首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated a novel yeast alpha-COP mutant, ret1-3, in which alpha-COP is degraded after cells are shifted to a restrictive temperature. ret1-3 cells cease growth at 28 degrees C and accumulate the ER precursor of carboxypeptidase Y (p1 CPY). In a screen for high copy suppressors of these defects, we isolated the previously unidentified yeast epsilon-COP gene. epsilon-COP (Sec28p) overproduction suppresses the defects of ret1-3 cells up to 34 degrees C, through stabilizing levels of alpha-COP. Surprisingly, cells lacking epsilon-COP (sec28 Delta) grow well up to 34 degrees C and display normal trafficking of carboxypeptidase Y and KKXX-tagged proteins at a permissive temperature. epsilon-COP is thus non-essential for yeast cell growth, but sec28 Delta cells are thermosensitive. In sec28 Delta cells shifted to 37 degrees C, wild-type alpha-COP (Ret1p) levels diminish rapidly and cells accumulate p1 CPY; these defects can be suppressed by alpha-COP overproduction. Mutant coatomer from sec28 Delta cells behaves as an unusually large protein complex in gel filtration experiments. The sec28 Delta mutation displays allele-specific synthetic-lethal interactions with alpha-COP mutations: sec28 Delta ret1-3 double mutants are unviable at all temperatures, whereas sec28 Delta ret1-1 double mutants grow well up to 30 degrees C. Our results suggest that a function of epsilon-COP is to stabilize alpha-COP and the coatomer complex.  相似文献   

2.
Previously we reported an original method of visualizing the shape of yeast nuclei by the expression of green fluorescent protein (GFP)-tagged Xenopus nucleoplasmin in Saccharomyces cerevisiae. To identify components that determine nuclear structure, we searched for mutants exhibiting abnormal nuclear morphology from a collection of temperature-sensitive yeast strains expressing GFP-tagged nucleoplasmin. Four anu mutant strains (anu1-1, 2-1, 3-1 and 4-1; ANU=abnormal nuclear morphology) that exhibited strikingly different nuclear morphologies at the restrictive temperature as compared to the wild-type were isolated. The nuclei of these mutants were irregularly shaped and often consisted of multiple lobes. ANU1, 3 and 4 were found to encode known factors Sec24p, Sec13p and Sec18p, respectively, all of which are involved in the formation or fusion of intracellular membrane vesicles of protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus. On the other hand, ANU2 was not well characterized. Disruption of ANU2 (delta anu2) was not lethal but conferred temperature-sensitivity for growth. Electron microscopic analysis of anu2-1 cells revealed not only the abnormal nuclear morphology but also excessive accumulation of ER membranes. In addition, both anu2-1 and delta anu2 cells were defective in protein transport between the ER and the Golgi, suggesting that Anu2p has an important role in vesicular transport in the early secretory pathway. Here we show that ANU2 encodes a 34 kDa polypeptide, which shares a 20% sequence identity with the mammalian epsilon-COP. Our results suggest that Anu2p is the yeast homologue of mammalian epsilon-COP and the abrupt accumulation of the ER membrane caused by a blockage of the early protein transport pathway leads to alteration of nuclear morphology of the budding yeast cells.  相似文献   

3.
4.
The polycomb group (PcG) proteins, Bmi-1 and Ezh2, are important epigenetic regulators that enhance skin cancer cell survival. We recently showed that Bmi-1 and Ezh2 protein level is reduced by treatment with the dietary chemopreventive agents, sulforaphane and green tea polyphenol, and that this reduction involves ubiquitination of Bmi-1 and Ezh2, suggesting a key role of the proteasome. In the present study, we observe a surprising outcome that Bmi-1 and Ezh2 levels are reduced by treatment with the proteasome inhibitor, MG132. We show that this is associated with a compensatory increase in the level of mRNA encoding proteasome protein subunits in response to MG132 treatment and an increase in proteasome activity. The increase in proteasome subunit level is associated with increased Nrf1 and Nrf2 level. Moreover, knockdown of Nrf1 attenuates the MG132-dependent increase in proteasome subunit expression and restores Bmi-1 and Ezh2 expression. The MG132-dependent loss of Bmi-1 and Ezh2 is associated with reduced cell proliferation, accumulation of cells in G2, and increased apoptosis. These effects are attenuated by forced expression of Bmi-1, suggesting that PcG proteins, consistent with a prosurvival action, may antagonize the action of MG132. These studies describe a compensatory Nrf1-dependent, and to a lesser extent Nrf2-dependent, increase in proteasome subunit level in proteasome inhibitor-treated cells and confirm that PcG protein levels are regulated by proteasome activity.  相似文献   

5.
We have isolated the RPN9 gene by two-hybrid screening with, as bait, RPN10 (formerly SUN1), which encodes a multiubiquitin chain receptor residing in the regulatory particle of the 26S proteasome. Rpn9 is a nonessential subunit of the regulatory particle of the 26S proteasome, but the deletion of this gene results in temperature-sensitive growth. At the restrictive temperature, the Deltarpn9 strain accumulated multiubiquitinated proteins, indicating that the RPN9 function is needed for the 26S proteasome activity at a higher temperature. We analyzed the proteasome fractions separated by glycerol density gradient centrifugation by native polyacrylamide gel electrophoresis and found that a smaller amount of the 26S proteasome was produced in the Deltarpn9 cells and that the 26S proteasome was shifted to lighter fractions than expected. The incomplete proteasome complexes were found to accumulate in the Deltarpn9 cells. Furthermore, Rpn10 was not detected in the fractions containing proteasomes of the Deltarpn9 cells. These results indicate that Rpn9 is needed for incorporating Rpn10 into the 26S proteasome and that Rpn9 participates in the assembly and/or stability of the 26S proteasome.  相似文献   

6.
In the present study we demonstrate that ricin, apparently without passing through the Golgi apparatus, reaches the endoplasmic reticulum (ER) and intoxicates cells in which the Golgi apparatus has been vesiculated by depletion of epsilon-COP, a subunit of COPI. LdlF cells contain a temperature-sensitive mutation in epsilon-COP. At the nonpermissive temperature epsilon-COP is degraded, and the Golgi apparatus undergoes a morphological change. To study ricin transport in these cells we used ricin sulf-2, a modified ricin molecule containing glycosylation and sulfation sites. Measurements of the incorporation of radioactive mannose into ricin sulf-2 showed that ricin reached the ER in cells depleted of epsilon-COP. Importantly, by investigating the glycosylation of ricin sulf-2 that was modified with radioactive sulfate in the trans-Golgi network, it was demonstrated that transport of ricin to the ER via the Golgi apparatus was severely inhibited. Moreover, we found that ricin was able to intoxicate ldlF cells depleted of epsilon-COP in the presence of brefeldin A. In contrast, control cells were completely protected against ricin by brefeldin A. In conclusion, our results suggest that in ldlF cells depleted of epsilon-COP ricin might be transported to the ER by an induced brefeldin A-resistant pathway that circumvents the Golgi apparatus.  相似文献   

7.
Effects of proteasome inhibitors on the replication of a paramyxovirus in comparison with the effects on replication of an orthomyxovirus and rhabdovirus were investigated. Treatment of Sendai virus (SeV)-infected LLC-MK2 cells with 50 microM MG132 reduced virus growth to ca. 1/10,000, and treatment with different concentrations of MG132 reduced virus growth in a dose-dependent manner. Released amounts of viral proteins were reduced in correspondence with decrease in infectivity. The inhibition of virus maturation was confirmed by an SeV-like particle formation system. Lactacystin also impaired SeV growth and zLL impaired the growth to a lesser extent, suggesting involvement of proteasomes in the restriction of virus growth. In the presence of MG132, localizations of the M protein and viral F and HN glycoproteins on the cell membrane appeared to be partly dissociated, although the viral glycoproteins were normally transported to the cell surface. These results suggest that an early step of SeV assembly was disturbed by proteasome inhibitors. The relationship of the results with ubiquitin is also discussed. SeV maturation was less susceptible and resistant to MG132 in CV1 cells and A549 cells, respectively, indicating cell specificity of the drug effect. Release of vesicular stomatitis virus also showed high susceptibility to MG132 and release of influenza virus A/WSN/33 was only mildly susceptible to the drug in LLC-MK2 cells. Effects of proteasome inhibitors on virus maturation are thus highly cell-specific and partly virus-specific.  相似文献   

8.
Upon binding to androgen, the androgen receptor (AR) can translocate into the nucleus and bind to androgen response element(s) to modulate its target genes. Here we have shown that MG132, a 26 S proteasome inhibitor, suppressed AR transactivation in an androgen-dependent manner in prostate cancer LNCaP and PC-3 cells. In contrast, MG132 showed no suppressive effect on glucocorticoid receptor transactivation. Additionally, transfection of PSMA7, a proteasome subunit, enhanced AR transactivation in a dose-dependent manner. The suppression of AR transactivation by MG132 may then result in the suppression of prostate-specific antigen, a well known marker used to monitor the progress of prostate cancer. Further mechanistic studies indicated that MG132 may suppress AR transactivation via inhibition of AR nuclear translocation and/or inhibition of interactions between AR and its coregulators, such as ARA70 or TIF2. Together, our data suggest that the proteasome system plays important roles in the regulation of AR activity in prostate cancer cells and may provide a unique target site for the development of therapeutic drugs to block androgen/AR-mediated prostate tumor growth.  相似文献   

9.
Eugster A  Frigerio G  Dale M  Duden R 《The EMBO journal》2000,19(15):3905-3917
We performed a systematic mapping of interaction domains on COP I subunits to gain novel insights into the architecture of coatomer. Using the two-hybrid system, we characterize the domain structure of the alpha-, beta'-, epsilon-COP and beta-, gamma-, delta-, zeta-COP coatomer subcomplexes and identify links between them that contribute to coatomer integrity. Our results demonstrate that the domain organization of the beta-, gamma-, delta-, zeta-COP subcomplex and AP adaptor complexes is related. Through in vivo analysis of alpha-COP truncation mutants, we characterize distinct functional domains on alpha-COP. Its N-terminal WD40 domain is dispensable for yeast cell viability and overall coatomer function, but is required for KKXX-dependent trafficking. The last approximately 170 amino acids of alpha-COP are also non-essential for cell viability, but required for epsilon-COP incorporation into coatomer and maintainance of normal epsilon-COP levels. Further, we demonstrate novel direct interactions of coatomer subunits with regulatory proteins: beta'- and gamma-COP interact with the ARF-GTP-activating protein (GAP) Glo3p, but not Gcs1p, and beta- and epsilon-COP interact with ARF-GTP. Glo3p also interacts with intact coatomer in vitro.  相似文献   

10.
Phagosomes mature by sequentially fusing with endosomes and lysosomes. Vesicle budding is presumed to occur concomitantly, mediating the retrieval of plasmalemmal components and the regulation of phagosomal size. We analyzed whether fission of vesicles from phagosomes requires COPI, a multimeric complex known to be involved in budding from the Golgi and endosomes. The role of COPI was studied using ldlF cells, that harbor a temperature-sensitive mutation in epsilon-COP, a subunit of the coatomer complex. These cells were made phagocytic toward IgG-opsonized particles by heterologous expression of human FcgammaRIIA receptors. Following incubation at the restrictive temperature, epsilon-COP was degraded in these cells and their Golgi complex dispersed. Nevertheless, phagocytosis persisted for hours in cells devoid of epsilon-COP. Retrieval of transferrin receptors from phagosomes became inefficient in the absence of epsilon-COP, while clearance of the FcgammaRIIA receptors was unaffected. This indicates that fission of vesicles from the phagosomal membrane involves at least two mechanisms, one of which requires intact COPI. Traffic of fluid-phase markers and aggregated IgG-receptor complexes along the endocytic pathway was abnormal in epsilon-COP-deficient cells. In contrast, phagosome fusion with endosomes and lysosomes was unimpaired. Moreover, the resulting phagolysosomes were highly acidic. Similar results were obtained in RAW264.7 macrophages treated with brefeldin A, which precludes COPI assembly by interfering with the activation of adenosine ribosylation factor. These data indicate that neither phagosome formation nor maturation are absolutely dependent on COPI. Our findings imply that phagosomal maturation differs from endosomal progression, which appears to be more dependent on COPI-mediated formation of carrier vesicles.  相似文献   

11.
The 26S proteasome is a large multisubunit protease complex, the largest regulatory subunit of which is a component named p112. Molecular cloning of cDNA encoding human p112 revealed a polypeptide predicted to have 953 amino acid residues and a molecular mass of 105,865. The human p112 gene was mapped to the q37.1-q37.2 region of chromosome 2. Computer analysis showed that p112 has strong similarity to the Saccharomyces cerevisiae Sen3p, which has been listed in a gene bank as a factor affecting tRNA splicing endonuclease. The SEN3 also was identified in a synthetic lethal screen with the nin1-1 mutant, a temperature-sensitive mutant of NIN1. NIN1 encodes p31, another regulatory subunit of the 26S proteasome, which is necessary for activation of Cdc28p kinase. Disruption of the SEN3 did not affect cell viability, but led to temperature-sensitive growth. The human p112 cDNA suppressed the growth defect at high temperature in a SEN3 disruptant, indicating that p112 is a functional homologue of the yeast Sen3p. Maintenance of SEN3 disruptant cells at the restrictive temperature resulted in a variety of cellular dysfunctions, including defects in proteolysis mediated by the ubiquitin pathway, in the N-end rule system, in the stress response upon cadmium exposure, and in nuclear protein transportation. The functional abnormality induced by SEN3 disruption differs considerably from various phenotypes shown by the nin1-1 mutation, suggesting that these two regulatory subunits of the 26S proteasome play distinct roles in the various processes mediated by the 26S proteasome.  相似文献   

12.
N-myristoylation is a protein lipidation event in which myristate is covalently linked to the N-terminal glycine of target proteins. In Aspergillus nidulans, the N-myristoylation deficient swoF1 mutant was previously shown to lose cell polarity during the early morphogenic event of germ tube emergence. To further investigate this defect, we mutagenized swoF1 and recovered six partial suppressors designated ssf (suppressor of swoF1). The secondary mutations enabled swoF1 to partially bypass its growth defect. We characterized a frame-shift mutation in ssfA1, which encodes an alpha subunit of the 20S core particle of the 26S proteasome. Fewer ubiquitinated proteins accumulated in the swoF1 mutant compared with wild-type. In contrast, the swoF1;ssfA1 mutant accumulated higher levels of ubiquitinated proteins than wild-type. The swoF1 mutant was bypassed in the presence of the proteasome inhibitor, MG132. These results demonstrate that the swoF1 phenotype was caused, at least in part, by an increased activity of 26S proteasome-dependent proteolysis and suppression occurred by attenuating the 26S proteasome activity. This is the first report linking N-myristoylation and ubiquitin-proteasome-dependent proteolysis during morphogenesis.  相似文献   

13.
Trafficking of the Na(+)/H(+) exchanger isoform 3 (NHE3) between sub-apical vesicles and apical membrane of epithelial cells is a suggested mechanism of regulation of NHE3 activity. When epitope-tagged NHE3 was stably expressed in NHE-deficient Chinese hamster ovary cells, a sizable fraction was found in recycling endosomes. This system was used to analyze the mechanism of endocytosis of NHE3. Immunofluorescence and radiolabeling experiments showed that inhibition of clathrin-mediated endocytosis using hypertonicity, acid treatment, or K(+) depletion inhibited internalization of NHE3. Moreover, transient transfection of an inhibitory mutant of dynamin (DynS45N) blocked the clathrin-mediated uptake of transferrin, as well as the endocytosis of NHE3. In ileal villus cells, endogenous NHE3 was also found to co-purify with isolated clathrin-coated vesicles, thereby confirming their association in native tissues. The role of COP-I subunits in the intracellular traffic of NHE3 was evaluated using ldlF cells, which bear a temperature-sensitive mutation in the epsilon-COP subunit. At the permissive temperature, NHE3 distributed normally, whereas at the restrictive temperature, which induces rapid degradation of epsilon-COP, NHE3 was still internalized, but its subcellular distribution was altered. These results indicate that endocytosis of NHE3 occurs primarily via clathrin-coated pits and vesicles and that normal intracellular trafficking of NHE3 involves an epsilon-COP-dependent step.  相似文献   

14.
Yan XB  Yang DS  Gao X  Feng J  Shi ZL  Ye Z 《Cell biology international》2007,31(10):1136-1143
Many researchers have reported that proteasome inhibitors could induce apoptosis in a variety of cancer cells, such as breast cancer cell, lung cancer cell, and lymphoma cell. However, the effect of proteasome inhibitors on osteocsarcoma cells and the mechanisms are seldom studied. In this study, we found proteasome inhibitor MG132 was an effective inducer of apoptosis in human osteosarcoma MG-63 cells. On normal human diploid fibroblast cells, MG132 did not show any apoptosis-inducing effects. Apoptotic changes such as DNA fragment and apoptotic body were observed in MG132-treated cells and MG132 mostly caused MG-63 cell arrest at G(2)-M-phase by cell cycle analysis. Increased activation of caspase-8, accumulation of p27(Kip1), and an increased ratio of Bax:Bcl-2 were detected by RT-PCR and Western blot analysis. Activation of caspase-3 and caspase-9 were not observed. This suggests that the apoptosis induced by MG132 in MG63 cells is caspase-8 dependent, p27 and bcl-2 family related.  相似文献   

15.
We previously established that NF-kappaB DNA binding activity is required for Sindbis Virus (SV)-induced apoptosis. To investigate whether SV induces nuclear translocation of NF-kappaB via the proteasomal degradation pathway, we utilized MG132, a peptide aldehyde inhibitor of the catalytic subunit of the proteasome. 20 microM MG132 completely abrogated SV-induced NF-kappaB nuclear activity at early time points after infection. Parallel measures of cell viability 48 h after SV infection revealed that 20 microM MG132 induced apoptosis in uninfected cells. In contrast, a lower concentration of MG132 (200 nM) resulted in partial inhibition of SV-induced nuclear NF-kappaB activity and inhibition of SV-induced apoptosis without inducing toxicity in uninfected cells. The specific proteasomal inhibitor, lactacystin, also inhibited SV-induced death. Taken together, these results suggest that the pro-apoptotic and anti-apoptotic functions of peptide aldehyde proteasome inhibitors such as MG-132 depend on the concentration of inhibitor utilized and expand the list of stimuli requiring proteasomal activation to induce apoptosis to include viruses.  相似文献   

16.
An accumulation in cells of unfolded proteins is believed to be the common signal triggering the induction of heat shock proteins (hsps). Accordingly, in Saccharomyces cerevisiae, inhibition of protein breakdown at 30°C with the proteasome inhibitor MG132 caused a coordinate induction of many heat shock proteins within 1 to 2 h. Concomitantly, MG132, at concentrations that had little or no effect on growth rate, caused a dramatic increase in the cells’ resistance to very high temperature. The magnitude of this effect depended on the extent and duration of the inhibition of proteolysis. A similar induction of hsps and thermotolerance was seen with another proteasome inhibitor, clasto-lactacystin β-lactone, but not with an inhibitor of vacuolar proteases. Surprisingly, when the reversible inhibitor MG132 was removed, thermotolerance decreased rapidly, while synthesis of hsps continued to increase. In addition, exposure to MG132 and 37°C together had synergistic effects in promoting thermotolerance but did not increase hsp expression beyond that seen with either stimulus alone. Although thermotolerance did not correlate with hsp content, another thermoprotectant trehalose accumulated upon exposure of cells to MG132, and the cellular content of this disaccharide, unlike that of hsps, quickly decreased upon removal of MG132. Also, MG132 and 37°C had additive effects in causing trehalose accumulation. Thus, the resistance to heat induced by proteasome inhibitors is not just due to induction of hsps but also requires a short-lived metabolite, probably trehalose, which accumulates when proteolysis is reduced.  相似文献   

17.
We have examined the effects of inhibition of the 26S proteasome in a murine mammary cell line, KIM-2 cells using the peptide aldehyde inhibitor MG132. These studies have demonstrated a clear requirement for proteasome function in cell viability. Induction of apoptosis was observed following MG132 treatment in KIM-2 cells and this death was shown to be dependent on the cell actively traversing the cell cycle. KIM-2 cells were generated using a temperature sensitive T-antigen (Tag) and studies at the permissive temperature (33 degrees C) have shown that a Tag binding protein was essential for this apoptotic response. Studies in two additional cell lines, HC11, which is a mammary epithelial cell line carrying mutant p53 alleles and p53 null ES cells suggest that p53 is actively required for the apoptosis induced as a consequence of proteasome inhibition. These results suggest a pivotal role for the 26S proteasome degradation pathway in progression through the cell cycle in proliferating cells.  相似文献   

18.
Song EJ  Yoo YS 《BMB reports》2011,44(3):182-186
Exogenous stimuli such as nerve growth factor (NGF) exert their effects on neurite outgrowth via Trk neurotrophin receptors. TrkA receptors are known to be ubiquitinated via proteasome inhibition in the presence of NGF. However, the effect of proteasome inhibition on neurite outgrowth has not been studied extensively. To clarify these issues, we investigated signaling events in PC12 cells treated with NGF and the proteasome inhibitor MG132. We found that MG132 facilitated NGF-induced neurite outgrowth and potentiated the phosphorylation of the extracellular signal-regulated kinase/mitogen- activated protein kinase (ERK/MAPK) and phosphatidylinositol- 3-kinase (PI3K)/AKT pathways and TrkA receptors. MG132 stimulated internalization of surface TrkA receptor and stabilized intracellular TrkA receptor, and the Ub(K63) chain was found to be essential for stability. These results indicate that the ubiquitin-proteasome system potentiated neurite formation by regulating the stability of TrkA receptors.  相似文献   

19.
泛素/蛋白酶体系统(UPP)是真核细胞内蛋白质选择性降解的主要途径,而蛋白酶体是UPP中蛋白质降解的场所。本文应用细胞学、统计学方法以及FTIR技术研究了蛋白酶体抑制剂MG132对青扦(Peceawilsonii)花粉萌发、花粉管生长的影响。结果表明:MG132显著抑制青扦花粉萌发和花粉管生长,并导致花粉管形态异常,主要表现为花粉管亚顶端出现液泡化,并且液泡随着培养时间的延长而扩大到整个花粉管,花粉管濒临死亡;而DMSO以及非蛋白酶体抑制剂E-64不产生类似结果;半薄切片结果表明,MG132处理后不仅花粉管细胞质发生液泡化,生殖细胞也发生液泡化;FTIR分析进一步表明,MG132处理后,花粉管顶端的细胞壁蛋白和果胶质含量大幅度下降。上述结果表明:MG132通过抑制蛋白酶体活性显著影响青扦花粉萌发及花粉管生长;UPP在青扦花粉萌发、花粉管极性生长模式的建立和维持过程中起重要作用;抑制蛋白酶体活性将导致青扦花粉管的程序性死亡。  相似文献   

20.
泛素/蛋白酶体系统(UPP)是真核细胞内蛋白质选择性降解的主要途径,而蛋白酶体是UPP中蛋白质降解的场所。本文应用细胞学、统计学方法以及FTIR技术研究了蛋白酶体抑制剂MG132对青扦(Pecea wilsonii)花粉萌发、花粉管生长的影响。结果表明:MG132显著抑制青扦花粉萌发和花粉管生长,并导致花粉管形态异常,主要表现为花粉管亚顶端出现液泡化,并且液泡随着培养时间的延长而扩大到整个花粉管,花粉管濒临死亡;而DMSO以及非蛋白酶体抑制剂E-64不产生类似结果;半薄切片结果表明,MG132处理后不仅花粉管细胞质发生液泡化,生殖细胞也发生液泡化;FTIR分析进一步表明,MG132处理后,花粉管顶端的细胞壁蛋白和果胶质含量大幅度下降。上述结果表明:MG132通过抑制蛋白酶体活性显著影响青扦花粉萌发及花粉管生长;UPP在青扦花粉萌发、花粉管极性生长模式的建立和维持过程中起重要作用;抑制蛋白酶体活性将导致青扦花粉管的程序性死亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号