首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
碳减排与可再生能源的开发利用是研究可持续发展的热点,而微藻在此方面具有巨大优势.利用微藻减排CO2合成生物柴油生产原料油脂,对于解决能源短缺和全球变暖具有重大战略意义.将碳减排与微藻生物柴油的制备方法相结合,对微藻转化CO2合成生物油脂的机制,微藻油脂积累的影响因素以及国内外在工业上的研究概况等方面进行综合归纳和评述,并对微藻生物油脂的发展前景进行了展望.  相似文献   

2.
产生物柴油微藻培养研究进展   总被引:14,自引:2,他引:14  
石油的大量使用会导致能源枯竭和温室气体(CO2)排放的增加。为了实现经济和环境的和谐发展,必须使用可再生能源代替石油。可再生能源使用后不会造成温室气体排放的增加。生物柴油是一种理想的可再生能源, 能满足以上要求,所以近年来得到迅速发展。微藻是一种主要利用太阳能固定 CO2,生成制备生物柴油所需油脂的藻类。因此以微藻油脂为原料转化成的生物柴油是石油理想的替代品。简要介绍了产油微藻的种类和微藻油脂的合成,较详细地阐述了微藻自养培养、异养培养、生物反应器、工程微藻的最新研究进展,并初步展望了微藻产油研究的未来发展方向。  相似文献   

3.
微藻生物柴油技术的研究现状及展望   总被引:7,自引:1,他引:7  
微藻生物柴油是一种优良的可再生新能源,对于解决人类面临的能源短缺和全球变暖两大危机具有潜在的重大战略意义。综述了微藻生物柴油的技术流程、油脂含量较高的微藻藻种、微藻生物柴油的最大技术瓶颈、提高微藻油脂总产量的方法、微藻的大规模培养、微藻的采收和微藻生物柴油的制取等方面的研究现状,并对微藻生物柴油未来的核心研究方向提出了初步见解。  相似文献   

4.
微藻生物柴油的现状与进展   总被引:5,自引:2,他引:5  
微藻生物柴油能够解决目前使用植物原料发展生物柴油面临的耕地不足、气候变化对产量影响大和引起农作物价格上涨等突出问题。通过转基因技术培育“工程微藻”,繁衍能力高,生长周期短,比陆生植物产油高出几十倍,并且能用海水作为其天然培养基进行工业化生产。介绍了微藻生物柴油的优势,高脂质微藻选育,以及工程微藻研究与下游生产工艺的研究现状和进展。  相似文献   

5.
微藻生物柴油研发态势分析   总被引:3,自引:0,他引:3  
微藻是光合效率最高的原始植物之一,与农作物相比,单位面积的产率可高出数十倍。微藻生物柴油技术首先包括微藻的筛选和培育,获得性状优良的高含油量藻种,然后在光生物反应器中吸收阳光、CO2等,生成微藻生物质,最后经过采收、加工,转化为微藻生物柴油。完整的微藻生物柴油成套技术链涵盖多个技术环节,是一个复杂的系统工程,包括微藻生物工程技术、微藻高效规模化养殖技术,以及微藻生物质采收、加工与转化技术等。其中,降低生产成本是当前微藻生物柴油研究面临的主要挑战,各国的研究机构为此开展了多方面的研究。  相似文献   

6.
生物柴油原料资源高油脂微藻的开发利用   总被引:15,自引:1,他引:15  
生物柴油作为化石能源的替代燃料已在国际上得到广泛应用。至今生物柴油的原料主要来自油料植物, 但与农作物争地的情况以及较高的原料成本限制了生物柴油的进一步推广。微藻作为高光合生物有其特殊的原料成本优势, 微藻的脂类含量最高可达细胞干重的80%。利用生物技术改良微藻, 获得的高油脂基因工程微藻经规模养殖, 可大大降低生物柴油原料成本。介绍了国内外生物柴油的应用现状, 阐述了微藻作为生物柴油原料的优势, 对基因工程技术调控微藻脂类代谢途径的研究进展, 以及在构建工程微藻中面临的问题和应采取的对策进行了综述和展望。  相似文献   

7.
生物柴油是可再生能源开发利用的重要发展方向。藻类制备生物柴油具有产油量高、生长速度快、环境适应能力强、不与农作物争夺农田和淡水资源等优势。从微藻制备生物柴油着手,简要介绍了生物柴油的生产原料与发展历程、微藻油脂的组成与生物合成途径、微藻制备柴油的工艺与瓶颈及解决策略,最后对微藻制备生物柴油技术提出了近中远期发展目标及展望。  相似文献   

8.
小球藻用于生物柴油生产的研究进展   总被引:1,自引:0,他引:1  
目的:对小球藻(Chlorella)生产生物柴油的研究做一综述。方法:查阅近年来国内外小球藻用于生物柴油生产的相关文献,并进行综合分析。结果:微藻生物柴油是具有广泛发展前景的生物柴油,小球藻是目前研究较深入、非常有吸引力的、用于生产生物柴油的微藻藻种,是优质的生物柴油原料,具有其他生物柴油原料不可比拟的优势。随着工程技术的发展和研究的不断深入,探索适宜的小球藻规模化培养方法以期获得质与量兼得的高品质油脂成为研究目标,相信该目标在不久的将来就会实现。结论:小球藻在生物柴油生产领域具有广阔的发展前景。  相似文献   

9.
利用微藻油脂制备生物柴油因具有重要的战略意义而受到世界各国的重视,成为近年来的研究热点。利用微藻制备生物柴油具有生长周期短、易于大规模培养、能大量吸收CO2及不占用耕地等优点。但是,由于对藻类油脂合成代谢中的调节机制了解不多,导致微藻基因组研究相对滞后,极大地限制了微藻生物能源的大规模开发和利用。随着现代生物技术的发展,通过基因工程、代谢工程等方法调控微藻脂类的合成代谢,提高藻类含油量和生物量已成为可能。概述了微藻中油脂的合成代谢,归纳总结利用基因工程技术提高微藻油脂含量的研究进展,为获得含油量高的工程微藻及微藻制备生物柴油提供技术储备。  相似文献   

10.
中国科学院青岛生物能源与过程研究所能源藻类资源团队刘天中研究员针对微藻生物柴油生产成本和能耗影响大的微藻油脂提取、微藻生物柴油转化等下游关键技术进行了系列研究,结果发表在《Biore-sourceTechnology》杂志上。  相似文献   

11.
Oil extraction from microalgae for biodiesel production   总被引:3,自引:0,他引:3  
This study examines the performance of supercritical carbon dioxide (SCCO2) extraction and hexane extraction of lipids from marine Chlorococcum sp. for lab-scale biodiesel production. Even though the strain of Chlorococcum sp. used in this study had a low maximum lipid yield (7.1 wt% to dry biomass), the extracted lipid displayed a suitable fatty acid profile for biodiesel [C18:1 (∼63 wt%), C16:0 (∼19 wt%), C18:2 (∼4 wt%), C16:1 (∼4 wt%), and C18:0 (∼3 wt%)]. For SCCO2 extraction, decreasing temperature and increasing pressure resulted in increased lipid yields. The mass transfer coefficient (k) for lipid extraction under supercritical conditions was found to increase with fluid dielectric constant as well as fluid density. For hexane extraction, continuous operation with a Soxhlet apparatus and inclusion of isopropanol as a co-solvent enhanced lipid yields. Hexane extraction from either dried microalgal powder or wet microalgal paste obtained comparable lipid yields.  相似文献   

12.
In recent years, the not too distant exhaustion of fossil fuels is becoming apparent. Apart from this, the combustion of fossil fuels leads to environmental concerns, the emission of greenhouse gases and issues with global warming and health problems. Production of biodiesel from microalgae may represent an attractive solution to the above mentioned problems, and can offer a renewable source of fuel with fewer pollutants. This review presents a compilation of engineering challenges related to microalgae as a source of biodiesel. Advantages and current limitations for biodiesel production are discussed; some aspects of algae cells biology, with emphasis on cell wall composition, as it represents a barrier for fatty acid extraction and lipid droplets are also presented. In addition, recent advances in the different stages of the manufacturing process are included, starting from the strain selection and finishing in the processing of fatty acids into biodiesel.  相似文献   

13.
Gong Y  Jiang M 《Biotechnology letters》2011,33(7):1269-1284
Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.  相似文献   

14.
Biodiesel as an eco-friendly fuel is gaining much acceptance in recent years. This communication provides an overview on the possibility of using mixed microalgae existing in ecological water-bodies for harnessing biodiesel. Microalgal cultures from five water-bodies are cultivated in domestic wastewater in open-ponds and the harvested algal-biomass was processed through acid-catalyzed transesterification. Experiments evidenced the potential of using mixed microalgae for harnessing biodiesel. Presence of palmitic acid (C16:0) in higher fraction and physical properties of algal oil correlated well with the biodiesel properties. Functional characteristics of water-bodies showed to influence both species diversity and lipid accumulation. Microalgae from stagnant water-bodies receiving domestic discharges documented higher lipid accumulation. Algal-oil showed to consist 33 types of saturated and unsaturated fatty acids having wide food and fuel characteristics. Simultaneous wastewater treatment was also noticed due to the syntrophic association in the water-body microenvironment. Diversity studies visualized the composition of algae species known to accumulate higher lipids.  相似文献   

15.
A lipase from Candida sp., suitable for transesterification of fats and oils to produce fatty acid methyl ester (FAME), was immobilized on a cheap cotton membrane, in this paper. The conversion ratio of salad oil to biodiesel could reach up to 96% with the optimal reaction conditions. Continuous reaction in a fixed bed reactor was also investigated. A three-step transesterification with methanol (methanolysis) of oil was conducted by using a series of nine columns packed with immobilized Candida sp. 99–125 lipase. As substrate of the first reaction step, plant or waste oil was used together with 1/3 molar equivalent of methanol against total fatty acids in the oil. Mixtures of the first- and second-step eluates and 1/3 molar equivalent of methanol were used for the second- and third-reaction steps. A hydrocyclone was used in order to on-line separate the by-product glycerol after every 1/3 molar equivalent of methanol was added. Petroleum ether was used as solvent (3/2, v/v of oil) and the pump was operated with a flow rate of 15 L/h giving an annual throughput of 100 t. The final conversion ratio of the FAME from plant oil and waste oil under the optimal condition was 90% and 92%, respectively. The life of the immobilized lipase was more than 10 days. This new technique has many strongpoints such as low pollution, environmentally friendly, and low energy costs.  相似文献   

16.
New microalgal strains that are native to South-East Kazakhstan were isolated and characterized with a view to identifying suitable candidates for biodiesel production. Six strains of chlorophyte algae (named K1–K6) were recovered from environmental samples as axenic cultures, and molecular analysis revealed that five (K1–K5) are strains of Parachlorella kessleri, whereas K6 is a strain of Chlorella vulgaris. A third isolate from Uzbekistan (termed UZ) was also identified as a separate strain of P. kessleri. All strains show high growth rates and an ability to utilize acetate as an exogenous source of fixed carbon. Furthermore, under conditions of nitrogen depletion, all three strains showed a significant accumulation of neutral lipids (triacylglycerides). P. kessleri K5 and C. vulgaris K6 therefore represent promising autochthon strains for large-scale cultivation and biodiesel production in Kazakhstan.  相似文献   

17.
Life cycle assessment of biodiesel production from microalgae in ponds   总被引:1,自引:0,他引:1  
This paper analyses the potential environmental impacts and economic viability of producing biodiesel from microalgae grown in ponds. A comparative Life Cycle Assessment (LCA) study of a notional production system designed for Australian conditions was conducted to compare biodiesel production from algae (with three different scenarios for carbon dioxide supplementation and two different production rates) with canola and ULS (ultra-low sulfur) diesel. Comparisons of GHG (greenhouse gas) emissions (g CO2-e/t km) and costs (¢/t km) are given. Algae GHG emissions (−27.6 to 18.2) compare very favourably with canola (35.9) and ULS diesel (81.2). Costs are not so favourable, with algae ranging from 2.2 to 4.8, compared with canola (4.2) and ULS diesel (3.8). This highlights the need for a high production rate to make algal biodiesel economically attractive.  相似文献   

18.
Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes, and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I, and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after 10 days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid yield in comparison to growth in control media. The Fatty acid methyl ester (FAME), and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel.  相似文献   

19.
Despite receiving increasing attention during the last few decades, the production of microalgal biofuels is not yet sufficiently cost-effective to compete with that of petroleum-based conventional fuels. Among the steps required for the production of microalgal biofuels, the harvest of the microalgal biomass and the extraction of lipids from microalgae are two of the most expensive. In this review article, we surveyed a substantial amount of previous work in microalgal harvesting and lipid extraction to highlight recent progress in these areas. We also discuss new developments in the biodiesel conversion technology due to the importance of the connectivity of this step with the lipid extraction process. Furthermore, we propose possible future directions for technological or process improvements that will directly affect the final production costs of microalgal biomass-based biofuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号