首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminoacyl-tRNA synthetases catalyze the attachment of specific amino acids to cognate tRNAs in a two-step process that is critical for the faithful translation of genetic information. During the first chemical step of tRNA aminoacylation, noncognate amino acids that are smaller than or isosteric with the cognate substrate can be misactivated. Thus, to maintain high accuracy during protein translation, some synthetases have evolved an editing mechanism. Previously, we showed that class II Escherichia coli proline-tRNA synthetase (ProRS) is capable of (1) weakly misactivating Ala, (2) hydrolyzing the misactivated Ala-AMP in a reaction known as pretransfer editing, and (3) deacylating a mischarged Ala-tRNA(Pro) variant via a post-transfer editing pathway. In contrast to most systems where an editing function has been established, pretransfer editing by E. coli ProRS occurs in a tRNA-independent fashion. However, neither the pre- nor the post-transfer editing active site(s) has been identified. Sequence analyses revealed that most prokaryotic ProRSs possess a large insertion domain (INS) between class II conserved motifs 2 and 3. The function of the approximately 180-amino acid INS in E. coli ProRS is the subject of this investigation. Alignment-guided Ala scanning mutagenesis was carried out to test conserved amino acid residues present in the INS for their role in pre- and post-transfer editing. Our biochemical data and modeling studies suggest that the prokaryotic INS plays a critical role in editing and that this activity resides in a domain that is functionally and structurally distinct from the aminoacylation active site.  相似文献   

2.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

3.
Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3' end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of post-transfer editing, or the N- or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.  相似文献   

4.
Hydrolytic editing activities are present in aminoacyl-tRNA synthetases possessing reduced amino acid discrimination in the synthetic reactions. Post-transfer hydrolysis of misacylated tRNA in class I editing enzymes occurs in a spatially separate domain inserted into the catalytic Rossmann fold, but the location and mechanisms of pre-transfer hydrolysis of misactivated amino acids have been uncertain. Here, we use novel kinetic approaches to distinguish among three models for pre-transfer editing by Escherichia coli isoleucyl-tRNA synthetase (IleRS). We demonstrate that tRNA-dependent hydrolysis of noncognate valyl-adenylate by IleRS is largely insensitive to mutations in the editing domain of the enzyme and that noncatalytic hydrolysis after release is too slow to account for the observed rate of clearing. Measurements of the microscopic rate constants for amino acid transfer to tRNA in IleRS and the related valyl-tRNA synthetase (ValRS) further suggest that pre-transfer editing in IleRS is an enzyme-catalyzed activity residing in the synthetic active site. In this model, the balance between pre-transfer and post-transfer editing pathways is controlled by kinetic partitioning of the noncognate aminoacyl-adenylate. Rate constants for hydrolysis and transfer of a noncognate intermediate are roughly equal in IleRS, whereas in ValRS transfer to tRNA is 200-fold faster than hydrolysis. In consequence, editing by ValRS occurs nearly exclusively by post-transfer hydrolysis in the editing domain, whereas in IleRS both pre- and post-transfer editing are important. In both enzymes, the rates of amino acid transfer to tRNA are similar for cognate and noncognate aminoacyl-adenylates, providing a significant contrast with editing DNA polymerases.  相似文献   

5.
Aminoacyl-tRNA synthetases are a family of enzymes responsible for ensuring the accuracy of the genetic code by specifically attaching a particular amino acid to their cognate tRNA substrates. Through primary sequence alignments, prolyl-tRNA synthetases (ProRSs) have been divided into two phylogenetically divergent groups. We have been interested in understanding whether the unusual evolutionary pattern of ProRSs corresponds to functional differences as well. Previously, we showed that some features of tRNA recognition and aminoacylation are indeed group-specific. Here, we examine the species-specific differences in another enzymatic activity, namely amino acid editing. Proofreading or editing provides a mechanism by which incorrectly activated amino acids are hydrolyzed and thus prevented from misincorporation into proteins. "Prokaryotic-like" Escherichia coli ProRS has recently been shown to be capable of misactivating alanine and possesses both pretransfer and post-transfer hydrolytic editing activity against this noncognate amino acid. We now find that two ProRSs belonging to the "eukaryotic-like" group exhibit differences in their hydrolytic editing activity. Whereas ProRS from Methanococcus jannaschii is similar to E. coli in its ability to hydrolyze misactivated alanine via both pretransfer and post-transfer editing pathways, human ProRS lacks these activities. These results have implications for the selection or design of antibiotics that specifically target the editing active site of the prokaryotic-like group of ProRSs.  相似文献   

6.
Faithful translation of the genetic code depends on accurate coupling of amino acids with cognate transfer RNAs (tRNAs) catalyzed by aminoacyl-tRNA synthetases. The fidelity of leucyl-tRNA synthetase (LeuRS) depends mainly on proofreading at the pre- and post-transfer levels. During the catalytic cycle, the tRNA CCA-tail shuttles between the synthetic and editing domains to accomplish the aminoacylation and editing reactions. Previously, we showed that the Y330D mutation of Escherichia coli LeuRS, which blocks the entry of the tRNA CCA-tail into the connective polypeptide 1domain, abolishes both tRNA-dependent pre- and post-transfer editing. In this study, we identified the counterpart substitutions, which constrain the tRNA acceptor stem binding within the synthetic active site. These mutations negatively impact the tRNA charging activity while retaining the capacity to activate the amino acid. Interestingly, the mutated LeuRSs exhibit increased global editing activity in the presence of a non-cognate amino acid. We used a reaction mimicking post-transfer editing to show that these mutations decrease post-transfer editing owing to reduced tRNA aminoacylation activity. This implied that the increased editing activity originates from tRNA-dependent pre-transfer editing. These results, together with our previous work, provide a comprehensive assessment of how intra-molecular translocation of the tRNA CCA-tail balances the aminoacylation and editing activities of LeuRS.  相似文献   

7.
To prevent potential errors in protein synthesis, some aminoacyl-transfer RNA (tRNA) synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). Class Ia leucyl-tRNA synthetase (LeuRS) may misactivate various natural and non-protein amino acids and then mischarge tRNALeu. It is known that the fidelity of prokaryotic LeuRS depends on multiple editing pathways to clear the incorrect intermediates and products in the every step of aminoacylation reaction. Here, we obtained human cytoplasmic LeuRS (hcLeuRS) and tRNALeu (hctRNALeu) with high activity from Escherichia coli overproducing strains to study the synthetic and editing properties of the enzyme. We revealed that hcLeuRS could adjust its editing strategy against different non-cognate amino acids. HcLeuRS edits norvaline predominantly by post-transfer editing; however, it uses mainly pre-transfer editing to edit α-amino butyrate, although both amino acids can be charged to tRNALeu. Post-transfer editing as a final checkpoint of the reaction was very important to prevent mis-incorporation in vitro. These results provide insight into the modular editing pathways created to prevent genetic code ambiguity by evolution.  相似文献   

8.
Aminoacyl-tRNA synthetases are responsible for activating specific amino acids and transferring them onto cognate tRNA molecules. Due to the similarity in many amino acid side chains, certain synthetases misactivate non-cognate amino acids to an extent that would be detrimental to protein synthesis if left uncorrected. To ensure accurate translation of the genetic code, some synthetases therefore utilize editing mechanisms to hydrolyze non-cognate products. Previously class II Escherichia coli proline-tRNA synthetase (ProRS) was shown to exhibit pre- and post-transfer editing activity, hydrolyzing a misactivated alanine-adenylate (Ala-AMP) and a mischarged Ala-tRNAPro variant, respectively. Residues critical for the editing activity (Asp-350 and Lys-279) are found in a novel insertion domain (INS) positioned between motifs 2 and 3 of the class defining aminoacylation active site. In this work, we present further evidence that INS is responsible for editing in ProRS. We deleted the INS from wild-type E. coli ProRS to yield DeltaINS-ProRS. While DeltaINS-ProRS was still capable of misactivating alanine, the truncated construct was defective in hydrolyzing non-cognate Ala-AMP. When the INS domain was cloned and expressed as an independent protein, it was capable of deacylating a mischarged Ala-microhelixPro variant. Similar to full-length ProRS, post-transfer editing was abolished in a K279A mutant INS. We also show that YbaK, a protein of unknown function from Haemophilus influenzae with high sequence homology to the prokaryotic INS domain, was capable of deacylating Ala-tRNAPro and Ala-microhelixPro variants but not cognate Pro-tRNAPro. Thus, we demonstrate for the first time that an independently folded class II synthetase editing domain and a previously identified homolog can catalyze a hydrolytic editing reaction.  相似文献   

9.
Comprehensive steady-state and transient kinetic studies of the synthetic and editing activities of Escherichia coli leucyl-tRNA synthetase (LeuRS) demonstrate that the enzyme depends almost entirely on post-transfer editing to endow the cell with specificity against incorporation of norvaline into protein. Among the three class I tRNA synthetases possessing a dedicated post-transfer editing domain (connective peptide 1; CP1 domain), LeuRS resembles valyl-tRNA synthetase in its reliance on post-transfer editing, whereas isoleucyl-tRNA synthetase differs in retaining a distinct tRNA-dependent synthetic site pre-transfer editing activity to clear noncognate amino acids before misacylation. Further characterization of the post-transfer editing activity in LeuRS by single-turnover kinetics demonstrates that the rate-limiting step is dissociation of deacylated tRNA and/or amino acid product and highlights the critical role of a conserved aspartate residue in mediating the first-order hydrolytic steps on the enzyme. Parallel analyses of adenylate and aminoacyl-tRNA formation reactions by wild-type and mutant LeuRS demonstrate that the efficiency of post-transfer editing is controlled by kinetic partitioning between hydrolysis and dissociation of misacylated tRNA and shows that trans editing after rebinding is a competent kinetic pathway. Together with prior analyses of isoleucyl-tRNA synthetase and valyl-tRNA synthetase, these experiments provide the basis for a comprehensive model of editing by class I tRNA synthetases, in which kinetic partitioning plays an essential role at both pre-transfer and post-transfer steps.  相似文献   

10.
Aminoacyl-tRNA synthetases catalyze the covalent attachment of amino acids onto their cognate tRNAs. High fidelity in this reaction is crucial to the accurate decoding of genetic information and is ensured, in part, by proofreading of the newly synthesized aminoacyl-tRNAs. Prolyl-tRNA synthetases (ProRS) mischarge tRNA(Pro) with alanine or cysteine due to their smaller or similar sizes relative to cognate proline. Mischarged Ala-tRNA(Pro) is hydrolyzed by an editing domain (INS) present in most bacterial ProRSs. In contrast, the INS domain is unable to deacylate Cys-tRNA(Pro), which is hydrolyzed exclusively by a freestanding trans-editing domain known as YbaK. Here, we have used computational and experimental approaches to probe the molecular basis of INS domain alanine specificity. We show that the methyl side chain of alanine binds in a well defined hydrophobic pocket characterized by conserved residues Ile-263, Leu-266, and Lys-279 and partially conserved residue Thr-277 in Escherichia coli ProRS. Site-specific mutation of these residues leads to a significant loss in Ala-tRNA(Pro) hydrolysis, and altering the size of the pocket modulates the substrate specificity. Remarkably, one ProRS INS domain variant displays a complete switch in substrate specificity from alanine to cysteine. The mutually exclusive aminoacyl-tRNA substrate specificities of the WT and engineered INS domains is consistent with the evolution of two distinct editing domains that function to clear Ala-tRNA(Pro) and Cys-tRNA(Pro) in vivo.  相似文献   

11.
Prolyl-tRNA synthetases (ProRSs) have been shown to activate both cognate and some noncognate amino acids and attach them to specific tRNA(Pro) substrates. For example, alanine, which is smaller than cognate proline, is misactivated by Escherichia coli ProRS. Mischarged Ala-tRNA(Pro) is hydrolyzed by an editing domain (INS) that is distinct from the activation domain. It was previously shown that deletion of the INS greatly reduced cognate proline activation efficiency. In this study, experimental and computational approaches were used to test the hypothesis that deletion of the INS alters the internal protein dynamics leading to reduced catalytic function. Kinetic studies with two ProRS variants, G217A and E218A, revealed decreased amino acid activation efficiency. Molecular dynamics studies showed motional coupling between the INS and protein segments containing the catalytically important proline-binding loop (PBL, residues 199-206). In particular, the complete deletion of INS, as well as mutation of G217 or E218 to alanine, exhibited significant effects on the motion of the PBL. The presence of coupled dynamics between neighboring protein segments was also observed through in silico mutations and essential dynamics analysis. Altogether, this study demonstrates that structural elements at the editing domain-activation domain interface participate in coupled motions that facilitate amino acid binding and catalysis by bacterial ProRSs, which may explain why truncated or defunct editing domains have been maintained in some systems, despite the lack of catalytic activity.  相似文献   

12.
Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria Enterococcus faecalis, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification. The results support a new tRNA-assisted mechanism of hydrolysis of misacylated Ala-tRNAPro. The most important functional element of this catalytic mechanism is the 2′-OH group of the terminal adenosine 76 of Ala-tRNAPro, which forms an intramolecular hydrogen bond with the carbonyl group of the alanine residue, strongly facilitating hydrolysis. Hydrolysis was shown by QM methods to proceed via a general acid-base catalysis mechanism involving two functionally distinct water molecules. The transition state of the reaction was identified. Amino acid residues of the editing active site participate in the coordination of substrate and both attacking and assisting water molecules, performing the proton transfer to the 3′-O atom of A76.  相似文献   

13.
Evidence is presented that the editing mechanisms of aminoacyl-tRNA synthetase operate by two alternative pathways: pre-transfer, by hydrolysis of the non-cognate aminoacyl adenylate; post-transfer, by hydrolysis of the mischarged tRNA. The methionyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus and isoleucyl-tRNA synthetase from E. coli, for example, are shown to reject misactivated homocysteine rapidly by the pre-transfer route. A novel feature of this reaction is that homocysteine thiolactone is formed by the facile cyclisation of the homocysteinyl adenylate. Valyl-tRNA synthetases, on the other hand, reject the more readily activated non-cognate amino acids by primarily the post-transfer route. The features governing the choice of pathway are discussed.  相似文献   

14.
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNAIle organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNAIle affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNAIle synthesis under cellular conditions. Finally, the extent to which tRNAIle modulates activation and pre-transfer editing is independent of the intactness of its 3′-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3′-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.  相似文献   

15.
Accurate translation of mRNA into protein is a fundamental biological process critical for maintaining normal cellular functions. To ensure translational fidelity, aminoacyl-tRNA synthetases (aaRSs) employ pre-transfer and post-transfer editing activities to hydrolyze misactivated and mischarged amino acids, respectively. Whereas post-transfer editing, which requires either a specialized domain in aaRS or a trans-protein factor, is well described, the mechanism of pre-transfer editing is less understood. Here, we show that yeast mitochondrial threonyl-tRNA synthetase (MST1), which lacks an editing domain, utilizes pre-transfer editing to discriminate against serine. MST1 misactivates serine and edits seryl adenylate (Ser-AMP) in a tRNA-independent manner. MST1 hydrolyzes 80% of misactivated Ser-AMP at a rate 4-fold higher than that for the cognate threonyl adenylate (Thr-AMP) while releasing 20% of Ser-AMP into the solution. To understand the mechanism of pre-transfer editing, we solved the crystal structure of MST1 complexed with an analog of Ser-AMP. The binding of the Ser-AMP analog to MST1 induces conformational changes in the aminoacylation active site, and it positions a potential hydrolytic water molecule more favorably for nucleophilic attack. In addition, inhibition results reveal that the Ser-AMP analog binds the active site 100-fold less tightly than the Thr-AMP analog. In conclusion, we propose that the plasticity of the aminoacylation site in MST1 allows binding of Ser-AMP and the appropriate positioning of the hydrolytic water molecule.  相似文献   

16.
Aminoacyl-tRNA synthetases hydrolyze aminoacyl adenylates and aminoacyl-tRNAs formed from near-cognate amino acids, thereby increasing translational fidelity. The contributions of pre- and post-transfer editing pathways to the fidelity of Escherichia coli threonyl-tRNA synthetase (ThrRS) were investigated by rapid kinetics. In the pre-steady state, asymmetric activation of cognate threonine and noncognate serine was observed in the active sites of dimeric ThrRS, with similar rates of activation. In the absence of tRNA, seryl-adenylate was hydrolyzed 29-fold faster by the ThrRS catalytic domain than threonyl-adenylate. The rate of seryl transfer to cognate tRNA was only 2-fold slower than threonine. Experiments comparing the rate of ATP consumption to the rate of aminoacyl-tRNAAA formation demonstrated that pre-transfer hydrolysis contributes to proofreading only when the rate of transfer is slowed significantly. Thus, the relative contributions of pre- and post-transfer editing in ThrRS are subject to modulation by the rate of aminoacyl transfer.  相似文献   

17.
The fidelity of tRNA aminoacylation is dependent in part on amino acid editing mechanisms. A hydrolytic activity that clears mischarged tRNAs typically resides in an active site on the tRNA synthetase that is distinct from its synthetic aminoacylation active site. A second pre-transfer editing pathway that hydrolyzes the tRNA synthetase aminoacyl adenylate intermediate can also be activated. Pre- and post-transfer editing activities can co-exist within a single tRNA synthetase resulting in a redundancy of fidelity mechanisms. However, in most cases one pathway appears to dominate, but when compromised, the secondary pathway can be activated to suppress tRNA synthetase infidelities.  相似文献   

18.
Lue SW  Kelley SO 《Biochemistry》2005,44(8):3010-3016
Many aminoacyl-tRNA synthetases (aaRSs) contain two active sites, a synthetic site catalyzing aminoacyl-adenylate formation and tRNA aminoacylation and a second editing or proofreading site that hydrolyzes misactivated adenylates or mischarged tRNAs. The combined activities of these two sites lead to rigorous accuracy in tRNA aminoacylation, and both activities are essential to LeuRS and other aaRSs. Here, we describe studies of the human mitochondrial (hs mt) LeuRS indicating that the two active sites of this enzyme have undergone functional changes that impact how accurate aminoacylation is achieved. The sequence of the hs mt LeuRS closely resembles a bacterial LeuRS overall but displays significant variability in regions of the editing site. Studies comparing Escherichia coli and hs mt LeuRS reveal that the proofreading activity of the mt enzyme is disrupted by these sequence changes, as significant levels of Ile-tRNA(Leu) are formed in the presence of high concentrations of the noncognate amino acid. Experiments monitoring deacylation of Ile-tRNA(Leu) and misactivated adenylate turnover revealed that the editing active site is not operational. However, hs mt LeuRS has weaker binding affinities for both cognate and noncognate amino acids relative to the E. coli enzyme and an elevated discrimination ratio. Therefore, the enzyme achieves fidelity using a more specific synthetic active site that is not prone to errors under physiological conditions. This enhanced specificity must compensate for the presence of a defunct editing site and ensures translational accuracy.  相似文献   

19.
Aminoacyl-tRNA synthetases are multidomain enzymes that often possess two activities to ensure translational accuracy. A synthetic active site catalyzes tRNA aminoacylation, while an editing active site hydrolyzes mischarged tRNAs. Prolyl-tRNA synthetases (ProRS) have been shown to misacylate Cys onto tRNA(Pro), but lack a Cys-specific editing function. The synthetase-like Haemophilus influenzae YbaK protein was recently shown to hydrolyze misacylated Cys-tRNA(Pro) in trans. However, the mechanism of specific substrate selection by this single domain hydrolase is unknown. Here, we demonstrate that YbaK alone appears to lack specific tRNA recognition capabilities. Moreover, YbaK cannot compete for aminoacyl-tRNAs in the presence of elongation factor Tu, suggesting that YbaK acts before release of the aminoacyl-tRNA from the synthetase. In support of this idea, cross-linking studies reveal the formation of binary (ProRS.YbaK) and ternary (ProRS.YbaK.tRNA) complexes. The binding constants for the interaction between ProRS and YbaK are 550 nM and 45 nM in the absence and presence of tRNA(Pro), respectively. These results suggest that the specificity of trans-editing by YbaK is ensured through formation of a novel ProRS.YbaK.tRNA complex.  相似文献   

20.
To prevent genetic code ambiguity due to misincorporation of amino acids into proteins, aminoacyl-tRNA synthetases have evolved editing activities to eliminate intermediate or final non-cognate products. In this work we studied the different editing pathways of class Ia leucyl-tRNA synthetase (LeuRS). Different mutations and experimental conditions were used to decipher the editing mechanism, including the recently developed compound AN2690 that targets the post-transfer editing site of LeuRS. The study emphasizes the crucial importance of tRNA for the pre- and post-transfer editing catalysis. Both reactions have comparable efficiencies in prokaryotic Aquifex aeolicus and Escherichia coli LeuRSs, although the E. coli enzyme favors post-transfer editing, whereas the A. aeolicus enzyme favors pre-transfer editing. Our results also indicate that the entry of the CCA-acceptor end of tRNA in the editing domain is strictly required for tRNA-dependent pre-transfer editing. Surprisingly, this editing reaction was resistant to AN2690, which inactivates the enzyme by forming a covalent adduct with tRNALeu in the post-transfer editing site. Taken together, these data suggest that the binding of tRNA in the post-transfer editing conformation confers to the enzyme the capacity for pre-transfer editing catalysis, regardless of its capacity to catalyze post-transfer editing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号