首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BREWSTER  J. L. 《Annals of botany》1985,55(3):403-414
Experiments were done in controlled conditions to investigatethe relationship of plant weight, leaf number and raising conditionsto inflorescence initiation in onion seedlings. Above a shootdry weight of 0.06 g the spring-sown cv. Rijnsburger could initiateinflorescences, whereas the autumn-sown cv. Senshyu semi-globeYellow needed to be heavier than 0.45 g. Plants raised at aphoton flux density of 200 µmol m–2S–1 anda temperature of 25 C required longer to initiate inflorescencesthan plants raised at 600 µmol m–2S–1 and17 C which had higher reserve carbohydrate content. The minimumleaf number for inflorescence initiation was larger for plantswith low reserve carbohydrate content. Photon flux densitiesof 50, 100, 200 and 400 µmol m–2S–1 duringvernalization at 9 C caused no differences in inflorescenceinitiation in plants previously raised at l7 C and 600 µmolm–2S–1 but the lowest photon flux density duringvernalization reduced initiation in plants previously raisedat 25 C and 200 µmol m–2S–1.  相似文献   

2.
Spring wheat (Triticum aestivum cv. Warimba) plants were grownin a controlled environment (20°C) in two photoperiods (8or 16 h). In the first instance, plants were maintained in eachof the photoperiods from germination onwards at the same irradiance(375 µE m–2 s–1). In the second case, allplants were grown in a long photoperiod until 4 days after double-ridgeinitiation when half the plants were transferred to a shortphotoperiod with double the irradiance (16 h photoperiod at225 or 8 h at 475 µE –2 s–1). The rates of growth and development of the apices were promotedby the longer photoperiod in both experiments. Shoot dry weightgain was proportional to the total light energy received perday whereas the dry weight of the shoot apex increased withincreasing photoperiod even when the total daily irradiancewas constant. The principal soluble carbohydrate present in the shoot apexwas sucrose, although low concentrations of glucose and fructosewere found in the apices of long photoperiod plants late indevelopment. Sucrose concentration was invariably greater inthe slow-growing apices of short photoperiod plants, but roseto approach this level in the long photoperiod plants when theterminal spikelet had been initiated. Triticum aestivum, wheat, apex, spikelet initiation, photoperiod, flower initiation  相似文献   

3.
Floral development includes initiation of floral primordia andsubsequent anthesis as discrete events, even though in manyinvestigations only anthesis is considered. For ‘Ransom’soya bean [Glycine max (L.) Merrill] grown at day/night temperaturesof 18/14, 22/18, 26/22, 30/26, and 34/30 °C and exposedto photoperiods of 10, 12, 14, 15, and 16 h, time of anthesisranged from less than 21 days after exposure at the shorterphotoperiods and warmer temperatures to more than 60 days atlonger photoperiods and cooler temperatures. For all temperatureregimes, however, floral primordia were initiated under shorterphotopenods within 3 to 5 days after exposure and after notmore than 7 to 10 days exposure to longer photoperiods. Onceinitiation had begun, time required for differentiation of individualfloral primordia and the duration of leaf initiation at shootapices increased with increasing length of photoperiod. Whileproduction of nodes ceased abruptly under photoperiods of 10and 12 h, new nodes continued to be formed concurrently withinitiation of axillary floral primordia under photoperiods of14, 15 and 16 h. The vegetative condition at the main stem shootapex was prolonged under the three longer photoperiods and issuggestive of the existence of an intermediate apex under theseconditions. The results indicate that initiation and anthesisare controlled independently rather than collectively by photoperiod,and that floral initiation consists of two independent steps—onefor the first-initiated flower in an axil of a main stem leafand a second for transformation of the terminal shoot apex fromthe vegetative to reproductive condition. Apical meristem, intermediate apex, floral initiation, anthesis, photoinduction, Glycine max(L.) Merrill, soya bean, photoperiod, temperature  相似文献   

4.
Effects of nitrogen (N) supply on leaf and flower developmentinLupinus angustifolius L. cv Merrit were examined in a temperature-controlledglasshouse. Low N supply (0.05 or 0.4 mM N) had little effecton leaf initiation but slowed leaf emergence on the main stemcompared with plants receiving high N supply (6.0 or 6.4 mMN), or with symbiotic N2-fixation. Plants experiencing transientN deficiency had slower leaf emergence than plants with a continuoussupply of 6.4 mM N. Nitrogen supply did not affect the timeof floral initiation, which occurred within 4 weeks of sowing,by which time nine to ten leaves had emerged. However, the floweringof low-N plants was delayed by 68 to 220 °C d (i.e. 4–14d) even though they had fewer leaves. The effect of N deficiencyon flowering time was largely a result of slower leaf emergence. Lupinus angustifolius L.; nitrogen; leaf; flower initiation; thermal time; plastochron; phyllochron  相似文献   

5.
At temperatures above about 17° C. inflorescence initiationin growing onion plants, as in stored sets, is suppressed whetherthe plants are kept in long or short days. Independently ofcurrent day-length and of previous day-length treatment, ifthe plants are sufficiently large initiation begins very shortlyafter the temperature falls below c. 15° C. Emerged infiorescencesappear some ten or so weeks later. Small plants are unable toinitiate inflores cences under any of the conditions tested,and actual size (perhaps leaf area) rather than leaf or nodenumber seems to be the important factor. Inflorescence emergenceis suppressed at high temperatures in short days or long days;in long days bulb formation also suppresses emergence at lowertemperatures. In long days at temperatures sufficiently lowfor bulbing to be delayed, however, emergence is accelerated.Plants which have produced bulbs in long days in the summershow a delay of inflorescence emergence in the following winter.  相似文献   

6.
This study was conducted to test the hypothesis that photoperiodor its rate of change significantly affects the rate of leafappearance (RLA) and final number of leaves (FNL) in wheat,as suggested from several time-of-sowing experiments. Two wheatcultivars (Condor and Thatcher) were sown in the field on 2Sep. 1992 at Melbourne (38°S). Photoperiod was extendedartificially to give five treatments up to terminal spikeletinitiation (TS) viz.: natural photoperiod (rate of change ofphotoperiod = 2 min d-1), two faster rates of change (8·5and 13·3 min d-1) and two constant photoperiods of 14·0and 15·5 h. After TS, the two constant photoperiods wereextended to 15·0 and 16·5 h, respectively, andtreatments were re-randomised, i.e. some plots received differentphotoperiod regimes before and after TS. The rate of leaf appearance maintained strong linear relationshipswith thermal time. It was greater for Condor [0·012-0·013(°C d)-1] than for Thatcher [0·011-0·012 (°Cd)-1] and did not alter during plant development or in responseto the change in photoperiod at TS. Rate of leaf appearanceon the main culm was not influenced by the rate of change ofphotoperiod nor by the average photoperiod. Cultivar and photoperiod significantly affected FNL on the mainculm. Condor produced more leaves than Thatcher under long butnot under short photoperiods. The rate of change of photoperioddid not affect FNL independently of the effect of average photoperiod.Most of the variation in FNL due to photoperiod resulted fromdifferences in duration of leaf initiation. The lack of effects of the photoperiod treatments on RLA contrastwith previous reports of its effects on the rate of phasic developmentfrom seedling emergence to double ridge. Therefore, the numberof visible leaves on the main culm (NL) at double ridge andat TS were not constant. However, NL on the main culm at doubleridge was closely correlated with FNL.Copyright 1994, 1999 AcademicPress Triticum aestivum L., wheat, leaf appearance, phyllochron, photoperiod  相似文献   

7.
Environmental Control of Flowering in some Northern Carex Species   总被引:2,自引:0,他引:2  
HEIDE  O. M. 《Annals of botany》1997,79(3):319-327
The environmental control of flowering in some arctic-alpineCarexspecies has been studied in controlled environments.Carex nigra,C. brunnescens, C. atrata, C. norwegica andC. serotina all hada dual induction requirement for flowering. In all exceptC.nigra either low temperature (12 °C or lower) or short days(SD) over a wider range of temperatures were needed for primaryfloral induction and inflorescence formation. InC. nigra primaryfloral induction took place in SD only (9–21 °C),8–10 weeks of exposure being required for a full response.In all these species long days (LD) were required for, or stronglypromoted, culm elongation and inflorescence development (secondaryinduction). Quantitative ecotype differences in both primaryand secondary induction were demonstrated. Unlike the otherspecies,C. bicolor proved to be a regular LD plant which requiredLD only for inflorescence initiation and development. In allspecies leaf growth was strongly promoted by LD, especiallyin the higher temperature range (15–21 °C). In SDand temperatures below 15 °C the leaves became senescentand the plants entered a semi-dormant condition which was immediatelyreversed by LD. The results are discussed in relation to growthform and life history of shoots. Carex ; dual induction; ecotypic diversity; flowering; growth; photoperiod; sedges; temperature  相似文献   

8.
EVANS  L. T. 《Annals of botany》1959,23(4):521-546
There is a heteroblastic change in leaflet number in many stocksof Vicia faba, the rate of change being affected by the temperatureand photoperiod under which the plants are grown. In all exceptthe earliest flowering stocks of broad beans, and particularlyat high temperatures, flower initiation shows a quantita-tivelong-day response. For full development of the initiated inflorescenceslong days are required. Flower initiation may be accelerated in all except the earliestflowering stocks of V.faba by brief exposures to low temperatures,particularly when the plants are grown in short days at hightemperatures. The response to low temperatures is more rapidat I0° C. than at 4° C. but eventually approaches saturationat both temperatures. More prolonged exposure to low temperaturesdelays flower initia-tion. The response to low temperaturesincreases with increasing plant age but can occur during embryodevelopment on the mother plant. At temperatures above 14° C, and particularly above 23°C, a reaction inhibitory to flower initiation occurs. This reactionis probably restricted to the diurnal dark periods but is operativeat all stages of the life cycle, including embryo development.Its inhibitory effects may be overcome by subsequent cold treatment,and when the low temperature processes have reached saturationsubsequent high temperatures are no longer inhibitory. Although nucleosides could accelerate flower initiation, purineand pyrimidene analogues did not, with one exception, reducethe response to low temperature treatment.  相似文献   

9.
Floral initiation in seedlings of Stylosanthes guianensis var.guianensis cv. Schofield grown at a photoperiod marginal forflowering (12–11.75 h) was promoted by a combination oflow day (25 °C) and low night (16 or 21 °C) temperatures,and completely inhibited by a 35 °C day temperature. Additionally,earliness of floral initiation under naturally decreasing daylengthwas negatively related to temperature regime over the range35/30 to 20/15 °C (day/night). Stylosanthes guianensis var, guianensis, flowering, temperature, photoperiod, short-day plant  相似文献   

10.
Factorial combinations of four photoperiods (10 h, 11 h 40 min,13 h 20 min and 15 h) and three night temperatures (14, 19 and24 °C) combined with a single day temperature (30 °C)were imposed on nodulated plants of 11 cowpea accessions [Vignaunguiculata (L) Walp.] grown in pots in growth cabinets. Thetimes to first appearance of flower buds, open flowers and maturepods were recorded. Linear relationships were established betweenthe reciprocal of the times taken to flower and both mean diurnaltemperature and photoperiod. When the equations describing thesetwo responses are solved, the time to flower in any given photothermalregime is predicted by whichever solution calls for the greaterdelay in flowering. Thus in different circumstances floweringis controlled exclusively by either mean temperature or photoperiod.The value of the critical photoperiod is temperature-dependentand a further equation, derived from the first two, predictsthis relationship. Considered together as a quantitative modelthese relationships suggest simple field methods for screeninggenotypes to determine photo-thermal response surfaces. Vigna unguiculata (L) Walp., cowpea, reproductive development, photoperiod, temperature, germplasm  相似文献   

11.
The effects of temperature and photoperiod on winged beans werestudied using 15 University of New Guinea (UPS) selections andfive Sri Lanka (SL) selections. They were grown at 25/20 or30/25 °C day/ night temperature at 11 or 14 h photoperiodwith 12 h thermoperiod. Differences in stomatal density wereobserved among selections and between photoperiods. Higher densitiesoccurred at 14 h photoperiod than at 11 h photoperiod. Whenstomatal density was high due to a photoperiod or temperatureeffect, there was a corresponding increase in leaf area andd. wt of plants. Total chlorophyll content at 25/20 °C was higher at 11 hphotoperiod than at 14 h photoperiod in all selections whilethe total chlorophyll content at 30/25 °C varied with thephotoperiod and selection. Leaf area of SL selections was greater than that of UPS selections.Also greater leaf area was observed at 14 h photoperiod thanat 11 h photoperiod, irrespective of the growing temperature. Temperature was as important as photoperiod in controlling floweringof winged beans. All the UPS selections and two SL selectionsflowered at 11 h photoperiod at 25/20 °C but failed to flowerat the same photoperiod at 30/25 °C indicating an interactionbetween temperature and photoperiod. It is likely that wingedbeans have a narrow photoperiodic range, particularly the SLselections. Psophocarpus tetragonolobus (L.) D.C., winged bean, stomatal density, leaf area, flowering, temperature, photoperiod  相似文献   

12.
The influence of constant (9, 13 and 19 h) and reciprocally-interchangedphotoperiods [at terminal spikelet (TS) or triple mound (TM)]on leaf, tiller and primordium development were examined usingphotoperiod-responsive cultivars of spring wheat, ‘UQ189’ and spring barley, ‘Arapiles’. In bothspecies, constant longer photoperiod reduced the duration fromsowing (S) to double ridge (DR), as expected. However, photoperiodsensitivity was not restricted to this mainly vegetative phase.There was also a marked increase or reduction in the durationof reproductive phases between TS/TM and heading (H) when plantswere transferred to shorter or longer photoperiods respectively,compared with controls. These responses were largely independentof the photoperiod during previous phases although minor effectsof the previous photoperiod were observed. For both species,the time course of leaf emergence was linear, or bi-linear,depending on the final leaf number on the main stem. The rateof leaf emergence was faster for the first six to eight leavesthan for the leaves appearing subsequently. The rate of emergenceof early-formed leaves was independent of photoperiod whereasthe rate of emergence of later leaves varied with photoperiod.Photoperiod also affected the dynamics of tillering. The rateof leaf primordium initiation was little affected by variationin photoperiod, but the rate of spikelet initiation increasedwith increases in photoperiod. The rates of leaf and spikeletprimordium initiation were both substantially higher in barleythan in wheat. The fact that the reproductive phase from TS/TMto H was largely independent of the duration of the previousphase provides evidence that this phase might be geneticallymanipulated to increase the time for floret development andhence grain number. Copyright 2000 Annals of Botany Company Photoperiod, rate of development and leaf emergence, tillering, wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.)  相似文献   

13.
14.
The effects of raised temperature and extended photoperiod onthe dehardening of quiescent and winter-hardy Scots pine saplingswere examined in an open-top-chamber experiment. The saplingswere exposed during winter to natural, square-curve fluctuating(between 1 and 11 °C with a 14 d interval), and constant(6 °C) temperatures with a natural and an extended (17 h)photoperiod. Frost hardiness of needles was determined by controlledfreezing tests and visual damage scoring. The constant 6 °Ctemperature treatment caused a gradual dehardening of needleswhereas under fluctuating temperatures the level of frost hardinessfluctuated. Trees exposed to extended photoperiods were lesshardy than under natural photoperiods after the initiation ofshoot elongation, but before this there were no clear differencesin frost hardiness between different photoperiodic treatments.The results indicate that the frost hardening competence ofScots pine changes during quiescence. Climate change; frost hardiness; hardening competence; photoperiod; Pinus sylvestris, Scots pine; temperature  相似文献   

15.
Seedlings of Stylosanthes guianensis var. guianensis were grownin long (14 h) days in five temperature regimes for varyingperiods before transfer to short (11 h) days at 30 ?C/21 ?C.The juvenile phase before seedlings responded to inductive conditionswas c. 45–50 d, 50–60 d and 60–70 d for cv.Schofield, cv. Cook and C.P.I. 34906 respectively, which ispositively related to their critical photoperiod for flowering.Temperatures favourable for growth (e.g. 30 ?C/26 ?C) reducedthe juvenile phase in C.P.I. 34906 and in Cook, which did notflower in 11 h days unless previously exposed to more than 18long days. In a second experiment cv. Cook was confirmed as a long-shortday plant. Seedlings were grown for 50 d in a glasshouse withnatural daylength extended to 13, 14, 16 or 24 h before transferto 12 h photoperiods. Cook floral development was positivelyrelated to daylength provenance before transfer and plants incontinuous 12 h did not flower. Shortening daylength after 48 cycles of 12 h to 11.75 h didnot result in continued floral development in Cook plants butcv. Graham plants were initiated or transitional by 75 d. Key words: Stylosanthes guianensis, Photoperiod, Temperature, Flowering  相似文献   

16.
HERBERT  S. J. 《Annals of botany》1979,43(1):55-63
In an August-sown experiment the pattern of flower developmentwas followed for cv. Ultra (Lupinus albus L.) and cv. Unicrop(L. angustifolius L.) grown at low (10 plants m–2) andhigh (93 and 83 plants m–2, Ultra and Unicrop respectively)densities. Dry weight increase of flowers on the main-stem inflorescenceand first lateral below the main-stem were compared at differentfloral stages. Maximum flower weight was reached just priorto the open flower stage and remained constant or declined untila pod formed or abscission occurred. The time period betweenmaximum flower weight and pod formation or abscission was upto 10 days. Emergence of the inflorescence was earlier and thefirst flower of Ultra opened 10 days before Unicrop. Developmentof each terminal raceme (inflorescence) was acropetal, withpods having formed on lower flower nodes when terminal flowerswere still quite immature. Laterals forming the next generationof inflorescences grew from axillary leaf buds below an inflorescencewhile it was in full flower. Sources of competition from connectedreproductive and vegetative metabolic sinks are discussed. Lupinus spp., lupins, flower development, planting density  相似文献   

17.
LUSH  W. M.; EVANS  L. T. 《Annals of botany》1980,46(6):719-725
To test the proposition that photoperiodic controls synchronizethe flowering of cowpeas, Vigna unguiculata (L.) Walp. [V. sinensis(L.) Savi], the day-length requirements for floral initiationand for flowering were investigated in several short-day accessions.No evidence was found of different critical photoperiods atdifferent stages of development, but exposure to only 2–4short days was required for floral initiation compared withabout 20 for development to open flowers. Pod setting was increasedafter exposure to even one short day more than the number requiredfor flower opening. Floral buds at higher nodes appeared to require fewer shortdays for development to flowering than buds at the lower nodes,and displayed faster rates of development. Inflorescence budsdid not resume development if they were exposed to 15 or morelong days following inflorescence initiation. Thus, any tendencytowards synchronous flowering in cowpeas is not due to the criticalday-length for flower development being shorter than that forflower initiation, but could be the result of cumulative photoperiodicinduction of plants and the more rapid development of later-formedflowers. Vigna unguiculata (L.) Walp., cowpeas, flower initiation, flower development, fruit set, photoperiodism  相似文献   

18.
Factorial combinations of two photoperiods (12 and 15 h), threeday temperatures (20, 25 and 30 °C) and three night temperatures(10, 15 and 20 °C) were imposed on nodulated plants of ninechickpea genotypes (Cicer arietinum L.) grown in pots in growthcabinets. The times to first appearance of open flowers wererecorded. For all genotypes, the rates of progress towards flowering(the reciprocals of the times taken to flower) were linear functionsof mean temperature. There were no interactions between meantemperature and photoperiod but the longer photoperiod increasedthe rate of progress towards flowering. These effects were independentof both radiation integral (the product of irradiance and photoperiod)and the vegetative stature of the plant. Taken in conjunctionwith evidence from work on other long-day species, it is suggestedthat the photo-thermal response of flowering in chickpeas, overthe range of environments normally experienced by the crop,may be described by the equation: 1/f = a+b  相似文献   

19.
Seed germination in Talinum triangulare as affected by photoperiod,with or without previous incubation in the dark in water at25 or 4 °C, was studied. The time course and quantity ofseed germination in photoperiods of 1 h and above were similarwith or without dark pretreatment, but the time to half maximumgermination was reduced from 12 days in non-dark pretreatedseeds to 4 days in seeds given 20 days in the dark at 25°C.A photoperiod of 0·25 h gave a lower rate and total germinationthan photoperiods of 1 h and above. Un-pretreated seeds required17 cycles of 24 h photoperiod for maximum germination as comparedwith 7 or less cycles if the seeds received more than 10 daysdark pretreatment at 25 °C. Both the rate and total germinationin light increased as the length of dark pretreatment at 25°C was increased from zero to 30 days. Incubation of theseeds in water in the dark at 4 °C for 5 to 30 days priorto illumination at 21 °C, reduced both the rate and quantityof seed germination in light as compared with those similarlyincubated in the dark at 25 °C. However, previous incubationin the dark for 30 days at 4 °C partially substituted forthe light requirement. The possible mechanism of breakage ofseed dormancy in Talinumis discussed in relation to these andother findings. Talinum triangulare (Jacq.), Willd, light, photoperiod, seed germination  相似文献   

20.
Factorial combinations of four photoperiods (10, 11·33,12·66 and 16 h d-1) and three mean diurnal temperatures(20·2, 24·1 and 28·1°C) were imposedon nodulated plants of three Nigerian bambara groundnut genotypes[Vigna subterranea (L.) Verdc., syn. Voandzeia subterranea (L.)Thouars] grown in glasshouses in The Netherlands. The photothermalresponse of the onset of flowering and the onset of poddingwere determined. The time from sowing to first flower (f) wasdetermined by noting the day on which the first open flowerappeared. The time from sowing to the onset of podding (p) wasestimated from linear regressions of pod dry weight againsttime from sowing. Developmental rates were derived from thereciprocals of f and p. In two genotypes, 'Ankpa 2' and 'Yola',flowering occurred irrespective of photoperiod and 1/f was controlledby temperature only, occurring sooner at 28·1 than at20·2°C. The third genotype, 'Ankpa 4', was sensitiveto temperature and photoperiod and f was increased by coolertemperatures and photoperiods > 12·66 h d-1 at 20·2°Cand > 11·33 h d-1 at 24·1 and 28·1°C.In contrast, p was affected by temperature and photoperiod inall three genotypes. In bambara groundnut photoperiod-sensitivitytherefore increases between the onset of flowering and the onsetof podding. The most photoperiod-sensitive genotype with respectto p was 'Ankpa 4', followed by 'Yola' and 'Ankpa 2'. Therewas also variation in temperature-sensitivity between the genotypesinvestigated. Evaluation of bambara groundnut genotypes foradaptation to different photothermal environments will thereforerequire screening for flowering and podding responses.Copyright1994, 1999 Academic Press Vigna subterranea (L.) Verdc., Voandzeia subterranea (L.) Thouars, bambara groundnut, phenology, photoperiod, daylength, temperature, flowering, podding  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号