2–7.6 and a pH optimum for the high-affinity component of 7.8–8.0. Inhibitor studies indicate that the energization for transport may be dependent on ATP rather than on a pH gradient or transmembrane potential. Competition experiments with arginine analogs and amino acids suggest that the high- and low-affinity components may recognize the terminal guanidino group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号