首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sacoglossan Plakobranchus ocellatus feeds by sucking the cytoplasmic contents from algae and retains intact algal chloroplasts within the cells of the digestive gland. Morphology of the entire digestive system of this species was firstly described by means of a combination of histology and electron microscopy (both SEM and TEM). The short alimentary canal is confined to the head, and the anus opens at the anterior right corner of the pericardial swelling, as is the case in many non-shelled sacoglossans. The alimentary canal of the specimens examined rarely contained ingesta, suggesting that the retained chloroplasts provide sufficient nourishment to the sacoglossan hosts and that sea slugs with empty stomachs survive well in the field. The digestive gland, with the retained chloroplasts, branches from the stomach and is sparsely distributed throughout the body, including the head region, but is aggregated mainly in the dorsal lamellae. Chloroplasts were occasionally found in the epithelial cells in the transitional region from the stomach wall to the digestive gland, which may be a site at which chloroplasts are incorporated into the animal cells by endocytosis. Numerous microvilli filling the lumen of the digestive gland suggest that molecules are actively transferred within the gland. The sea slug thus apparently provides a favorable environment to support the long-term retention and function of chloroplasts.  相似文献   

2.
Chloroplasts as functional organelles in animal tissues   总被引:4,自引:0,他引:4       下载免费PDF全文
The marine gastropod molluscs Tridachia crispata, Tridachiella diomedea, and Placobranchus ianthobapsus (Sacoglossa, Opisthobranchia) possess free functional chloroplasts within the cells of the digestive diverticula, as determined by observations on ultrastructure, pigment analyses, and experiments on photosynthetic capacity. In the light, the chloroplasts incorporate H14CO3- in situ. Reduced radiocarbon is translocated to various chloroplast-free tissues in the animals. The slugs feed on siphonaceous algae from which the chloroplasts are derived. Pigments from the slugs and from known siphonaceous algae, when separated chromatographically and compared, showed similar components. Absorption spectra of extracts of slugs and algae were very similar. The larvae of the slugs are pigment-free up to the post-veliger stage, suggesting that chloroplasts are acquired de novo. with each new generation.  相似文献   

3.
Several species of kleptoplastic, sacoglossan sea slug photosynthesize using chloroplasts sequestered inside their digestive cells from algal food sources. However, sequestered chloroplasts alone are not sufficient for months-long, continuous photosynthesis and maintenance of the chloroplasts in absence of the algal nucleus. Some type of plastid maintenance mechanism must be present to help sustain photosynthetic activity in the long term kleptoplastic species, such as Elysia clarki. We demonstrate that E. clarki starved for 2 weeks are able to synthesize chlorophylls, but that slugs starved for 14 weeks no longer synthesize chlorophyll. The subsidence of chlorophyll synthesis is coincident with the cessation of photosynthesis by the starved slugs, but it is not yet known if the cessation of pigment synthesis is the cause or some other aspect of plastid degradation produces a loss of synthetic ability.  相似文献   

4.
The phenomenon of the uptake, intracellular sequestration, and subsequent usage of algal chloroplasts by the digestive cells of many species of sacoglossan sea slugs, currently called kleptoplasty, has been of considerable interest since its discovery in the 1960s. While a large body of literature reported that captured chloroplasts were photosynthetically active inside slug cells and that plastid longevity in some species might be the result of the horizontal transfer of functional algal nuclear genes into the slug genome, a few recent studies have called the older results into question. Here, we have reviewed the literature and showed that while kleptoplasty occurs in many slug species and almost all derive benefit from kleptoplast photosynthesis, the slug adaptations to maintain the chloroplasts differ from species to species. These adaptations range from behavioral to molecular, including gene transfer, in a variety of combinations.  相似文献   

5.
Migration of Dictyostelium discoideum slugs results from coordinated movement of their constituent cells. It is generally assumed that each cell contributes to the total motive force of the slug. However, the basic mechanisms by which mechanical forces (traction and resistive forces) are transmitted to the substrate, their magnitude and their location, are largely unknown. In this work, we performed detailed observations of cell movements by fluorescence microscopy using two-dimensional (2D) slugs. We show that 2D slugs share most of the properties of 3D ones. In particular, waves of movement propagate in long 2D slugs, and slug speed correlates with slug length as found in 3D slugs. We also present the first measurements of the distribution of forces exerted by 2D and 3D slugs using the elastic substrate method. Traction forces are mainly exerted in the central region of the slug. The large perpendicular forces around slug boundary and the existence of parallel resistive forces in the tip and/or the tail suggest an important role of the sheath in the transmission of forces to the substrate.  相似文献   

6.
Protistan parasites of the genus Marteilia, phylum Paramyxea, cause the molluscs disease named Marteiliosis. Histological observations and transmission electron microscopy revealed the presence of life cycle stages of a Marteilia sp. in the bivalve mollusc Solen marginatus (Solenidae). Parasites occurred in epithelial cells of the digestive ducts and tubules. Early stages (primary cells) presented one or several nuclei while advances stages formed a complex of cells-within-cells (secondary and tertiary cells) culminating in spores. Refringent bodies were present inside the presporangia. This is the first report of a Marteilia sp. in S. marginatus.  相似文献   

7.
Blocks of tissue were removed from various locations in the bovine digestive tract and fixed and processed for transmission and scanning electron microscopy by techniques that retained adherent bacteria. The distribution of bacteria on the surface of epithelial cells was examined by scanning electron microscopy. This showed intermittent colonization of the epithelia with the formation of occasional microcolonies of morphologically similar bacterial cells. Transmission electron microscopy of ruthenium red-stained material showed the presence of both the glycocalyx of the bovine epithelial cells and fibrous carbohydrate coats surrounding adherent bacteria. The carbohydrate coats appeared to mediate the attachment of bacteria to the epithelium, to food particles, and to each other so that microcolonies were formed. Careful examination of the bacterial colonization of keratinized cells in the process of being sloughed from the surface of the stratified squamous epithelium of the rumen showed that these dead cells were digested by adherent bacteria of a limited number of morphological types. The spatial relationship of this mixed, adherent, microbial population to living and dead epithelial cells and to food particles indicates that digestive processes of some importance may be accomplished by this stationary component of the microbial flora of the digestive tract.  相似文献   

8.
Blocks of tissue were removed from various locations in the bovine digestive tract and fixed and processed for transmission and scanning electron microscopy by techniques that retained adherent bacteria. The distribution of bacteria on the surface of epithelial cells was examined by scanning electron microscopy. This showed intermittent colonization of the epithelia with the formation of occasional microcolonies of morphologically similar bacterial cells. Transmission electron microscopy of ruthenium red-stained material showed the presence of both the glycocalyx of the bovine epithelial cells and fibrous carbohydrate coats surrounding adherent bacteria. The carbohydrate coats appeared to mediate the attachment of bacteria to the epithelium, to food particles, and to each other so that microcolonies were formed. Careful examination of the bacterial colonization of keratinized cells in the process of being sloughed from the surface of the stratified squamous epithelium of the rumen showed that these dead cells were digested by adherent bacteria of a limited number of morphological types. The spatial relationship of this mixed, adherent, microbial population to living and dead epithelial cells and to food particles indicates that digestive processes of some importance may be accomplished by this stationary component of the microbial flora of the digestive tract.  相似文献   

9.
This study describes the structure of the digestive gland ofStrombus gigas in individuals from Guadeloupe and discussesthe function of its cell types and their relationship with intracellularApicomplexa-like parasites. Three cellular types were foundin the epithelium of the blind-ending tubules of the digestivegland according to histological and transmission electron microscopy(TEM) observations; these were: digestive cells, pyramidal cryptcells and vacuolated cells. Columnar digestive cells were characterizedby large Alcian blue-positive granules, which have not beenpreviously described in digestive cells of other caenogastropods.Such granules contain large quantities of proteoglycans thatare exported to the stomach through the physiological destructionof the digestive cells, which undergo a holocrine secretion.Their cytoplasm appears vacuolar due to lipid extraction bysolvents used for tissue preparation. Vacuolated cells alsoappear to be lipid-storage cells. Small triangular-shaped cryptcells, on the other hand, appear to be metabolically activeas suggested by a strong positive in situ hybridization of eukaryoticribosomes, which was confirmed by their large content of ribosomesand rough endoplasmic reticulum compared to the other cell types.These observations suggest that crypt cells may be immaturecells that are involved in the replacement of eliminated digestivecells. However, their spherocrystal inclusions indicate thatthey may be excretory cells or calcium cells. Large brown inclusionswere frequently observed in vacuolated cells; these were identifiedas parasitic protozoans and were present in the digestive glandof all sampled specimens. These protozoans have previously beendescribed from a queen conch population in the San Andres Archipelago(Colombia). Several life cycle stages of the parasite were identifiedby scanning electron microscopy and TEM; trophozoites were characterizedby their conoid-like structure, sporocysts by their thick walls,and gamonts by their thin walls. These observations suggestthat this parasite completes its entire life cycle within thesame host and type of tissue. Although previous investigationsplace this parasite within the Apicomplexa group, further investigationsare necessary in order to confirm the identification of theparasite. (Received 13 May 2008; accepted 3 October 2008)  相似文献   

10.
The sea slug Plakobranchus ocellatus (Sacoglossa, Gastropoda) retains photosynthetically active chloroplasts from ingested algae (functional kleptoplasts) in the epithelial cells of its digestive gland for up to 10 months. While its feeding behavior has not been observed in natural habitats, two hypotheses have been proposed: 1) adult P. ocellatus uses kleptoplasts to obtain photosynthates and nutritionally behaves as a photoautotroph without replenishing the kleptoplasts; or 2) it behaves as a mixotroph (photoautotroph and herbivorous consumer) and replenishes kleptoplasts continually or periodically. To address the question of which hypothesis is more likely, we examined the source algae for kleptoplasts and temporal changes in kleptoplast composition and nutritional contribution. By characterizing the temporal diversity of P. ocellatus kleptoplasts using rbcL sequences, we found that P. ocellatus harvests kleptoplasts from at least 8 different siphonous green algal species, that kleptoplasts from more than one species are present in each individual sea slug, and that the kleptoplast composition differs temporally. These results suggest that wild P. ocellatus often feed on multiple species of siphonous algae from which they continually obtain fresh chloroplasts. By estimating the trophic position of wild and starved P. ocellatus using the stable nitrogen isotopic composition of amino acids, we showed that despite the abundance of kleptoplasts, their photosynthates do not contribute greatly to the nutrition of wild P. ocellatus, but that kleptoplast photosynthates form a significant source of nutrition for starved sea slugs. The herbivorous nature of wild P. ocellatus is consistent with insights from molecular analyses indicating that kleptoplasts are frequently replenished from ingested algae, leading to the conclusion that natural populations of P. ocellatus do not rely on photosynthesis but mainly on the digestion of ingested algae.  相似文献   

11.
The midgut of the females of Syringophilopsis fringilla (Fritsch) composed of anterior midgut and excretory organ (=posterior midgut) was investigated by means of light and transmission electron microscopy. The anterior midgut includes the ventriculus and two pairs of midgut caeca. These organs are lined by a similar epithelium except for the region adjacent to the coxal glands. Four cell subtypes were distinguished in the epithelium of the anterior midgut. All of them evidently represent physiological states of a single cell type. The digestive cells are most abundant. These cells are rich in rough endoplasmic reticulum and participate both in secretion and intracellular digestion. They form macropinocytotic vesicles in the apical region and a lot of secondary lysosomes in the central cytoplasm. After accumulating various residual bodies and spherites, the digestive cells transform into the excretory cells. The latter can be either extruded into the gut lumen or bud off their apical region and enter a new digestive cycle. The secretory cells were not found in all specimens examined. They are characterized by the presence of dense membrane-bounded granules, 2–4 μm in diameter, as well as by an extensive rough endoplasmic reticulum and Golgi bodies. The ventricular wall adjacent to the coxal glands demonstrates features of transporting epithelia. The cells are characterized by irregularly branched apical processes and a high concentration of mitochondria. The main function of the excretory organ (posterior midgut) is the elimination of nitrogenous waste. Formation of guanine-containing granules in the cytoplasm of the epithelial cells was shown to be associated with Golgi activity. The excretory granules are released into the gut lumen by means of eccrine or apocrine secretion. Evacuation of the fecal masses occurs periodically. Mitotic figures have been observed occasionally in the epithelial cells of the anterior midgut.  相似文献   

12.
Abstract. Many sacoglossan sea slugs incorporate intact, functional chloroplasts from their algal food sources into specialized cells lining the digestive diverticulum. The chloroplasts in adults of Elysia clarki are photosynthetically functional for many months. Members of this species feed on algae in the Ulvophyceae, including species of Penicillus and Bryopsis. However, other sacoglossans (Elysia patina, Elysia rufescens, and Placida kingstoni) use similar algal food sources as do adults of E. clarki, but are unable to maintain the chloroplasts for more than a week, with individuals of P. kingstoni apparently being unable to maintain chloroplasts for >24 h. We have examined chloroplast sequestering cells of these species looking for morphological differences that may help explain the variation in chloroplast sequestration and maintenance among them. Our results indicate that P. kingstoni does not actively sequester chloroplasts at all, digesting them instead. However, the plastid sequestering mechanisms of individuals of E. patina and E. rufescens are similar to those of E. clarki, and the degradation of chloroplasts by specimens of E. patina is ultrastructurally similar to the same process in E. clarki, although chloroplast degradation occurs much more slowly in individuals of E. clarki. Our results suggest that species-level differences in the digestive capability of the phagosomes involved in the uptake of chloroplasts account for variation in the length of these kleptoplastic associations.  相似文献   

13.
We report aerobic eukaryotic microbial life in the dimly lit anoxic water layer of a small freshwater lake. The microbial eukaryote is the ciliated protozoon Histiobalantium natans . Electron microscopy of thin sections shows that the cytoplasm of the ciliate harbours sequestered chloroplasts and sequestered mitochondria. The sequestered chloroplasts are attached or in very close proximity to the ciliate's own mitochondria. The sequestered mitochondria also seem to be associated with host-ciliate mitochondria. We suggest that the oxygenic photosynthetic activity of sequestered chloroplasts, perhaps enhanced by respiration in sequestered mitochondria, contributes to servicing the respiratory oxygen requirements of the ciliate host in its anoxic habitat. Our observations are novel, with the discovery of an aerobic microbial eukaryote capable of thriving and completing its life cycle in an anoxic environment, fuelled by oxygen generated by sequestered chloroplasts. The acknowledged flexibility and functional diversity within eukaryotic microbial communities still have many secrets to release.  相似文献   

14.
The only animal cells known that can maintain functional plastids (kleptoplasts) in their cytosol occur in the digestive gland epithelia of sacoglossan slugs. Only a few species of the many hundred known can profit from kleptoplasty during starvation long-term, but why is not understood. The two sister taxa Elysia cornigera and Elysia timida sequester plastids from the same algal species, but with a very different outcome: while E. cornigera usually dies within the first two weeks when deprived of food, E. timida can survive for many months to come. Here we compare the responses of the two slugs to starvation, blocked photosynthesis and light stress. The two species respond differently, but in both starvation is the main denominator that alters global gene expression profiles. The kleptoplasts'' ability to fix CO2 decreases at a similar rate in both slugs during starvation, but only E. cornigera individuals die in the presence of functional kleptoplasts, concomitant with the accumulation of reactive oxygen species (ROS) in the digestive tract. We show that profiting from the acquisition of robust plastids, and key to E. timida''s longer survival, is determined by an increased starvation tolerance that keeps ROS levels at bay.  相似文献   

15.
The pulmonate slug Onchidium tigrinum (Stoliczka, 1869) is an estuarine protandrous gastropod. Transmission electron microscopy of both the gonadal and somatic cell populations of the ovotestis of the slug is documented. The acini of smaller slugs are comprised of developing spermatogenic cells and three to four small ill-developed oocytes. Details of the microscopic structures of Sertoli cells, interacinar cells and acinar boundary are described in-depth, revealing their secretory function. Sertoli cells are more numerous in the ovotestes of smaller slugs than in those of larger slugs. Tunnelling nanotubes of 200–400?nm in diameter are described for the first time in the Sertoli cells of molluscan ovotestis. These nanotubes may help to supply various cellular materials into distantly developing spermatogenic cells. The acini of larger slugs possess 2–3 mature oocytes along with a few spermatogenic cells. Sertoli cells, interacinar cells and spermatogonial cells are fewer in number in the acini of the ovotestis of larger individuals establishing the predominance of oogenesis in this phase of life. The number of oocytes per acinus is analysed in relation to the habitat of the pulmonates.  相似文献   

16.
Solar-powered sea slugs (Sacoglossa: Gastropoda) have long captured the attention of laymen and scientists alike due to their remarkable ability to steal functional chloroplasts from their algal food, enslaving them to withstand long starvation periods. Recently, a wealth of data has shed insight into this remarkable relationship; however, the cellular mechanisms governing this process are still completely unknown. This study explores these mechanisms, providing insight into the chloroplast retention and delayed digestion, occurring within the slug’s digestive gland. We examine the relationships between functional chloroplast and lysosome abundances during starvation, in live material, for the long-term retaining species Elysia timida, the ambiguous long/short-term retaining Elysia viridis, and the short-term retaining Thuridilla hopei, to elucidate digestive differences that contribute to the development of functional kleptoplasty. Functional chloroplast and lysosome abundance are measured using chlorophyll a autofluorescence and the pH-dependent stain acridine orange. In each species, the number of chloroplasts and lysosomes is indirectly proportional, with the plastid density decreasing when starvation begins. We also present a new FIJI/Image J Plugin, the 3D—Accounting and Measuring Plugin, 3D-AMP, which enables the reliable analysis of large image sets.  相似文献   

17.
Filimova SA 《Tsitologiia》2001,43(5):425-431
The pattern of digestion in females of Myobia murismusculi was studied with light and electron microscopy. The midgut consists of a stomach and two pairs of blind caeca. The stomach is connected dorsoposteriorly with the excretory organ, that leads externally to an anal opening via the cuticle-lined rectum. No differences were found between the stomach and its caeca. The midgut epithelial cells are of a single type. Their fine structure and gut contents greatly vary depending on different physiological conditions of the mite. Four stages of digestion can be shown with electron microscope. Pino- and phagocytose takes place in the same cells. At an active stage of digestion numerous pinocytic canals were observed in the midgut cells. At each stage of the digestive cycle groups of flat cells are present in the midgut epithelium. They do not take part in the intracellular digestion of food material. Cytoplasmic processes from the underlying cells of coxal glands project into the midgut cells through the orifices in the gut basal lamina.  相似文献   

18.
The structure of the digestive gland epithelium of a terrestrial isopod Porcellio scaber has been investigated by conventional scanning electron microscopy (SEM), focused ion beam–scanning electron microscopy (FIB/SEM), and light microscopy in order to provide evidence on morphology of the gland epithelial surface in animals from a stock culture. We investigated the shape of cells, extrusion of lipid droplets, shape and distribution of microvilli, and the presence of bacteria on the cell surface. A total of 22 animals were investigated and we found some variability in the appearance of the gland epithelial surface. Seventeen of the animals had dome-shaped digestive gland “normal” epithelial cells, which were densely and homogeneously covered by microvilli and varying proportions of which extruded lipid droplets. On the surface of microvilli we routinely observed sparsely distributed bacteria of different shapes. Five of the 22 animals had “abnormal” epithelial cells with a significantly altered shape. In three of these animals, the cells were much smaller, partly or completely flat or sometimes pyramid-like. A thick layer of bacteria was detected on the microvillous border, and in places, the shape and size of microvilli were altered. In two animals, hypertrophic cells containing large vacuoles were observed indicating a characteristic intracellular infection. The potential of SEM in morphological investigations of epithelial surfaces is discussed.  相似文献   

19.
The life cycle of Brachylaima ruminae n.sp. (Trematoda: Brachylaimidae), a duodenal parasite of rodents on the Mediterranean island of Formentera (Spain) is elucidated. The new species follows a terrestrial triheteroxenous life cycle. Eggs passed in the faeces of the definitive host must be ingested by a specific first intermediate host, the land snail Rumina decollata. Branched cercariogenous sporocysts develop in the digestive gland. Microcercous cercariae come out through the terminal birth pores of the branches. Cercariae shed by the snail are terrestrial, crawling on humid substratum. They contact the second intermediate host, another land snail, principally the species R. decollata and less frequently slugs and Helicids. Cercariae enter via the excretory pore and kidney duct to their specific final location, the kidney. Unencysted metacercariae develop in the kidney (also, less frequently, in the pedal glands) to the mature, infective stage. Infective metacercariae infest the definitive host when ingested together with the snail.  相似文献   

20.
Membranous organelles, acid glycoconjugates and lipids were characterized in the digestive tract mucosa of Hemisorubim platyrhynchos by cytochemistry techniques. Two types of mucous‐secreting cells were observed in the digestive tract epithelium: goblet cells in the oesophagus and intestine and epithelial cells in the stomach. These cells had a Golgi apparatus more developed than the other cell types. The cytochemical analysis revealed that secretory granules are reactive to acid glycoconjugates, varying in reaction intensity according to the region of the digestive tract. Acid glycoconjugate reactions were also observed in oesophageal epithelial cell microridges and in enterocyte microvilli. In the digestive tract, acid glycoconjugates act to protect the epithelial surface, increasing mucous viscosity, which facilitates the passage of food, prevents the binding of parasites and facilitates their removal. Through lipid staining, a coated membrane was observed around each secretory granule of the oesophageal and intestinal goblet cells, while gastric epithelial cells granules were fully reactive. Oxynticopeptic cells of the gastric glands showed lipid droplets in the cytoplasm and also in the mitochondrial matrix, which act as an energy reserve for these cells that have a high energy demand. Enterocytes showed a well‐developed smooth endoplasmic reticulum, especially in the apical region of the cell, being related to absorption and resynthesis of lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号