首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiopoietins (Ang) are vascular endothelial cell-specific growth factors that play important roles principally during the later stages of angiogenesis. We have compared the distribution of the receptor tyrosine kinase (Tie) and the Ang ligands in synovial tissues from normal subjects and those with rheumatoid arthritis (RA) and osteoarthritis (OA).  相似文献   

2.
Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 –differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 –differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.  相似文献   

3.

Background

Angiogenesis is a critical early event in inflammatory arthritis, facilitating leukocyte migration into the synovium resulting in invasion and destruction of articular cartilage and bone. This study investigates the effect of TLR2 on angiogenesis, EC adhesion and invasion using microvascular endothelial cells and RA whole tissue synovial explants ex-vivo.

Methods

Microvascular endothelial cells (HMVEC) and RA synovial explants ex vivo were cultured with the TLR2 ligand, Pam3CSK4 (1 µg/ml). Angiopoietin 2 (Ang2), Tie2 and TLR2 expression in RA synovial tissue was assessed by immunohistology. HMVEC tube formation was assessed using Matrigel matrix assays. Ang2 was measured by ELISA. ICAM-1 cell surface expression was assessed by flow cytometry. Cell migration was assessed by wound repair scratch assays. ECM invasion, MMP-2 and -9 expression were assessed using transwell invasion chambers and zymography. To examine if the angiopoietin/Tie2 signalling pathway mediates TLR2 induced EC tube formation, invasion and migration assays were performed in the presence of a specific neutralising anti-Tie2mAb (10 ug/ml) and matched IgG isotype control Ab (10 ug/ml).

Results

Ang2 and Tie2 were localised to RA synovial blood vessels, and TLR2 was localised to RA synovial blood vessels, sub-lining infiltrates and the lining layer. Pam3CSK4 significantly increased angiogenenic tube formation (p<0.05), and upregulated Ang2 production in HMVEC (p<0.05) and RA synovial explants (p<0.05). Pam3CSK4 induced cell surface expression of ICAM-1, from basal level of 149±54 (MFI) to 617±103 (p<0.01). TLR-2 activation induced an 8.8±2.8 fold increase in cell invasion compared to control (p<0.05). Pam3CSK4 also induced HMVEC cell migration and induced MMP-2 and -9 from RA synovial explants. Neutralisation of the Ang2 receptor, Tie2 significantly inhibited Pam3CSK4-induced EC tube formation and invasion (p<0.05).

Conclusion

TLR2 activation promotes angiogenesis, cell adhesion and invasion, effects that are in part mediated through the Tie2 signalling pathway, key mechanisms involved in the pathogenesis of RA.  相似文献   

4.
5.
IL-1 can participate in the perpetuation of arthritis through direct stimulation of synoviocytes and augmentation of matrix degradation. Hence, local production of the IL-1R antagonist protein (IRAP) might be an important negative feedback signal that regulates synovitis. We assessed synovial IRAP production in synovia from 30 individuals, by using a specific mAb and the immunoperoxidase staining method. IRAP was detected in 11 of 12 rheumatoid arthritis (RA) synovial tissues (ST) and was located primarily in the sublining, particularly in perivascular regions enriched for macrophages. Some staining was observed in the intimal lining of the synovium, although this was significantly less than in the sublining (p less than 0.05). Nine of 12 osteoarthritis (OA) tissues were positive for IRAP. In contrast to RA, the staining was observed primarily in the synovial lining in OA, with only minimal sublining IRAP being detected. Synovia from four patients without arthritis were negative (three autopsy specimens and one post-traumatic sample). Of the other two patients with miscellaneous diagnoses, one sample was negative (tenosynovitis) and one was positive (seronegative inflammatory arthritis) (sublining). Studies of serial sections and double-immunostaining experiments indicated that macrophages are the major cells containing immunoreactive IRAP. IRAP gene expression in vivo was determined by performing in situ hybridization on ST from 17 arthritis patients. RNA sense IRAP probes did not hybridize to any tissues. Anti-sense IRAP probes bound to two of nine RA tissues, two of six OA tissues, one of one seronegative inflammatory arthropathy tissue, and none of one flexor tenosynovitis tissue. As with immunoreactive protein, IRAP mRNA was primarily localized to cells in the synovial lining in OA but was more prominent in perivascular lymphoid aggregates in RA and seronegative inflammatory arthropathy. Northern blot analysis was performed on RNA isolated from nine ST. The appropriately sized IRAP band was identified in six of nine samples (five of six RA and one of three OA). Supernatants from cultured RA and OA ST cells contained immunoreactive and biologically active IRAP. Hence, IRAP gene expression and protein production occur in RA and OA synovium, albeit in different distributions.  相似文献   

6.
7.
8.
Rheumatoid arthritis (RA) is characterized by massive synovial proliferation, angiogenesis, subintimal infiltration of inflammatory cells and the production of cytokines such as TNF-alpha and IL-6. Allograft inflammatory factor-1 (AIF-1) has been identified in chronic rejection of rat cardiac allografts as well as tissue inflammation in various autoimmune diseases. AIF-1 is thought to play an important role in chronic immune inflammatory processes, especially those involving macrophages. In the current work, we examined the expression of AIF-1 in synovial tissues and measured AIF-1 in synovial fluid (SF) derived from patients with either RA or osteoarthritis (OA). We also examined the proliferation of synovial cells and induction of IL-6 following AIF-1 stimulation. Immunohistochemical staining showed that AIF-1 was strongly expressed in infiltrating mononuclear cells and synovial fibroblasts in RA compared with OA. Western blot analysis and semiquantitative RT-PCR analysis demonstrated that synovial expression of AIF-1 in RA was significantly greater than the expression in OA. AIF-1 induced the proliferation of cultured synovial cells in a dose-dependent manner and increased the IL-6 production of synovial fibroblasts and PBMC. The levels of AIF-1 protein were higher in synovial fluid from patients with RA compared with patients with OA (p < 0.05). Furthermore, the concentration of AIF-1 significantly correlated with the IL-6 concentration (r = 0.618, p < 0.01). These findings suggest that AIF-1 is closely associated with the pathogenesis of RA and is a novel member of the cytokine network involved in the immunological processes underlying RA.  相似文献   

9.
Mcl-1 is a Bcl-2-family, antiapoptotic molecule that is critical for the survival of T and B lymphocytes and macrophages; however, its role in nonhemopoietic cells remains to be fully elucidated. The current study focuses on the role of Mcl-1 in rheumatoid arthritis (RA). Mcl-1 was strongly expressed in the synovial lining and was increased in the sublining fibroblasts of patients with RA, compared with control synovial tissue. The expression of Mcl-1 in sublining fibroblasts correlated with the degree of inflammation and TNF-alpha, and IL-1beta treatment of cultured synovial fibroblasts resulted in the increased expression of Mcl-1 at the mRNA and protein levels. Mcl-1 was critical for the survival of RA synovial fibroblasts, because the forced reduction of Mcl-1 using a Mcl-1 antisense-expressing adenoviral vector induced apoptotic cell death, which was mediated through Bax, Bak, and Bim. These observations document a critical role for Mcl-1 in protecting against apoptosis in RA and suggest that Mc1-1 is a potential therapeutic target in this disease.  相似文献   

10.
11.
12.
Synovial tissue macrophage as a source of the chemotactic cytokine IL-8   总被引:30,自引:0,他引:30  
Cells of the synovial microenvironment may recruit neutrophils (PMN) and lymphocytes into synovial fluid, as well as lymphocytes into the synovial tissues, of arthritic patients. We have investigated the production of the chemotactic cytokine IL-8 by using sera, synovial fluid, synovial tissue, and macrophages and fibroblasts isolated from synovial tissues from 75 arthritic patients. IL-8 levels were higher in synovial fluid from rheumatoid (RA) patients (mean +/- SE, 14.37 +/- 5.8 ng/ml), compared with synovial fluid from osteoarthritis patients (0.135 +/- 17 ng/ml) (p less than 0.05) or from patients with other arthritides (5.52 +/- 5.11 ng/ml). IL-8 from RA sera was 8.44 +/- 2.33 ng/ml, compared with nondetectable levels found in normal sera. IL-8 levels from RA sera and synovial fluid were strongly positively correlated (r = 0.96, p less than 0.05). Moreover, RA synovial fluid chemotactic activity for PMN in these fluids was inhibited 40 +/- 5% upon incubation with neutralizing polyclonal antibody to IL-8. Synovial tissue fibroblasts released only small amounts of constitutive IL-8 but could be induced to produce IL-8 by stimulation with either IL-1 beta, TNF-alpha, or LPS. In contrast, unlike normal PBMC or alveolar macrophages, macrophages isolated from RA synovial tissue constitutively expressed both IL-8 mRNA and antigenic IL-8. RA synovial macrophage IL-8 expression was not augmented by incubation with either LPS, TNF-alpha, or IL-1 beta. Immunohistochemical analysis of synovial tissue showed that a greater percentage of RA macrophages than osteoarthritis macrophages reacted with anti-IL-8. Whereas macrophages were the predominant cell for immunolocalization of IL-8, less than 5% of synovial tissue fibroblasts were positive for immunolocalized IL-8. These results suggest that macrophage-derived IL-8 may play an important role in the recruitment of PMN in synovial inflammation associated with RA.  相似文献   

13.
Expression of vascular cell adhesion molecule-1 (VCAM-1) in synovial tissue was determined using the immunoperoxidase technique. Normal, rheumatoid arthritis (RA), and osteoarthritis (OA) synovia bound VCAM-1 antibodies in the intimal lining as well as blood vessels. The amount of VCAM-1 was significantly greater in the synovial lining of RA and OA tissues compared with normal synovium (p less than 0.002). There was also a trend toward greater levels of VCAM-1 staining in blood vessels of arthritic tissue (RA greater than OA greater than normal). Because VCAM-1 staining was especially intense in the synovial lining, VCAM-1 expression and regulation was studied on cultured fibroblast-like synoviocytes (FLS) derived from this region. Both VCAM-1 and intercellular adhesion molecule 1 were constitutively expressed on FLS. VCAM-1 expression was further increased by exposure to IL-1 beta, TNF-alpha, IL-4, and IFN-gamma. These cytokines (except for IL-4) also induced intercellular adhesion molecule 1 expression on FLS. ELAM was not detected on resting or cytokine-stimulated FLS. The specificity of VCAM-1 for FLS was demonstrated by the fact that only trace amounts were detected on normal and RA dermal fibroblasts. Cytokines induced intercellular adhesion molecule 1 display on dermal fibroblasts but had minimal effect on VCAM-1 expression. Finally, in adherence assays, Jurkat cell binding to resting FLS monolayers was inhibited by antibody to alpha 4/beta 1 integrin (VLA-4), CS-1 peptide from alternatively spliced fibronectin (which is another VLA-4 ligand), and, to a lesser extent, anti-VCAM-1 antibody. After cytokine stimulation of FLS, Jurkat-binding significantly increased, and this increase was blocked by anti-VCAM-1 antibody. Therefore, both CS-1 and VCAM-1 participate in VLA-4-mediated adherence to resting FLS in vitro, and VCAM-1 is responsible for the increase in Jurkat binding mediated by cytokines.  相似文献   

14.
The focal adhesion kinase (FAK) family kinases, including FAK and proline-rich kinase 2 (Pyk)2, are the predominant mediators of integrin αvβ3 signaling events that play an important role in cell adhesion, osteoclast pathology, and angiogenesis, all processes important in rheumatoid arthritis (RA). Using immunohistochemical and western blot analysis, we studied the distribution of phospho (p)FAK, pPyk2, pSrc, pPaxillin and pPLCγ in the synovial tissue (ST) from patients with RA, osteoarthritis (OA) and normal donors (NDs) as well as in RA ST fibroblasts and peripheral blood differentiated macrophages (PB MΦs) treated with tumor necrosis factor-α (TNFα) or interleukin-1β (IL1β). RA and OA STs showed a greater percentage of pFAK on lining cells and MΦs compared with ND ST. RA ST fibroblasts expressed pFAK at baseline, which increased with TNFα or IL1β stimulation. Pyk2 and Src were phosphorylated more on RA versus OA and ND lining cells and MΦs. pPyk2 was expressed on RA ST fibrobasts but not in MΦs at baseline, however it was upregulated upon TNFα or IL1β activation in both cell types. pSrc was expressed in RA ST fibroblasts and MΦs at baseline and was further increased by TNFα or IL1β stimulation. pPaxillin and pPLCγ were upregulated in RA versus OA and ND lining cells and sublining MΦs. Activation of the FAK family signaling cascade on RA and OA lining cells may be responsible for cell adhesion and migration into the diseased STs. Therapies targeting this novel signaling pathway may be beneficial in RA.  相似文献   

15.
Bone morphogenetic proteins (BMPs) have been identified as important morphogens with pleiotropic functions in regulating the development, homeostasis and repair of various tissues. The aim of this study was to characterize the expression of BMPs in synovial tissues under normal and arthritic conditions. Synovial tissue from normal donors (ND) and from patients with osteoarthritis (OA) and rheumatoid arthritis (RA) were analyzed for BMP expression by using microarray hybridization. Differential expression of BMP-4 and BMP-5 was validated by semiquantitative RT-PCR, in situ hybridization and immunohistochemistry. Activity of arthritis was determined by routine parameters for systemic inflammation, by histological scoring of synovitis and by semiquantitative RT-PCR of IL-1β, TNF-α, stromelysin and collagenase I in synovial tissue. Expression of BMP-4 and BMP-5 mRNA was found to be significantly decreased in synovial tissue of patients with RA in comparison with ND by microarray analysis (p < 0.0083 and p < 0.0091). Validation by PCR confirmed these data in RA (p < 0.002) and also revealed a significant decrease in BMP-4 and BMP-5 expression in OA compared with ND (p < 0.015). Furthermore, histomorphological distribution of both morphogens as determined by in situ hybridization and immunohistochemistry showed a dominance in the lining layer of normal tissues, whereas chronically inflamed tissue from patients with RA revealed BMP expression mainly scattered across deeper layers. In OA, these changes were less pronounced with variable distribution of BMPs in the lining and sublining layer. BMP-4 and BMP-5 are expressed in normal synovial tissue and were found decreased in OA and RA. This may suggest a role of distinct BMPs in joint homeostasis that is disturbed in inflammatory and degenerative joint diseases. In comparison with previous reports, these data underline the complex impact of these factors on homeostasis and remodeling in joint physiology and pathology.  相似文献   

16.

Introduction

TNF-like weak inducer of apoptosis (TWEAK) has been proposed as a mediator of inflammation and bone erosion in rheumatoid arthritis (RA). This study aimed to investigate TWEAK and TWEAK receptor (Fn14) expression in synovial tissue from patients with active and inactive rheumatoid arthritis (RA), osteoarthritis (OA) and normal controls and assess soluble (s)TWEAK levels in the synovial fluids from patients with active RA and OA. Effects of sTWEAK on osteoclasts and osteoblasts were investigated in vitro.

Methods

TWEAK and Fn14 expression were detected in synovial tissues by immunohistochemistry (IHC). Selected tissues were dual labelled with antibodies specific for TWEAK and lineage-selective cell surface markers CD68, Tryptase G, CD22 and CD38. TWEAK mRNA expression was examined in human peripheral blood mononuclear cells (PBMC) sorted on the basis of their expression of CD22. sTWEAK was detected in synovial fluid from OA and RA patients by ELISA. The effect of sTWEAK on PBMC and RAW 264.7 osteoclastogenesis was examined. The effect of sTWEAK on cell surface receptor activator of NF Kappa B Ligand (RANKL) expression by human osteoblasts was determined by flow cytometry.

Results

TWEAK and Fn14 expression were significantly higher in synovial tissue from all patient groups compared to the synovial tissue from control subjects (P < 0.05). TWEAK was significantly higher in active compared with inactive RA tissues (P < 0.05). TWEAK expression co-localised with a subset of CD38+ plasma cells and with CD22+ B-lymphocytes in RA tissues. Abundant TWEAK mRNA expression was detected in normal human CD22+ B cells. Higher levels of sTWEAK were observed in synovial fluids isolated from active RA compared with OA patients. sTWEAK did not stimulate osteoclast formation directly from PBMC, however, sTWEAK induced the surface expression of RANKL by human immature, STRO-1+ osteoblasts.

Conclusions

The expression of TWEAK by CD22+ B cells and CD38+ plasma cells in RA synovium represents a novel potential pathogenic pathway. High levels of sTWEAK in active RA synovial fluid and of TWEAK and Fn14 in active RA tissue, together with the effect of TWEAK to induce osteoblastic RANKL expression, is consistent with TWEAK/Fn14 signalling being important in the pathogenesis of inflammation and bone erosion in RA.  相似文献   

17.
18.
Fibroblast activation protein (FAP), as described so far, is a type II cell surface serine protease expressed by fibroblastic cells in areas of active tissue remodelling such as tumour stroma or healing wounds. We investigated the expression of FAP by fibroblast-like synoviocytes (FLSs) and compared the synovial expression pattern in rheumatoid arthritis (RA) and osteoarthritis (OA) patients. Synovial tissue from diseased joints of 20 patients, 10 patients with refractory RA and 10 patients with end-stage OA, was collected during routine surgery. As a result, FLSs from intensively inflamed synovial tissues of refractory RA expressed FAP at high density. Moreover, FAP expression was co-localised with matrix metalloproteinases (MMP-1 and MMP-13) and CD44 splice variants v3 and v7/8 known to play a major role in the concert of extracellular matrix degradation. The pattern of signals appeared to constitute a characteristic feature of FLSs involved in rheumatoid arthritic joint-destructive processes. These FAP-expressing FLSs with a phenotype of smooth muscle actin-positive myofibroblasts were located in the lining layer of the synovium and differ distinctly from Thy-1-expressing and non-proliferating fibroblasts of the articular matrix. The intensity of FAP-specific staining in synovial tissue from patients with RA was found to be different when compared with end-stage OA. Because expression of FAP by RA FLSs has not been described before, the findings of this study highlight a novel element in cartilage and bone destruction of arthritic joints. Moreover, the specific expression pattern qualifies FAP as a therapeutic target for inhibiting the destructive potential of fibroblast-like synovial cells.  相似文献   

19.
Angiopoietin-1 (Ang-1) is the primary agonist for Tie2 tyrosine kinase receptor (Tie2), and the effect of Ang-1-Tie2 signalling is context-dependent. Deficiency in either Ang-1 or Tie2 protein leads to severe microvascular defects and subsequent embryonic lethality in murine model. Tie2 receptors are expressed in several cell types, including endothelial cells, smooth muscle cells, fibroblasts, epithelial cells, monocytes, neutrophils, eosinophils and glial cells. Ang-1-Tie2 signalling induces a chemotactic effect in smooth muscle cells, neutrophils and eosinophils, and induces differentiation of mesenchymal cells to smooth muscle cells. Additionally, this signalling pathway induces the secretion of serotonin, matrix metalloproteinases (MMPs) and plasmin. Ang-1 inhibits the secretion of tissue inhibitor of matrix metalloproteinase (TIMPs). Aberrant expression and activity of Tie2 in vascular and non-vascular cells may result in the development of rheumatoid arthritis, cancer, hypertension and psoriasis. Ang-1 has an anti-inflammatory effect, when co-localized with vascular endothelial growth factor (VEGF) in the vasculature. Thus, Ang-1 could be potentially important in the therapy of various pathological conditions such as pulmonary hypertension, arteriosclerosis and diabetic retinopathy. In this article, we have summarized and critically reviewed the pathophysiological role of Ang-1-Tie2 signalling pathway.  相似文献   

20.
Synovial fibroblasts in persistent inflammatory arthritis have been suggested to have parallels with cancer growth and wound healing, both of which involve a stereotypical serum response programme. We tested the hypothesis that a serum response programme can be used to classify diseased tissues, and investigated the serum response programme in fibroblasts from multiple anatomical sites and two diseases. To test our hypothesis we utilized a bioinformatics approach to explore a publicly available microarray dataset including rheumatoid arthritis (RA), osteoarthritis (OA) and normal synovial tissue, then extended those findings in a new microarray dataset representing matched synovial, bone marrow and skin fibroblasts cultured from RA and OA patients undergoing arthroplasty. The classical fibroblast serum response programme discretely classified RA, OA and normal synovial tissues. Analysis of low and high serum treated fibroblast microarray data revealed a hierarchy of control, with anatomical site the most powerful classifier followed by response to serum and then disease. In contrast to skin and bone marrow fibroblasts, exposure of synovial fibroblasts to serum led to convergence of RA and OA expression profiles. Pathway analysis revealed three inter-linked gene networks characterising OA synovial fibroblasts: Cell remodelling through insulin-like growth factors, differentiation and angiogenesis through _3 integrin, and regulation of apoptosis through CD44. We have demonstrated that Fibroblast serum response signatures define disease at the tissue level, and that an OA specific, serum dependent repression of genes involved in cell adhesion, extracellular matrix remodelling and apoptosis is a critical discriminator between cultured OA and RA synovial fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号