首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The hearing thresholds of the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicensis, were measured using auditory evoked potentials (AEP). Stimuli were calibrated using a pressure-velocity probe so that the acoustic field could be completely characterized. The results show similar hearing thresholds for both species and similar hearing thresholds to previously measured audiograms for the lemon shark, Negaprion brevirostris, and the horn shark, Heterodontis francisi. All of these audiograms suggest poor hearing abilities, raising questions about field studies showing attraction of sharks to acoustic signals. By extrapolating the particle acceleration thresholds into estimates of their equivalent far-field sound pressure levels, it appears that these sharks cannot likely detect most of the sounds that have attracted sharks in the field.  相似文献   

2.
During metamorphosis, the lateral line system of ranid frogs (Rana catesbeiana) degenerates and an auditory system sensitive to airborne sounds develops. We examined the onset of function and developmental changes in the central auditory system by recording multi-unit activity from the principal nucleus of the torus semicircularis (TSp) of bullfrogs at different postmetamorphic stages in response to tympanically-presented auditory stimuli. No responses were recorded to stimuli of up to 95 dB SPL from latemetamorphic tadpoles, but auditory responses were recorded within 24 hours of completion of metamorphosis. Audiograms from froglets (SVL < 5.5 cm) were relatively flat in shape with high thresholds, and showed a decrease in most sensitive frequency (MSF) from about 2500 Hz to about 1500 Hz throughout the first 7–10 days after completion of metamorphosis. Audiograms from frogs larger than 5.5 cm showed continuous downward shifts in MSF and thresholds, and increases in sharpness around MSF until reaching adult-like values. Spontaneous activity in the TSp increased throughout postmetamorphic development. The torus increased in volume by approximately 50% throughout development and displayed changes in cell density and nuclear organization. These observations suggest that the onset of sensitivity to tympanically presented airborne sounds is limited by peripheral, rather than central, auditory maturation.Abbreviations CF characteristic frequency - MSF most sensitive frequency - PB phasic burst - PL primary like - S sustained - SVL snout-vent length - TS torus semicircularis - TSl laminar nucleus of TS - TSm magnocellular nucleus of TS - TSp principal nucleus of TS - TW tympanic width  相似文献   

3.
《Zoology (Jena, Germany)》2015,118(5):357-363
The black-capped chickadee is a songbird that has been used extensively as a model of animal communication in field and laboratory settings. Although many studies have focused on the complex call and song systems of the black-capped chickadee, relatively fewer studies have focused on chickadee audition. However, we do know from behavioral and molecular work that chickadees (and auditory processing areas in their brains) discriminate between artificially generated tones, between conspecific and heterospecific vocalizations, and among different types of conspecific vocalizations. In this paper we investigate peripheral auditory processing of frequency in the black-capped chickadee and the potential influence of sex on frequency sensitivity using a technique called auditory evoked potentials. We found that male and female black-capped chickadees did not differ in any measure of frequency sensitivity. Both sexes had the greatest sensitivity to frequencies between 2 and 4 kHz. This range of frequencies is well represented in black-capped chickadee song, partially supporting the idea that sender and receiver coevolve. Finally, we suggest that the call and song system of North American parids make them an ideal taxonomic group for comparative work exploring the relationship between call systems and the evolution of auditory processing.  相似文献   

4.
Gonadotropin-releasing hormone 1 (GnRH1) neurons control reproductive activity, but GnRH2 and GnRH3 neurons have widespread projections and function as neuromodulators in the vertebrate brain. While these extra-hypothalamic GnRH forms function as olfactory and visual neuromodulators, their potential effect on processing of auditory information is unknown. To test the hypothesis that GnRH modulates the processing of auditory information in the brain, we used immunohistochemistry to determine seasonal variations in these neuropeptide systems, and in vivo single-neuron recordings to identify neuromodulation in the midbrain torus semicircularis of the soniferous damselfish Abudefduf abdominalis. Our results show abundant GnRH-immunoreactive (-ir) axons in auditory processing regions of the midbrain and hindbrain. The number of extra-hypothalamic GnRH somata and the density of GnRH-ir axons within the auditory torus semicircularis also varied across the year, suggesting seasonal changes in GnRH influence of auditory processing. Exogenous application of GnRH (sGnRH and cGnRHII) caused a primarily inhibitory effect on auditory-evoked single neuron responses in the torus semicircularis. In the majority of neurons, GnRH caused a long-lasting decrease in spike rate in response to both tone bursts and playbacks of complex natural sounds. GnRH also decreased response latency and increased auditory thresholds in a frequency and stimulus type-dependent manner. To our knowledge, these results show for the first time in any vertebrate that GnRH can influence context-specific auditory processing in vivo in the brain, and may function to modulate seasonal auditory-mediated social behaviors.  相似文献   

5.
Previous studies of the swimming endurance abilities of late-stage larvae of reef fishes have used laboratory swimming chambers and, with one exception, unfed larvae. Based on the exceptional study, we predicted that fed larvae should have much greater endurance than previously reported for unfed larvae. We tested the swimming endurance of the fed late-stage larvae of 6 pomacentrid species and found that all could swim at least twice as long as unfed larvae. The 3 species with larger larvae (12–14mm standard length: SL) all grew during these experiments in spite of being forced to swim 23.3h per day. The 3 species with smaller larvae (10–11mm SL) did not show consistent growth. Unfed laboratory measures of swimming endurance are, therefore, very conservative, and are probably more of an indication of the reserves available to the larvae than a realistic indication of how far the larvae are capable of swimming in the field.  相似文献   

6.
Young reptiles have higher relative energy demands than adults, but the proposed ontogenetic changes in diet to fulfil these demands were not found in the algae-eating Galápagos marine iguanas on Santa Fé. Feeding and digestion rates were investigated to analyse how young achieve higher energy intake. Daily food intake of free ranging marine iguana hatchlings (6–11 months old) was about one third that of adults, but relative intake (g dry mass · g–1 wet mass · day–1) was four times higher in the hatchlings. During feeding experiments, relative daily food intake of hatchling marine iguanas was approximately three times higher than that of adults (0.042 vs 0.013 g dry mass · g–0.8 wet mass · day–1), and mean gut passage time was two times shorter (5 vs 10 days). The hatchlings also maintained high body temperatures (36.7° C) even under relatively cool day-time air temperatures of 32° C. Apparent digestibility of algal food measured both during feeding trials and by Mn2+ AAS (atomic absorption spectrometry) for free-ranging iguanas was 70%, independent of body size and temperature. The red algae prevailing in the diet were high in protein (30% dry mass) and energy (12.1 kJ/g dry mass). Diving iguanas had higher rates of energy intake than intertidal foragers, but daily intake was less. Maintenance of high body temperature enabled hatchlings to achieve high digestion rates and, combined with high relative intake, thus achieve sufficient energy intake for rapid growth despite higher mass specific metabolic rates. Estimates of biomass of marine iguanas and their algal food are given for a section of coastline on Santa Fé.  相似文献   

7.
Northward expansion of Thalassia testudinum (turtle grass) in Laguna Madre is occurring faster than can be explained by rhizome growth. We hypothesized that seedling establishment can account for the measured rates of meadow expansion and that seedling carbohydrate reserves are utilized until the plant is photosynthetically self-sufficient. To address seedling establishment, we estimated seed output, seedling dispersal and survival. Carbon dynamics were calculated from measurements of biomass allocation, non-structural carbohydrate carbon reserves and photosynthetic parameters in relation to T. testudinum seedling age. Potential seed production calculated for 1996 was consistent with field observations and was estimated at 66±14 seeds m−2 bare area. Fruits can be positively buoyant for up to 10 days, while seeds were generally buoyant for <1 day. Water current measurements, made at about the time of seed release, indicate a positive net transport of 1.5 km d−1 to the north. Seedling survival in laboratory culture after 6 months was 96% compared to 11% in the field after 1 year. The average root:rhizome+seed:leaf ratio changed from 0:11:1 for a 1 week old plant to 1:3:1 for a 15 month old plant. Seedlings used to determine whole plant photosynthesis ranged in age from about 1 week (0.25 months) to 15 months. Gross Pmax increased from 80 to 220 μmol O2 gdw sht−1 h−1, while whole plant respiration decreased from 170 to 60 μmol O2 gdw sht−1 h−1. As the photosynthetic parameters changed, the average non-structural carbohydrate carbon (NSCC) reserves of the seeds decreased from 24 to 3.0 mg NSCC plant−1. Subsequent increases in NSCC were the result of rhizome development. Daily carbon balance, assessed using Hsat periods of 8–18 h d−1, predicts that T. testudinum seedlings become photosynthetically self-sufficient between 2 and 6 months. The unique characteristics of T. testudinum, including seed buoyancy, high seed production and survival rates, coupled with ontogenetic changes in carbon allocation and production imply that sexual reproduction can be important in the long distance dispersal and colonization for this species.  相似文献   

8.
Abstract

The ancestors of cacti were leafy trees that had hard, woody trunks. The development of the cactus body is controlled by ontogenetic mechanisms that have evolved, and now they produce a body that is leafless, succulent and has a photosynthetic cortex. Specific changes include: bark formation is postponed and the epidermis and stomata function for many years; the outer cortex is a palisade cortex with intercellular spaces; there are cortical bundles that resemble leaf veins but which have secondary xylem and phloem. Wood development has changed dramatically such that water storage is maximized (increased ray parenchyma) and danger of water stress is minimized (increased paratracheal parenchyma, loss of fibers). Several genera have polymorphic wood: the plants produce one type of wood for several years, then later they produce a different type. It is possible that the extensive evolutionary changes have resulted from mutations in the controller regions of genes, not in the structural regions.  相似文献   

9.
Within the Cyperoideae, which comprise all Cyperaceae except the Mapanioideae, several questions of homology are discussed and reinterpreted based on results of our SEM and LM floral ontogenetic studies. In all species studied, spikelets are interpreted as being indeterminate, with spirally to distichously arranged glumes, each subtending (or not) a flower. Floral development starts with the formation of two lateral stamen primordia, simultaneously with, or followed by the formation of a third, abaxial stamen primordium. Perianth parts, if present, originate only after the formation of the androecium, simultaneously with the appearance of an annular ovary primordium, surrounding a central ovule primordium. Perianth parts vary in number and morphology, and, where present, perianth development follows a general pattern. Three (or two) stigma primordia are formed on the top of the rising ovary wall. In dimerous gynoecia, stigma primordia originate either dorsiventrally, resulting in a laterally flattened ovary/nutlet, or laterally, resulting in a dorsiventrally flattened ovary/nutlet. We conclude that in all species studied the spikelet and floral development occurs according to a general, scirpoid, ontogenetic pattern, which we illustrate using new spikelet and floral ontogenetic results in Eleocharis palustris and other species. Spikelet and floral ontogeny in species with apparently deviating morphologies, can be traced back to the general ontogenetic pattern.
Resumen  Varias preguntas sobre homología para las Cyperoideae, que incluyen todas las Cyperaceae excepto las Mapanioideae, se discuten e interpretan con base en estudios de ontogenia floral realizados con SEM y LM. En todas las especies estudiadas, las espiguillas son indeterminadas con glumas arregladas en espiral o dicotomicamente, cada una sosteniendo (o no) una flor. El desarrollo floral comienza con la formación de dos primordios estaminales laterales, simultáneamente con o seguido por la formación del tercer primordio estaminal abaxial. Si se desarrollan las partes del perianto, se originan solo después de la formación del androceo, simultáneamente con el desarrollo del primordio anular del ovario que envuelve al primordio central del óvulo. Cuando están presentes las partes del perianto, varían en número y morfología y el desarrollo sigue un patrón general. Se forman tres (o dos) primordios del estigma en el ápice de la pared del ovario en desarrollo. En gineceos dímeros, los primordios de los estigmas se originan dorsiventralmente resultando en una nuececilla/ovario comprimido lateralmente, o se originan lateralmente, resultando en una nuececilla/ovario comprimido dorsiventralmente. Concluimos que, tanto el desarrollo floral, como el de las espiguillas en todas las especies estudiadas, siguen un patrón ontogenético general scirpoide que se ilustra con los resultados obtenidos para Eleocharis palustris y otros especies. La ontogenia floral y de las espiguillas en especies con morfologías aparentemente atípicas, puede estar reducida al patrón ontogenetico general.
  相似文献   

10.
From behavioural experiments it is known that the thresholds for both positive and the negative phonotaxis in crickets (Gryllus bimaculatus) decrease during the first days of adult life. Neuronal recordings have shown that a part of the changes in threshold has its origin in the ears. In this study we investigate some changes of the mechanics of the ears in the days after the imaginal moult.The posterior tympanum starts to work as an acoustic window only after the imaginal moult. During the first days the vibration amplitude tends to increase, except below 4 kHz and between 6 and 12 kHz. In the mature hearing organ, the tympanal vibrations exceed those of the surrounding cuticle up to ca. 50 kHz, and peaks of vibration amplitude are found around 5 and 15 kHz (the frequencies of the calling and courtship songs). The appearance of these peaks is caused, at least in part, by a change in the mechanics of the tympanum.Sound propagation through the trachea connecting the ipsilateral acoustic spiracle and the inner surface of the tympanum does not change much during the first week of adult life. In contrast, the propagation from the contralateral spiracle improves considerably. Thus the tympanum of the newly moulted cricket receives only little sound from the contralateral spiracle, and therefore the ear lacks the sound component which is essential for directional hearing in the mature cricket.  相似文献   

11.
Summary In the early postnatal period of many mammals and in the perihatching period of chicks the auditory ranges are restricted to the species-specific low- and mid-frequency ranges. During subsequent development, the high frequency hearing expands (depending on the species) by 1–4 octaves. Adult-like audition is established between the 4th and the 7th week. It is still discussed controversially, how the extension of the auditory ranges relates to the maturation of orderly frequency representation in the cochleae of the respective species. The present review summarizes investigations of the development of tonotopy in nuclei of the central auditory system, and discusses how the centrally acquired data might contribute to the understanding of the maturation of cochlear stimulus transduction and to the development of frequency maps.Abbreviations ANF auditory nerve fibers - BF best frequency - CN cochlear nucleus - DAB days after birth - DCN dorsal cochlear nucleus - IC inferior colliculus - IHC inner hair cells - HS Hipposideros speoris - LSO lateral superior olive - MGB medial geniculate body (auditory thalamus) - NL Nucleus laminaris - NM Nucleus magnocellularis - OHC outer hair cells - RR Rhinolophus rouxi - SOC superior olivary complex - 2-DG 2-deoxyglucose  相似文献   

12.
Auditory brainstem response (ABR) techniques, an electrophysiological far-field recording method widely used in clinical evaluation of human hearing, were adapted for fishes to overcome the major limitations of traditional behavioral and electrophysiological methods (e.g., invasive surgery, lengthy training of fishes, etc.) used for fish hearing research. Responses to clicks and tone bursts of different frequencies and amplitudes were recorded with cutaneous electrodes. To evaluate the effectiveness of this method, the auditory sensitivity of a hearing specialist (goldfish, Carassius auratus) and a hearing generalist (oscar, Astronotus ocellatus) was investigated and compared to audiograms obtained through psychophysical methods. The ABRs could be obtained between 100 Hz and 2000 Hz (oscar), and up to 5000 Hz (goldfish). The ABR audiograms are similar to those obtained by behavioral methods in both species. The ABR audiogram of curarized (i.e., Flaxedil-treated) goldfish did not differ significantly from two previously published behavioral curves but was lower than that obtained from uncurarized fish. In the oscar, ABR audiometry resulted in lower thresholds and a larger bandwidth than observed in behavioral tests. Comparison between methods revealed the advantages of this technique: rapid evaluation of hearing in untrained fishes, and no limitations on repeated testing of animals. Accepted: 8 August 1997  相似文献   

13.
Summary Sexual dimorphism of the ear of an undescribed species of zaprochiline tettigoniid is described. The internal trachea, dedicated to hearing in other tettigoniids, is unmodified in the male but fully developed in the female. The external auditory spiracle is also lost in the male. In contrast, there is no difference between the sexes in the number of sensilla within the hearing organ. The male is 10 dB less sensitive than the female. The characteristic frequency of the hearing organ at 35 kHz does not match the carrier frequency of the male's call at 51 kHz. As a result of this mismatch the female is remarkably insensitive to the male's call (threshold at 75 dB SPL), and the male is even less sensitive (thresholds80 dB SPL). In nature this provides a maximum hearing range of the male of less than 50 cm.  相似文献   

14.
Summary Gap-detection thresholds were determined for single units in the cochlear ganglion and in auditory nerve fibres of the starling from responses to two broad-band noise bursts separated by a temporal gap of between 0.4 and 204.8 ms. All 35 units showed a threshold within the range of gap sizes tested. The median minimum-detectable gap was 12.8 ms with the minimum being 1.6 ms. A multiple regression analysis revealed that the size of the minimum-detectable gap was not significantly correlated with the neuron's CF, with its sharpness of tuning as given by its bandwidth 10 dB above threshold, or with its Q10dB value. Only the level of stimulation above the neuron's threshold showed a significant negative correlation with the size of the minimum-detectable gap. These results are discussed with respect to theoretical considerations of limits posed on temporal resolution by the characteristics of peripheral filters. These findings are also discussed in the context of the coding of gaps at different levels of the starling's auditory system and in relation to psychoacoustic results in the starling on gap detection and time resolution described by temporal modulation transfer functions.  相似文献   

15.
Mormyrid fishes use acoustic signals for long-distance communication and a weakly electric field for short-distance interaction. Mormyrids are unique in having an otic gasbladder attached directly to the saccule on each side of the inner ear. Karl von Frisch (1938) hypothesized that the tightly coupled otic gasbladder might aid mormyrid hearing. Using the mormyrid fish (Brienomyrus brachyistius), this study manipulated gas in the otic gasbladder to test this hypothesis and histological sections were made to examine the anatomical relationship between the gasbladder and inner ear. The hearing sensitivity curves (audiograms) were obtained with the auditory brainstem response protocol. Audiograms were obtained from normal fish and from fish in which gas was withdrawn from either one or two otic gasbladders. Removal of gas from one otic gasbladder did not result in a significant change in either hearing ability or acoustically evoked brainwaves as compared to the control fish. Bilateral deflation of the otic gasbladders led to significant threshold changes. Histological sections revealed a particularly close coupling between the otic gasbladder and the saccule chamber. These results support von Frisch's hypothesis that the otic gasbladders of mormyrids assist in underwater sound detection. Accepted: 14 April 2000  相似文献   

16.
Several anabantoid species produce broad-band sounds with high-pitched dominant frequencies (0.8–2.5 kHz), which contrast with generally low-frequency hearing abilities in (perciform) fishes. Utilizing a recently developed auditory brainstem response recording-technique, auditory sensitivities of the gouramis Trichopsis vittata, T. pumila, Colisa lalia, Macropodus opercularis and Trichogaster trichopterus were investigated and compared with the sound characteristics of the respective species. All five species exhibited enhanced sound-detecting abilities and perceived tone bursts up to 5 kHz, which qualifies this group as hearing specialists. All fishes possessed a high-frequency sensitivity maximum between 800 Hz and 1500 Hz. Lowest hearing thresholds were found in T. trichopterus (76 dB re 1 μPa at 800 Hz). Dominant frequencies of sounds correspond with the best hearing bandwidth in T. vittata (1–2 kHz) and C. lalia (0.8–1 kHz). In the smallest species, T. pumila, dominant frequencies of acoustic signals (1.5–2.5 kHz) do not match lowest thresholds, which were below 1.5 kHz. However, of all species studied, T. pumila had best hearing sensitivity at frequencies above 2 kHz. The association between high-pitched sounds and hearing may be caused by the suprabranchial air-breathing chamber, which, lying close to the hearing and sonic organs, enhances both sound perception and emission at its resonant frequency. Accepted: 26 November 1997  相似文献   

17.
Summary Auditory sensitivity was determined for the oscar, Astronotus ocellatus, a cichlid fish that has no known structural specializations to enhance hearing. Trained A. ocellatus behaviorally responded to sound stimuli from 200 Hz to 800 Hz with best sensitivity of 18 dB (re: 1 bar) to 21 dB for frequencies between 200 and 400 Hz. This is significantly poorer than hearing sensitivity for fish classified as hearing specialists, but well within the range of hearing capabilities reported for non-specialist teleost species.  相似文献   

18.
Laura Gutiérrez 《Oecologia》1998,115(1-2):268-277
Local patterns of adult distribution in organisms that disperse young as pelagic larvae can be determined at the time of recruitment through habitat selection or, shortly thereafter, through post-recruitment processes such as differential juvenile survivorship and interspecific competition. This study addresses the importance of habitat selection by recruits in establishing the local pattern of adult distribution in two sympatric Caribbean damselfish species, Stegastes dorsopunicans and S. planifrons. Both species inhabit shallow reefs but show little overlap in their distribution; S. dorsopunicans predominates in the reef crest and S. planifrons occurs primarily on the reef slope. Furthermore, S. dorsopunicans is associated with rocky substrate, while S. planifrons occupies live coral. The substrate cover follows a similar pattern with coral being much less common on the reef crest than on the reef slope. Monitoring recruitment every other day in reciprocal removal experiments and artificial reefs indicates that the observed pattern of local adult distribution is a product of habitat selection for both species. The presence or absence of conspecifics did not influence recruitment patterns for either species. Stegastes dorsopunicans recruited primarily to shallow, rocky areas, appearing to cue on both substratum type and depth. Stegastes planifrons recruited exclusively to coral substratum independent of depth. These results indicate that local adult patterns of distribution can be explained by habitat selection at recruitment, and that substrate type and depth may be important cues. Received: 27 May 1997 / Accepted: 4 January 1998  相似文献   

19.
Summary In chicken embryos of different ages and in young chickens after hatching, neural elements reacting with antibodies generated against synthetic ovine corticotropin-releasing factor (CRF) were studied by means of the peroxidase-anti-peroxidase (PAP) technique at the lightmicroscopic level. CRF-immunoreactivity was first observed in perikarya located in the periventricular part of the hypothalamus on the 14th day of the incubation period. CRF-containing neural elements were detected on the same day of incubation in the external zone of the median eminence, but not in all investigated animals. In extrahypothalamic sites, immunoreactive perikarya were demonstrable in the central gray of the mesencephalon on the 15th day of incubation. Furthermore, immunoreactive cells appeared in other brain regions such as nucleus accumbens and dorsomedial nucleus of the thalamus after hatching. The present observations provide information regarding the functional development of the hypothalamo-hypophyseal-adrenal axis in the chick embryo.  相似文献   

20.
Summary This report describes the ontogenesis of tonotopy in the inferior colliculus (IC) of the rufous horseshoe bat (Rhinolophus rouxi). Horseshoe bats are deaf at birth, but consistent tonotopy with a low-to-high frequency gradient from dorsolateral to ventromedial develops from the 2nd up to the 5th week. The representation of the auditory fovea is established in ventro-mediocaudal parts of the IC during the 3rd postnatal week (Fig. 3). Then, a narrow frequency band 5 kHz in width, comprising 16% of the bat's auditory range, captures 50–60 vol% of the IC (Fig. 3c). However, foveal tuning is 10–12 kHz (1/3 octave) lower than in adults; foveal tuning in females (65–68 kHz) is 2–3 kHz higher than in males (62–65 kHz). Thereafter, foveal tuning increases by 1–1.5 kHz per day up to the 5th postnatal week, when the adult hearing range is established (Figs. 4, 5). The increase of sensitivity and of tuning sharpness of single units also follows a low-to-high frequency gradient (Fig. 6).Throughout this development the foveal tuning matches the second harmonic of the echolocation pulses vocalised by these young bats. The results confirm the hypothesis of developmental shifts in the frequency-place code for the foveal high frequency representation in the IC.Abbreviations BF best frequency - CF constant frequency - FM frequency modulation - IC inferior colliculus - IHC inner hair cell; - OHC outer hair cell - RR Rhinolophus rouxi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号