首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genome stability necessitates a mechanism to protect the termini of linear chromosomes from inappropriate degradation or recombination. In many species this protection depends on 'capping' proteins that bind telomeric DNA. The budding yeast Cdc13p binds single-stranded telomeric sequences, prevents lethal degradation of chromosome ends and regulates telomere extension by telomerase. Two Cdc13-interacting proteins, Stn1p and Ten1p, are also required for viability and telomere length regulation. It has been proposed that Cdc13p DNA binding directs a Cdc13p-Stn1p-Ten1p complex to telomeres to mediate end protection. However, the functional significance of these protein interactions, and their respective roles in maintaining telomere integrity, remain undefined. Here, we show that co-overexpressing TEN1 with a truncated form of STN1 efficiently bypasses the essential role of CDC13. We further show that this truncated Stn1p binds directly to Pol12p, a polymerase alpha-primase regulatory subunit, and that Pol12 activity is required for CDC13 bypass. Thus, Stn1p and Ten1p control a Cdc13p-independent telomere capping mechanism that is coupled to the conventional DNA replication machinery.  相似文献   

3.
Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3' single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.  相似文献   

4.
In the absence of functional telomeric cap protection, the ends of eukaryotic chromosomes are subject to DNA damage responses that lead to cell-cycle arrest and, eventually, genomic instability. However, the controlling activities responsible for the initiation of genome instability on unprotected telomeres remained unclear. Here we show that in budding yeast, unprotected telomeres undergo a tightly cell-cycle-regulated DNA degradation. Ablation of the function of essential capping proteins Cdc13p or Stn1p only caused telomere degradation in G2/M, but not in G1 of the cell cycle. Accordingly, G1-arrested cells with unprotected telomeres remained viable, while G2/M-arrested cells failed to recover. The data also show that completion of S phase and the activity of the S-Cdk1 kinase were required for telomere degradation. These results strongly suggest that after a loss of the telomere capping function, telomere-led genome instability is caused by tightly regulated cellular DNA repair attempts.  相似文献   

5.
Cdc13p is a single strand telomere-binding protein of Saccharomyces cerevisiae; its telomere-binding region is within amino acids 451-693, Cdc13(451-693)p. In this study, we used purified Cdc13p and Cdc13(451-693)p to characterize their telomere binding activity. We found that the binding specificity of single-stranded TG(1-3) DNA by these two proteins is similar. However, the affinity of Cdc13(451-693)p to DNA was slightly lower than that of Cdc13p. The binding of telomeric DNA by these two proteins was disrupted at NaCl concentrations higher than 0.3 m, indicating that electrostatic interaction contributed significantly to the binding process. Because both proteins bound to strand TG(1-3) DNA positioned at the 3' end, the 5' end, or in the middle of the oligonucleotide substrates, our results indicated that the location of TG(1-3) in single-stranded DNA does not appear to be important for Cdc13p binding. Moreover, using DNase I footprint analysis, the structure of the telomeric DNA complexes of Cdc13p and Cdc13(451-693)p was analyzed. The DNase I footprints of these two proteins to three different telomeric DNA substrates were virtually identical, indicating that the telomere contact region of Cdc13p is within Cdc13(451-693)p. Together, the binding properties of Cdc13p and its binding domain support the theory that the specific binding of Cdc13p to telomeres is an important feature of telomeres that regulate telomerase access and/or differentiate natural telomeres from broken ends.  相似文献   

6.
In Saccharomyces cerevisiae, Cdc13 binds telomeric DNA to recruit telomerase and to "cap" chromosome ends. In temperature-sensitive cdc13-1 mutants telomeric DNA is degraded and cell-cycle progression is inhibited. To identify novel proteins and pathways that cap telomeres, or that respond to uncapped telomeres, we combined cdc13-1 with the yeast gene deletion collection and used high-throughput spot-test assays to measure growth. We identified 369 gene deletions, in eight different phenotypic classes, that reproducibly demonstrated subtle genetic interactions with the cdc13-1 mutation. As expected, we identified DNA damage checkpoint, nonsense-mediated decay and telomerase components in our screen. However, we also identified genes affecting casein kinase II activity, cell polarity, mRNA degradation, mitochondrial function, phosphate transport, iron transport, protein degradation, and other functions. We also identified a number of genes of previously unknown function that we term RTC, for restriction of telomere capping, or MTC, for maintenance of telomere capping. It seems likely that many of the newly identified pathways/processes that affect growth of budding yeast cdc13-1 mutants will play evolutionarily conserved roles at telomeres. The high-throughput spot-testing approach that we describe is generally applicable and could aid in understanding other aspects of eukaryotic cell biology.  相似文献   

7.
The Saccharomyces cerevisiae Mre11p/Rad50p/Xrs2p (MRX) complex is evolutionarily conserved and functions in DNA repair and at telomeres [1-3]. In vivo, MRX is required for a 5' --> 3' exonuclease activity that mediates DNA recombination at double-strand breaks (DSBs). Paradoxically, abolition of this exonuclease activity in MRX mutants results in shortened telomeric DNA tracts. To further explore the role of MRX at telomeres, we analyzed MRX mutants in a de novo telomere addition assay in yeast cells [4]. We found that the MRX genes were absolutely required for telomerase-mediated addition in this assay. Furthermore, we found that Cdc13p, a single-stranded telomeric DNA binding protein essential for telomere DNA synthesis and protection [5], was unable to bind to the de novo telomeric DNA substrate in cells lacking Rad50p. Based on the results from this model system, we propose that the MRX complex helps to prepare telomeric DNA for the loading of Cdc13p, which then protects the chromosome from further degradation and recruits telomerase and other DNA replication components to synthesize telomeric DNA.  相似文献   

8.
Dewar JM  Lydall D 《The EMBO journal》2010,29(23):4020-4034
Essential telomere 'capping' proteins act as a safeguard against ageing and cancer by inhibiting the DNA damage response (DDR) and regulating telomerase recruitment, thus distinguishing telomeres from double-strand breaks (DSBs). Uncapped telomeres and unrepaired DSBs can both stimulate a potent DDR, leading to cell cycle arrest and cell death. Using the cdc13-1 mutation to conditionally 'uncap' telomeres in budding yeast, we show that the telomere capping protein Cdc13 protects telomeres from the activity of the helicase Pif1 and the exonuclease Exo1. Our data support a two-stage model for the DDR at uncapped telomeres; Pif1 and Exo1 resect telomeric DNA <5 kb from the chromosome end, stimulating weak checkpoint activation; resection is extended >5 kb by Exo1 and full checkpoint activation occurs. Cdc13 is also crucial for telomerase recruitment. However, cells lacking Cdc13, Pif1 and Exo1, do not senesce and maintain their telomeres in a manner dependent upon telomerase, Ku and homologous recombination. Thus, attenuation of the DDR at uncapped telomeres can circumvent the need for otherwise-essential telomere capping proteins.  相似文献   

9.
Chromosome ends, known as telomeres, have to be distinguished from DNA breaks that activate DNA damage checkpoint. Two large protein kinases, ataxia-teleangiectasia mutated (ATM) and ATM-Rad3-related (ATR), control not only checkpoint activation but also telomere length. In budding yeast, Mec1 and Tel1 correspond to ATR and ATM, respectively. Here, we show that Cdc13-dependent telomere capping attenuates Mec1 association with DNA ends. The telomeric TG repeat sequence inhibits DNA degradation and decreases Mec1 accumulation at the DNA end. The TG-mediated degradation block requires binding of multiple Cdc13 proteins. The Mre11-Rad50-Xrs2 complex and Exo1 contribute to DNA degradation at DNA ends. Although the TG sequence impedes Exo1 association with DNA ends, it allows Mre11 association. Moreover, the TG sequence does not affect Tel1 association with the DNA end. Our results suggest that the Cdc13 telomere cap coordinates Mec1 and Tel1 accumulation rather than simply covering the DNA ends at telomeres.  相似文献   

10.
Bae NS  Baumann P 《Molecular cell》2007,26(3):323-334
The mechanisms by which telomeres are distinguished from DNA double-strand breaks are poorly understood. Here we have defined the minimal requirements for the protection of telomeric DNA ends from nonhomologous end-joining (NHEJ). Neither long, single-stranded overhangs nor t loop formation is essential to prevent NHEJ-mediated ligation of telomeric ends in vitro. Instead, a tandem array of 12 telomeric repeats is sufficient to impede illegitimate repair in a highly directional manner at nearby DNA ends. The polarity of end protection is consistent with the orientation of naturally occurring telomeres and is well suited to minimize interference between chromosome capping and the repair of DNA double-strand breaks in subtelomeric sequences. Biochemical fractionation and reconstitution revealed that telomere protection is mediated by a RAP1/TRF2 complex, providing evidence for a direct role for human RAP1 in the protection of telomeric DNA from NHEJ.  相似文献   

11.
Telomere maintenance is essential for continued cell proliferation. Although most cells accomplish this by activating telomerase, a subset of immortalized tumors and cell lines do so in a telomerase-independent manner, a process called alternative lengthening of telomeres (ALT). DNA recombination has been shown to be involved in ALT, but the precise mechanisms remain unknown. A fraction of cells in a given ALT population contain a unique nuclear structure called APB (ALT-associated promyelocytic leukemia (PML) body), which is characterized by the presence of telomeric DNA in the PML body. Here we describe that hRad9, hHus1, and hRad1, which form a DNA clamp complex that is associated with DNA damage, as well as its clamp loader, hRad17, are constitutive components of APB. Phosphorylated histone H2AX (gamma-H2AX), a molecular marker of double-strand breaks (DSBs), also colocalizes with some APBs. The results suggest that telomeric DNAs at APBs are recognized as DSBs. PML staining and fluorescence in situ hybridization analyses of mitotic ALT cells revealed that telomeric DNAs present at APBs are of both extrachromosomal and native telomere origins. Furthermore, we demonstrated that DNA synthesis occurs at APBs and is significantly inhibited by caffeine, an inhibitor of phosphatidylinositol 3-kinase-related kinases. Taken together, we suggest that telomeric DNAs at APBs are recognized and processed as DSBs, leading to telomeric DNA synthesis and thereby contributing to telomere maintenance in ALT cells.  相似文献   

12.
Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13-induced telomeric DNA damage in proliferating cells. Checkpoint-deficient cdc13-1 cells accumulated DNA damage and eventually senesced. However, these telomerase-proficient cells could survive by using homologous recombination but, contrary to telomerase-deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in cdc13-1 mec3, as well as in telomerase-deficient cdc13-1 cells, which were Rad52- and Rad50-dependent but Rad51-independent, exclusively amplified the TG(1-3) repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13-1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13-1- Ten1-Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.  相似文献   

13.
A critical function of telomeres is to prevent the ligation of chromosome ends by DNA repair enzymes. In most eukaryotes, telomeric DNA consists in large arrays of G-rich tandem repeats that are recognized by DNA binding capping proteins. Drosophila telomeres are unusual as they lack short tandem repeats. However, Drosophila capping proteins can bind chromosome extremities in a DNA sequence-independent manner. This epigenetic protection of fly telomeres has been essentially studied in somatic cells where capping proteins such as HOAP or HP1 are essential in preventing chromosome end-to-end fusions. HipHop and K81 are two recently identified paralogous capping proteins with complementary expression patterns. While HipHop is involved in telomere capping in somatic cells, K81 has specialized in the protection of telomeres in post-meiotic male germ cells. Remarkably, K81 is required for the stabilization of HOAP and HP1 at telomeres during the massive paternal chromatin remodeling that occurs during spermiogenesis and at fertilization. We thus propose that the maintenance of capping proteins at Drosophila sperm telomeres is crucial for the transmission of telomere identity to the diploid zygote.  相似文献   

14.
15.
16.
RPA-like proteins mediate yeast telomere function   总被引:1,自引:0,他引:1  
Cdc13, Stn1 and Ten1 are essential yeast proteins that both protect chromosome termini from unregulated resection and regulate telomere length. Cdc13, which localizes to telomeres through high-affinity binding to telomeric single-stranded DNA, has been extensively characterized, whereas the contribution(s) of the Cdc13-associated Stn1 and Ten1 proteins to telomere function have remained unclear. We show here that Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates. Furthermore, Stn1 and Ten1 show similarities to Rpa2 and Rpa3, subunits of the heterotrimeric replication protein A (RPA) complex, which is the major single-stranded DNA-binding activity in eukaryotic cells. We propose that Cdc13, Stn1 and Ten1 function as a telomere-specific RPA-like complex. Identification of an RPA-like complex that is targeted to a specific region of the genome suggests that multiple RPA-like complexes have evolved, each making individual contributions to genomic stability.  相似文献   

17.
A subset of human tumors ensures indefinite telomere length maintenance by activating a telomerase-independent mechanism known as Alternative Lengthening of Telomeres (ALT). Most tumor cells of ALT origin share a constellation of unique characteristics, which include large stores of extra-chromosomal telomeric material, chronic telomere dysfunction and a peculiar enrichment in chromosome ends with 5′ C-rich overhangs. Here we demonstrate that acute telomere de-protection and the subsequent DNA damage signal are not sufficient to facilitate formation of 5′ C-overhangs at the chromosome end. Rather chromosome ends bearing 5′ C-overhangs are a by-product of rapid cleavage events, processing of which occurs independently of the DNA damage response and is partly mediated through the XRCC3 endonuclease.  相似文献   

18.
Fission yeast capping protein SpCP is a heterodimer of two subunits (Acp1p and Acp2p) that binds actin filament barbed ends. Neither acp1 nor acp2 is required for viability, but cells lacking either or both subunits have cytokinesis defects under stressful conditions, including elevated temperature, osmotic stress, or in combination with numerous mild mutations in genes important for cytokinesis. Defects arise as the contractile ring constricts and disassembles, resulting in delays in cell separation. Genetic and biochemical interactions show that the cytokinesis formin Cdc12p competes with capping protein for actin filament barbed ends in cells. Deletion of acp2 partly suppresses cytokinesis defects in temperature-sensitive cdc12-112 cells and mild overexpression of capping protein kills cdc12-112 cells. Biochemically, profilin has opposite effects on filaments capped with Cdc12p and capping protein. Profilin depolymerizes actin filaments capped by capping protein but allows filaments capped by Cdc12p to grow at their barbed ends. Once associated with a barbed end, either Cdc12p or capping protein prevents the other from influencing polymerization at that end. Given that capping protein arrives at the division site 20 min later than Cdc12p, capping protein may slowly replace Cdc12p on filament barbed ends in preparation for filament disassembly during ring constriction.  相似文献   

19.
Recombination is often capable of lengthening telomeres in situations where telomerase is absent. This recombinational telomere maintenance is often accompanied by telomeric instability including the accumulation of extrachromosomal telomeric circles (t-circles). Recent results of in vivo and in vitro experiments have suggested that t-circles can lead to the production of extended stretches of telomeric DNA by serving as templates for rolling-circle synthesis. This implies that t-circles can provide an efficient means of telomere elongation. The existence of t-circles in both nuclear and mitochondrial compartments of distantly related species suggests that they may be important contributors to an evolutionary conserved telomerase-independent mechanism of maintenance of telomeric tandem arrays.  相似文献   

20.
Telomeres consist of an elaborate, higher-order DNA architecture, and a suite of proteins that provide protection for the chromosome terminus by blocking inappropriate recombination and nucleolytic attack, and facilitate telomeric DNA replication by physical interactions with telomerase and the lagging strand replication machinery. The prevailing view has been that two distinct telomere capping complexes evolved, shelterin in vertebrates and a trimeric complex comprised of Cdc13, Stn1 and Ten1 (CST) in yeast. The recent discovery of a CST-like complex in plants and humans raises new questions about the composition of telomeres and their regulatory mechanisms in multicellular eukaryotes. In this review we discuss the evolving functions and interactions of CST components and their contributions to chromosome end protection and DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号