首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human stem and progenitor cells have recently become objects of intensive studies as an important target for gene therapy and regenerative medicine. Retroviral vectors are among the most effective tools for genetic modification of these cells. However, their transduction efficiency strongly depends on the choice of the ex vivo transduction system. The aim of this study was to elaborate a system for retroviral vector transduction of human CD34 positive cells isolated from cord blood. The retroviral vector pMINV EGFP was chosen for transduction of two human erythroblastoid cell lines: KG-1a (CD34 positive) and K562 (CD34 negative). For vector construction, three promoters and two retroviral vector packaging cell lines were used. To optimize the physicochemical conditions of the transduction process, different temperatures of supernatant harvesting, the influence of centrifugation and the presence of transduction enhancing agents were tested. The conditions elaborated with KG-1a cells were further applied for transduction of CD34 positive cells isolated from cord blood. The optimal efficiency of transduction of CD34 positive cells with pMINV EGFP retroviral vector (26% of EGFP positive cells), was obtained using infective vector with LTR retroviral promoter, produced by TE FLY GA MINV EGFP packaging cell line. The transduction was performed in the presence of serum, at 37 degrees C, with co-centrifugation of cells with viral supernatants and the use of transduction enhancing agents. This study confirmed that for gene transfer into CD34 positive cells, the detailed optimization of each element of the transduction process is of great importance.  相似文献   

2.
3.
4.
BACKGROUND: Human mesenchymal stem cells (hMSCs) are a promising target for ex vivo gene therapy and lentiviruses are excellent gene transfer vehicles in hMSCs since they achieve high transduction rates with long-term gene expression. Nevertheless, senescence of hMSCs may limit therapeutic applications due to time-consuming cell selection and viral titration. Here, we describe a fast and reliable method to determine functional lentiviral titer by quantitative polymerase chain reaction (qPCR) after highly efficient ex vivo gene transfer in hMSCs. METHODS: Lentivirus production was tested with different types of packaging systems. Using p24 ELISA remaining viral particles were detected in the cell culture supernatant. The lentiviral gene transfer efficiency was quantified by FACS analysis. Lentiviral titers were determined by qPCR of expressed transgenes. RESULTS: Third-generation self-inactivating vectors showed highly efficient gene transfer in hMSCs. No viral antigen was detected in the cell culture supernatant after four media changes, suggesting the absence of infectious particles after 4 days. We observed a linear correlation between virus dilution and level of transgene expression by qPCR analysis, therefore allowing viral titering by quantification of transgene expression. Finally, we demonstrated that transduced hMSCs retained their stem cell character by differentiation towards adipogenic, osteogenic and chondrogenic lineages. CONCLUSIONS: Quantification of transgene copy numbers by qPCR is a fast and reliable method to determine functional lentiviral titer after ex vivo gene transfer in hMSCs.  相似文献   

5.
目的:研究逆转录病毒介导诱导型一氧化氮合酶(iNOS)基因转染对体外培养的大鼠主动脉血管平滑肌细胞(VSMC)增殖的影响,探讨iNOS转基因治疗血管移植术后再狭窄的可行性。方法:将不同滴度的病毒上清转染体外培养的VSMC;采用RT-PCR、Western-blot检测VSMC内iNOSmRNA和iNOS蛋白的表达;用Griess法检测iNOS转基因细胞的培养液中一氧化氮(NO)的含量;用改良MTT、法检测iNOS转基因对VSMC增殖的抑制作用。结果:不同滴度的PLXSNiNOS转染体外培养的VSMC48h后,在VSMC内可检测到外源性iNOSmRNA和iNOS蛋白,表达水平随病毒滴度的增加而增强,呈现剂量依赖性;而用最高滴度的PIXSN转染体外培养的VSMC48h后,在VSMC内未能检测到外源性iNOSmRNA和iNOS蛋白表达;iNOS转基因细胞的培养液中NO含量显著增高,同时VSMC增殖受到明显抑制,均呈现剂量依赖性。结论:逆转录病毒介导iNOS基因可高效转染体外培养的VSMC,并在细胞内表达活性的iNOS蛋白,而且产生大量的NO,明显抑制VSMC增殖。为iNOS转基因治疗血管移植术后再狭窄的临床应用提供有力的实验依据。  相似文献   

6.
精原干细胞(SSCs)介导的转基因技术很可能成为制作转基因动物及治疗雄性不育的一条新途径。为了研究逆转录病毒载体介导法转染体外培养SSCs的可行性,用脂质体介导法将携带LacZ基因的重组逆转录病毒载体pLNCL导入包装细胞PA317,用含G418的培养液筛选得到5株稳定转染的产毒细胞。收集这些克隆的产毒上清,过滤后进行倍比稀释,用NIH-3T3细胞通过X-gal染色测定其浓缩前病毒滴度。结果显示,PA3173培养上清中病毒的浓缩前滴度最高,达1.1×103CFU/mL。再将筛选到的稳定转染的NIH-3T3细胞培养至单层,进行X-gal染色检测β-半乳糖苷酶的表达。结果显示,大多数稳定转染的NIH-3T3细胞均为X-gal ,表明这些细胞成功表达了目的基因LacZ。本研究结果为后期工作中用该载体感染体外培养SSCs奠定了基础。  相似文献   

7.
BACKGROUND: Although some cationic reagents, such as polybrene, improve gene transduction in vitro, their use in vivo is prohibited due to their toxicity to the exposed cells. This paper demonstrates that a new cationic reagent, poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLL), improves gene transduction with retroviral vectors without increasing cell toxicity. METHODS: A retroviral vector derived from the Moloney leukemia virus, containing the lacZ gene, was modified with PEG-PLL prior to transduction into NIH3T3, Lewis lung carcinoma, and primary cultured mouse brain cells. LacZ transduction efficacy was evaluated by counting the number of X-Gal-positive cells. RESULTS: We have demonstrated that PEG-PLL is able to stably modify the viral particle surface due to the affinity of the PEG moiety to the biomembrane, and neutralizes negative charges by the cationic nature of the poly-lysine residue. Thus, PEG-PLL increased the gene transduction efficiency and minimized cell toxicity because free PEG-PLL was removable by centrifugation. We have shown that PEG-PLL increased the viral gene transduction efficiency 3- to 7-fold with NIH3T3 or Lewis lung carcinoma cell lines without increasing cytotoxicity. It improved retroviral gene transduction efficacy even against labile cells, such as primary cultured brain cells. CONCLUSIONS: PEG-PLL is a novel reagent that improves retroviral gene transduction efficacy without increasing cytotoxicity.  相似文献   

8.
In order to optimize viral gene transfer into hematopoietic stem cells we developed retroviral and lentiviral vectors with B cell-specificity. Using fragments of the human CD19 promoter we demonstrate in mice that upon lethal irradiation and reconstitution with virus-treated bone marrow transgene expression is specific for the B cell-lineage. We compare various viral constructs with different promoter length and with or without B cell-specific enhancer regions in retro- and lentiviral backbones. Our data suggest that B cell-targeting for gene therapy approaches is feasible, leads to stable expression, and can be modulated by using different transduction and expression systems.  相似文献   

9.
Moloney murine leukemia virus (MoMLV)-derived vectors require cell division for efficient transduction, which may be related to an inability of the viral DNA-protein complex to cross the nuclear membrane. In contrast, adenoviruses (Ad) can efficiently infect nondividing cells. This property may be due to the presence of multiple nuclear translocation signals in a number of Ad proteins, which are associated with the incoming viral genomes. Of particular interest is the Ad preterminal protein (pTP), which binds alone or in complex with the Ad polymerase to specific sequences in the Ad inverted terminal repeat. The goal of this study was to test whether coexpression of pTP with retroviral DNA carrying pTP-binding sites would facilitate nuclear import of the viral preintegration complex and transduction of quiescent cells. In preliminary experiments, we demonstrated that the karyophylic pTP can coimport plasmid DNA into the nuclei of growth-arrested cells. Retroviral transduction studies were performed with G(1)/S-arrested LTA cells or stationary-phase human primary fibroblasts. These studies demonstrated that pTP or pTP-Ad polymerase conferred nuclear import of retroviral DNA upon arrested cells when the retrovirus vector contained the corresponding binding motifs. However, pTP-mediated nuclear translocation of MoMLV DNA in nondividing cells was not sufficient for stable transduction. Additional cellular factors activated during S phase or DNA repair synthesis were required for efficient retroviral integration.  相似文献   

10.
BACKGROUND: T cell receptor (TCR) gene therapy represents an attractive anti-cancer treatment but requires further optimization of its efficacy and safety in clinically relevant models, such as those using a tumor antigen and TCR of human origin. Currently, however, there is no consensus as to what protocol is most optimal for retroviral human TCR gene transfer into primary murine T cells, most notably with respect to virus pseudo-type. METHODS: Primary murine T cells were transduced, expanded and subsequently tested for transgene expression, proliferation and antigen-specific function. To this end, murine leukemia virus (MLV) retroviruses were produced upon transfection of various packaging cells with genes encoding either green fluorescent protein (GFP) or TCRalphabeta specific for human melanoma antigen gp100(280-288) and the helper elements GAG/POL and ENV. Next to viral pseudotyping, the following parameters were studied: T cell densities; T cell activation; the amounts of IL-2 and the source of serum used to supplement medium. RESULTS: The pseudo-type of virus produced by packaging cells critically determines T cell transduction efficiencies. In fact, MLV-A and MLV-E pseudo-typed viruses derived from a co-culture of Phoenix-A and 293T cells resulted in T cell transduction efficiencies that were two-fold higher than those based on retroviruses expressing either VSV-G, GALV, MLV-A or MLV-E envelopes. In addition, T cell densities during transduction were inversely related to transduction efficiencies. Further optimization resulted in transduction efficiencies of over 90% for GFP, and 68% for both a murine and a human (i.e. murinized) TCR. Importantly, TCR-transduced T cells proliferate (i.e. showing a log increase in cell number in a few days) and show antigen-specific function. CONCLUSIONS: We set up a quick and versatile method to genetically modify primary murine T cells based on transient production of TCR-positive retroviruses, and show that retroviral gene transfer of a human TCR into primary murine T cells is critically improved by viral pseudo-typing with both MLV-A and MLV-E envelopes.  相似文献   

11.
We have previously reported effective gene transfer with a targeted molecular conjugate adenovirus vector through the c-kit receptor in hematopoietic progenitor cell lines. However, a c-kit-targeted recombinant retroviral vector failed to transduce cells, indicating the existence of significant differences for c-kit target gene transfer between these two viruses. Here we demonstrate that conjugation of an adenovirus to a c-kit-retargeted retrovirus vector enables retroviral transduction. This finding suggests the requirement of endosomalysis for successful c-kit-targeted gene transfer. Furthermore, we show efficient gene transfer to, and high transgene expression (66%) in, CD34-selected, c-kit(+) human peripheral blood stem cells using a c-kit-targeted adenovirus vector. These findings may have important implications for future vector development in c-kit-targeted stem cell gene transfer.  相似文献   

12.
Recombinant adeno-associated viral (AAV) vectors have been shown to be one of the most promising vectors for therapeutic gene delivery because they can induce efficient and long-term transduction in non-dividing cells with negligible side-effects. However, as AAV vectors mostly remain episomal, vector genomes and transgene expression are lost in dividing cells. Therefore, to stably transduce cells, we developed a novel AAV/transposase hybrid-vector. To facilitate SB-mediated transposition from the rAAV genome, we established a system in which one AAV vector contains the transposon with the gene of interest and the second vector delivers the hyperactive Sleeping Beauty (SB) transposase SB100X. Human cells were infected with the AAV-transposon vector and the transposase was provided in trans either by transient and stable plasmid transfection or by AAV vector transduction. We found that groups which received the hyperactive transposase SB100X showed significantly increased colony forming numbers indicating enhanced integration efficiencies. Furthermore, we found that transgene copy numbers in transduced cells were dose-dependent and that predominantly SB transposase-mediated transposition contributed to stabilization of the transgene. Based on a plasmid rescue strategy and a linear-amplification mediated PCR (LAM-PCR) protocol we analysed the SB100X-mediated integration profile after transposition from the AAV vector. A total of 1840 integration events were identified which revealed a close to random integration profile. In summary, we show for the first time that AAV vectors can serve as template for SB transposase mediated somatic integration. We developed the first prototype of this hybrid-vector system which with further improvements may be explored for treatment of diseases which originate from rapidly dividing cells.  相似文献   

13.
14.
In retroviral gene transduction, the efficiency of viral infection was reduced by the proteoglycans and some other materials secreted by the producer lines. In order to remove these inhibitors we have developed the rFN-CH-296-facilitated protocol. Because the rFN-CH-296 molecule has strong ability to bind a retroviral vector, rFN-CH-296 bound plates are utilized to wash out the unbound putative inhibitors present in a virus supernatant. The gene transduction efficiencies of human CD34(+)CD38(-) BMCs with a GALV-pseudotyped vector and the rFN-CH-296-facilitated protocol were compared with the protocol without a coating plate with CH-296, the mean gene transduction efficiencies being found to be 95.5 and 71.1%, respectively.  相似文献   

15.

Background

Retroviral transduction of human peripheral blood T cells has considerable potential in the development of gene therapy strategies for immunological disorders. New vectors and experimental procedures have been developed for efficient transduction of several genes into human T cells.

Methods

Bicistronic retroviral vectors encoding distinct cell markers were used for the simultaneous multiple transduction of a human T‐cell line (MT‐2), as well as of human peripheral blood T cells from normal donors. Transduction efficiencies were evaluated by flow cytometry and double‐ and triple‐transduced cells were isolated by fluorescence cell sorting.

Results

Four new bicistronic retroviral vectors were developed that express different gene markers under the control of the internal ribosome entry site (IRES) of the encephalomyocarditis virus. These markers are, respectively, enhanced green fluorescent protein (EGFP), β‐galactosidase, and truncated versions of human nerve growth factor receptor (ΔNGFR) and human growth hormone receptor (ΔGHR). A single 1 h spinoculation infection, performed in the presence of polybrene and using transiently produced amphotropic retroviral particles, was sufficient to obtain transduction efficiencies consistently greater than 50% on human peripheral blood T lymphocytes which had been previously stimulated for 3 days with immobilized anti‐CD3. The transient production of viral particles encoding EGFP, ΔNGFR, and ΔGHR markers in the same viral supernatant has allowed up to three different genes to be introduced simultaneously into human T cells.

Conclusions

This study describes new experimental conditions for efficient single‐step multiple transduction of human primary T lymphocytes. The procedure could be of interest for the development of gene therapy approaches. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

16.
BACKGROUND: Genetically modified keratinocytes generate transplantable self-renewing epithelia suitable for delivery of therapeutic polypeptides. However, the variety of viral vectors and experimental conditions currently used make fragmented or contradictory the information on the transduction efficiency of the human primary keratinocytes. To compare the suitability of the most currently used viral vectors for efficient gene transfer to human keratinocytes, we have performed a comparative study using a panel of recombinant constructs. METHODS: For each vector, the transduction efficiency and the persistence of the transgene expression were quantified by fluorescence microscopy and flow cytometry analysis of the infected cells. RESULTS: We show that: (1) canine and human adenoviral vectors achieve a highly efficient but transient transduction of both primary and immortalized keratinocytes; (2) the adenovirus-associated virus (AAV) vectors transduce immortalized keratinocytes, albeit with a short-lived gene expression (<4 days), but fail to infect primary keratinocytes; and (3) under appropriate conditions, the oncoretroviral and lentiviral vectors can permanently transduce up to 100% of primary keratinocytes, but the highly clonogenic keratinocytes are more efficiently targeted by lentiviral vectors. CONCLUSIONS: Therefore, AAV vectors are unsuitable to transduce primary keratinocytes, while human and canine adenoviral vectors appears to be appropriate to achieve short-term delivery of therapeutic products. Recombinant retroviruses provide sustained expression of the transgene, but the lentiviral vectors are the most suitable for ex vivo gene therapy because of their ability to transduce clonogenic primary keratinocytes.  相似文献   

17.
For clinical trials, large amounts of high-titer retroviral supernatants are required. However, retroviral concentration is relatively low compared with other viral vectors. Moreover, less than half of retroviral vectors suspended in a collected supernatant are infectious because of their short half-lives. In this study, a culture medium of ecotropic retrovirus-producing GP + E86/LNCX cells in tissue culture dishes was circulated through a reservoir, which was arranged with an incubator or ice-bath stage. Titers determined from the retroviral supernatant circulated through an ice-cold reservoir increased for a week from the beginning of retroviral production, while the titers from static production with circulation through the 37 degrees C reservoir reached a plateau after 3 days of retroviral production. After 5 days, 10 times more infectious retroviruses were obtained by circulating and keeping the majority of supernatant longer in the cold reservoir than in the production vessel at 37 degrees C in comparison with the number collected from the static tissue culture dish without circulating the culture medium. Furthermore, the concentration of transduction inhibitors in the supernatant was decreased along with the retardation of retroviral decay at low temperature. The two-stage operation developed in this study should be easily applied to large-scale bioreactors for mass production of high-titer retroviral supernatants.  相似文献   

18.
The human multiple drug resistance (MDR) gene has been used as a model for human gene transfer which could lead to human gene therapy. MDR is a transmembrane protein which pumps a number of toxic substances out of cells including several drugs used in cancer chemotherapy. Normal bone marrow cells express low levels of MDR and are particularly sensitive to the toxic effects of these drugs. There are two general applications of MDR gene therapy: (1) to provide drug-resistance to the marrow of cancer patients receiving chemotherapy, and (2) as a selectable marker which when co-transferred with a non-selectable gene such as the human beta globin gene can be used to enrich the marrow for cells containing both genes. We demonstrate efficient transfer and expression of the human MDR gene in a retroviral vector into live mice and human marrow cells including CD34+ cells isolated from marrow and containing the bulk of human hematopoietic progenitors. MDR gene transduction corrects the sensitivity of CD34+ cells to taxol, an MDR drug substrate, and enriches the marrow for MDR-transduced cells. The MDR gene-containing retroviral supernatant used has been shown to be safe and free of replication-competent retrovirus. Because of the safety of the MDR retroviral supernatant, and efficient gene transfer into mouse and human marrow cells, a phase 1 clinical protocol for MDR gene transfer into cancer patients has been approved to evaluate MDR gene transfer and expression in human marrow.  相似文献   

19.
Neuronal progenitor cells (NPC) are particularly suited as the target population for genetic and cellular therapy of neurological disorders such as Parkinson's disease or stroke. However, genetic modification of these cells using retroviral vectors remains a great challenge because of the low transduction rate and the need for fetal calf serum (FCS) during the transduction process that induces the cell differentiation to mature neurons. To overcome these problems, we developed a new retrovirus production system in which the simplified retroviral vector GCDNsap engineered to be resistant to denovo methylation was packaged in the vesicular stomatitis virus G protein (VSV-G), concentrated by centrifugation, and resuspended in serum-free medium (StemPro-34 SFM). In transduction experiments using enhanced green fluorescent protein (EGFP) as a marker, the concentrated FCS-free virus supernatant infected NPC at a high rate, while maintaining the ability of these cells to self-renew and differentiate in vitro. When such cells were grafted into mouse brains, EGFP-expressing NPC were detected in the region around the injection site at 8 weeks post transplantation. These findings suggest that the gene transfer system described here may provide a useful tool to genetically modify NPC for treatments of neurological disorders.  相似文献   

20.
In retroviral vector-mediated gene transfer, transduction efficiency can be hampered by inhibitory molecules derived from the culture fluid of virus producer cell lines. To remove these inhibitory molecules to enable better gene transduction, we had previously developed a transduction method using a fibronectin fragment-coated vessel (i.e., the RetroNectin-bound virus transduction method). In the present study, we developed a method that combined RetroNectin-bound virus transduction with low-temperature shaking and applied this method in manufacturing autologous retroviral-engineered T cells for adoptive transfer gene therapy in a large-scale closed system. Retroviral vector was preloaded into a RetroNectin-coated bag and incubated at 4°C for 16 h on a reciprocating shaker at 50 rounds per minute. After the supernatant was removed, activated T cells were added to the bag. The bag transduction method has the advantage of increasing transduction efficiency, as simply flipping over the bag during gene transduction facilitates more efficient utilization of the retroviral vector adsorbed on the top and bottom surfaces of the bag. Finally, we performed validation runs of endoribonuclease MazF-modified CD4+ T cell manufacturing for HIV-1 gene therapy and T cell receptor-modified T cell manufacturing for MAGE-A4 antigen-expressing cancer gene therapy and achieved over 200-fold (≥1010) and 100-fold (≥5×109) expansion, respectively. In conclusion, we demonstrated that the large-scale closed transduction system is highly efficient for retroviral vector-based T cell manufacturing for adoptive transfer gene therapy, and this technology is expected to be amenable to automation and improve current clinical gene therapy protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号