首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 The effects of various compounds bearing an N-OH group such as N-hydroxy-guanidines, amidoximes, and hydroxylamines, on bovine and rat liver arginases was studied. Some of these compounds with an l-α-amino acid function at an appropriate distance from the N-OH group acted as strong competitive liver arginase inhibitors, displaying Ki values between 4 and 150 μM. Two compounds, N ε-hydroxy-l-lysine and N ω-hydroxy-d,l-indospicine, which exhibited Ki values of 4 and 20 μM (at pH 7.4), were the most potent inhibitors of arginase described to date. The distance between the α-amino acid and N-OH functions appeared to be crucial for potent inhibition of arginase, as N δ-hydroxy-l-ornithine, which has one -CH2 group less than N ε-hydroxy-l-lysine, exhibited a 37-fold higher Ki value than N ε-hydroxy-l-lysine. Based on these results, a model for the interaction of N ω-hydroxyamino-l-α-amino acids with the arginase active site is proposed. This model involves the binding of the N-OH group of the inhibitors to the arginase Mn(II) center and suggests that N ε-hydroxy-l-lysine is a good transition state analog of arginase.  相似文献   

2.
A linear relationship between total solid concentration (TSC), δ-endotoxin production [Cry = 0.2795(TSC)−0.2472, R2 = 0.8644] and poly-β-hydroxybutyrate (PHB) accumulation [PHB = 0.1327(TSC) + 0.3974, R2 = 0.9877] in Bacillus thuringiensis var. kurstaki HD-73 was observed. A similar correlation between δ-endotoxin and PHB accumulation [Cry = 2.1573(PHB)−1.1248, R2 = 0.9181] was found. A minimum PHB accumulation of 0.52 mg l−1 was required before the onset of δ-endotoxin production. Revisions requested 28 September 2005 and 4 November 2005; Revisions received 28 October 2005 and 1 February 2006  相似文献   

3.
In this study, sun leaf carbon isotope composition (δ13C) of two co-occurring woody Mediterranean species (Quercus pubescens Willd., a deciduous oak, and Q. ilex L., an evergreen one) was investigated on four sites with different water availability. The total range of δ13C values was 4.4 and 3.1‰ for Q. pubescens and Q. ilex respectively. The intra-site variability was about 3‰. Total mean per species was equal. There were significant differences among sites, but at each site means of δ13C were not significantly different between species. A simple physiological model predicts no difference in intrinsic water-use efficiency (WUEi) between evergreen and deciduous oaks. The relationship between site means of δ13C and water parameters suggests that there is a leaf functional adjustment with respect to available water resource. No correlation was found between δ13C and the contents of any mass-based biochemical constituent. Nevertheless there was a significant correlation between δ13C and leaf mass per area of Q. ilex. For both species, there is also a positive correlation between leaf δ13C and individual crown area, i.e. a structural characteristic at tree level. Causal relations between δ13C and plant-environment interactions are discussed. Received: 25 October 1996 / Accepted: 19 January 1997  相似文献   

4.
The C isotope composition of leaf dark-respired CO213Cl) integrates short-term metabolic responses to environmental change and is potentially recorded in the isotopic signature of ecosystem-level respiration. Species differences in photosynthetic pathway, resource acquisition and allocation patterns, and associated isotopic fractionations at metabolic branch points can influence δ13Cl, and differences are likely to be modified by seasonal variation in drought intensity. We measured δ13Cl in two deep-rooted C3 trees (Prosopis velutina and Celtis reticulata), and two relatively shallow-rooted perennial herbs (a C3 dicot Viguiera dentata and a C4 grass Sporobolus wrightii) in a floodplain savanna ecosystem in southeastern Arizona, USA during the dry pre-monsoon and wet monsoon seasons. δ13Cl decreased during the nighttime and reached minimum values at pre-dawn in all species. The magnitude of nocturnal shift in δ13Cl differed among species and between pre-monsoon and monsoon seasons. During the pre-monsoon season, the magnitude of the nocturnal shift in δ13Cl in the deep-rooted C3 trees P. velutina (2.8 ± 0.4‰) and C. reticulata (2.9 ± 0.2‰) was greater than in the C3 herb V. dentata (1.8 ± 0.4‰) and C4 grass S. wrightii (2.2 ± 0.4‰). The nocturnal shift in δ13Cl in V. dentata and S. wrightii increased to 3.2 ± 0.1‰ and 4.6 ± 0.6‰, respectively, during the monsoon season, but in C3 trees did not change significantly from pre-monsoon values. Cumulative daytime net CO2 uptake was positively correlated with the magnitude of the nocturnal decline in δ13Cl across all species, suggesting that nocturnal δ13Cl may be controlled by 13C/12C fractionations associated with C substrate availability and C metabolite partitioning. Nocturnal patterns of δ13Cl in dominant plant species in the semiarid savanna apparently have predictable responses to seasonal changes in water availability, which is important for interpreting and modeling the C isotope signature of ecosystem-respired CO2.  相似文献   

5.
Stable carbon isotope composition varies markedly between sun and shade leaves, with sun leaves being invariably more enriched (i.e., they contain more13C). Several hypotheses have emerged to explain this pattern, but controversy remains as to which mechanism is most general. We measured vertical gradients in stable carbon isotope composition (δ13C) in more than 200 trees of nine conifer species growing in mixed-species forests in the Northern Rocky Mountains, USA. For all species except western larch, δ13C decreased from top to bottom of the canopy. We found that δ13C was strongly correlated with nitrogen per unit leaf area (N area), which is a measure of photosynthetic capacity. Usually weaker correlations were found between δ13C and leaf mass per area, nitrogen per unit leaf mass, height from the ground, or depth in the canopy, and these correlations were more variable between trees than for N area. Gradients of δ13C (per meter canopy depth) were steeper in small trees than in tall trees, indicating that a recent explanation of δ13C gradients in terms of drought stress of upper canopy leaves is unlikely to apply in our study area. The strong relationship between N area and δ13C here reported is consistent with the general finding that leaves or species with higher photosynthetic capacity tend to maintain lower CO2 concentrations inside leaves. We conclude that photosynthetic capacity is a strong determinant of δ13C in vertical canopy profiles, and must be accounted for when interpreting δ13C values in conifer forests.  相似文献   

6.
The root growth rate in barley (Hordeum vulgare L.) seedlings was measured in parallel with temporal changes in longitudinal (δl) and transverse (δD/D) cell-wall extensibilities and membrane hydraulic conductivity (L p) in the root extension zone. The root growth rate and biophysical parameters examined were sensitive to UV-B irradiation of shoots or roots and to excessive content of ammonium, glutamate, or nickel in the nutrient medium. The root responses to the above treatments were compared with the effects of abscisic acid, salicylate, hydrogen peroxide, diethylstilbestrol, α-naphthyl acetate, oryzalin, and ionomycin. The progressive reduction of root growth under the action of various stressors was accompanied by typical temporal patterns of the growth zone parameters: the δl extensibility declined monotonically, while δD/D and L p changed nonmonotonically, exhibiting the reversion from the initial decrease to the eventual increase above the control values. The decline of δl indicated that the root growth suppression was mainly due to changes in cell-wall mechanical properties caused probably by disorganization of cortical microtubules. It was found that the decline in δD/D and L p was caused primarily by the appearance of oxidative stress, disorders in cytoplasmic H+ homeostasis in root cells, and the consequent transient activation of the plasmalemmal H+-pump. Conversely, the increase in δD/D and L p upon the abrupt retardation of root growth was presumably caused by the increase in cytoplasmic Ca2+ content, disassembling of cortical microtubules, and by partial inhibition of the plasmalemmal H+-pump. The reversion of δD/D and L p changes upon progressive reduction of root growth can be used as an indicator to distinguish moderate and severe stress conditions in the root growth zone. Furthermore, this reversion indicates the increasing disbalance in the homeostasis of reactive oxygen species, cytosolic Ca2+, and cytosolic H+ upon severe stress.  相似文献   

7.
Chinese pine (Pinus tabulaeformis) trees were sampled in the Helan Mountain, northwest China. The stable carbon isotope (δ13C) values of whole wood, holocellulose and alpha-cellulose in tree rings over 30 years (1968–1997) were measured to study the δ13C response of different tree-ring components to past environmental change. There were obvious differences in the δ13C values of the three components. The Pearson correlation coefficient between the δ13C of alpha-cellulose and that of holocellulose was 0.547 (ρ < 0.01); between alpha-cellulose and whole wood, the coefficient was −0.126 (ρ > 0.10); between holocellulose and whole wood, the coefficient was −0.056. Correlation function analyses indicated that the δ13C content of tree-ring alpha-cellulose correlated strongly with the average temperature from June to August (r = 0.427, ρ < 0.05), more than that of holocellulose (0.324, ρ < 0.10) or total wood (−0.245, ρ > 0.10). Significant correlations were observed between δ13C of tree-ring alpha-cellulose and the precipitation from the current year’s February to July (r = −0.514, ρ < 0.01) that were much higher than that of holocellulose (−0.481, ρ < 0.05) or total wood (−0.249, ρ > 0.10). A significant correlation (−0.545, ρ < 0.01) was also found between the ring width and the δ13C residual chronologies. These results suggest that more past environmental information is retained in the δ13C of tree-ring alpha-cellulose. Thus, the δ13C of alpha-cellulose of tree rings is the most suitable among the studied parameters for reconstructing the past climatic conditions during the growing season. The δ13C values of other organic compounds in Pinus tabulaeformis xylem were affected by the external environment after carbon was fixed from the atmosphere.  相似文献   

8.
A series of N α-acyl (alkyl)- and N α-alkoxycarbonyl-derivatives of l- and d-ornithine were prepared, characterized, and analyzed for their potency toward the bacterial enzyme N α-acetyl-l-ornithine deacetylase (ArgE). ArgE catalyzes the conversion of N α-acetyl-l-ornithine to l-ornithine in the fifth step of the biosynthetic pathway for arginine, a necessary step for bacterial growth. Most of the compounds tested provided IC50 values in the μM range toward ArgE, indicating that they are moderately strong inhibitors. N α-chloroacetyl-l-ornithine (1g) was the best inhibitor tested toward ArgE providing an IC50 value of 85 μM while N α-trifluoroacetyl-l-ornithine (1f), N α-ethoxycarbonyl-l-ornithine (2b), and N α-acetyl-d-ornithine (1a) weakly inhibited ArgE activity providing IC50 values between 200 and 410 μM. Weak inhibitory potency toward Bacillus subtilis-168 for N α-acetyl-d-ornithine (1a) and N α-fluoro- (1f), N α-chloro- (1g), N α-dichloro- (1h), and N α-trichloroacetyl-ornithine (1i) was also observed. These data correlate well with the IC50 values determined for ArgE, suggesting that these compounds might be capable of getting across the cell membrane and that ArgE is likely the bacterial enzymatic target.  相似文献   

9.
Xue Y  Wu A  Zeng H  Shao W 《Biotechnology letters》2006,28(5):351-356
To efficiently produce xylobiose from xylan, high-level expression of an α-l-arabinofuranosidase gene from Thermotoga maritima was carried out in Escherichia coli. A 1.5-kb DNA fragment, coding for an α-l-arabinofuranosidase of T. maritima, was inserted into plasmid pET-20b without the pelB signal sequence leader, and produced pET-20b-araA1 with 8 nt spacing between ATG and Shine–Dalgarno sequence. A maximum activity of 12 U mg−1 was obtained from cellular extract of E. coli BL21-CodonPlus (DE3)-RIL harboring pET-20b-araA1. The over-expressed α-l-arabinofuranosidase was purified 13-fold with a 94% yield from the cellular extract of E. coli by a simple heat treatment. Production of xylooligosaccharides from corncob xylan by endoxylanase and α-l-arabinofuranosidase was examined by TLC and HPLC: xylobiose was the major product from xylan at 90 °C and its proportion in the xylan hydrolyzates increased with the reaction time. Hydrolysis with in the xylanase absence of α-l-arabinofuranosidase gave only half this yield. Revisions requested 27 October 2005; Revisions received 5 September 2005  相似文献   

10.
Ninety-fourStaphylococcus aureus strains isolated from chronic and recurrent skin and respiratory tract infections were investigated for several virulence factor expressions. Production of protein A was noticed in all of the tested strains in amounts from less than 0.1 to more than 2.5 ng per 106 bacterial cells. The percentage of the extracellularly produced protein A was found to lie between 4.5 and 27.8%. Two strains (both from the respiratory tract) produced more than 50 % of protein A in the extracellular form and one strain did not produce any detectable amount of the extracellular protein A; 99 % of the tested strains produced the clumping factor, 96% staphylocoagulase, 79 % staphylokinase and 90 % gelatinolytic activity; 79 % produced α-toxin exclusively or in combination with δ- or β-toxin; 8 % of strains produced β-toxin. There were differences in β-toxin production between strains from the respiratory tract (5 %) and skin infections (25 %). δ-Toxin was produced by 53 % of the strains. In each of the tested strains a complex of virulence factors was detected. The importance of inactivated extracellular products (especially α- and δ-toxin and in the case of skin infections also β-toxin) as components of staphylococcal whole-cell vaccine was suggested. Dedicated to Professor C. John on the occasion of his 75th birthday  相似文献   

11.
Genomic DNA from a large panel of inbred strains of mice were hybridized sequentially with 15 Vα, 2 Vδ, 1 Cα, and 1 Cδ probes. Most of the Vα probes detected a high degree of plymorphism and have allowed the definition of five mouse T-cell receptor α (Tcr α) haplotypes. One of these haplotypes (Tcr α e ) appears to arise from a recombination between theTcr α b andTcr α a haplotypes, the latter being the most frequently found in the conventional inbred strains. This recombination event clearly indicates that the members of at least 11 Vα subfamilies are not closely linked but highly interspersed with one another on chromosome 14.  相似文献   

12.
Recent studies have shown that the complementary analysis of mercury (Hg) concentrations and stable isotopic ratios of nitrogen (δ15N) and carbon (δ13C) can be useful for investigating the trophic influence on the Hg exposure and accumulation in marine top predators. In this study, we propose to evaluate the interspecies variability of Hg concentrations in phocids from polar areas and to compare Hg bioaccumulation between both hemispheres. Mercury concentrations, δ15N and δ13C were measured in fur from 85 individuals representing 7 phocidae species, a Ross seal (Ommatophoca rossii), Weddell seals (Leptonychotes weddellii), crabeater seals (Lobodon carcinophagus), harbour seals (Phoca vitulina), grey seals (Halichoerus grypus), ringed seals (Pusa hispida) and a bearded seal (Erignathus barbatus), from Greenland, Denmark and Antarctica. Our results showed a positive correlation between Hg concentrations and δ15N values among all individuals. Seals from the Northern ecosystems displayed greater Hg concentrations, δ15N and δ13C values than those from the Southern waters. Those geographical differences in Hg and stable isotopes values were likely due to higher environmental Hg concentrations and somewhat greater number of steps in Arctic food webs. Moreover, dissimilarities in feeding habits among species were shown through δ15N and δ13C analysis, resulting in an important interspecific variation in fur Hg concentrations. A trophic segregation was observed between crabeater seals and the other species, resulting from the very specific diet of krill of this species and leading to the lowest observed Hg concentrations.  相似文献   

13.
In barley (Hordeum vulgare L.) seedlings, the rate of root growth, osmotic pressure (Π), hydraulic conductance (L p), and longitudinal (δl) and transverse (δD/D) extensibility of root cells were measured. The seedlings were grown on Knop solution with nitrate or without nitrate with addition of 5–10 mM NH4+ or 0.5–1.0 mM glutamate. Root growth retardation on the 1st–4th days of exposure to NH4+ was determined by a decrease in δl in the zone of elongation, whereas root thickening was evidently related to an increase in Π. Biphasic dynamics of δl in the presence of NH4+ was imitated by medium acidification near the root surface to pH 3.7, which confirms a conclusion, we have done earlier, about a non-monotonous pH-dependence of longitudinal extensibility. Root growth retardation during the first day of exposure to Glu was also determined by a decrease in the δl, which was, however, accompanied by an increase in the δD/D and L p. Fast Glu-induced changes of measured root parameters were imitated by root exposure to oryzalin, ionomycin, and inhibitors of the H+-pump. It was supposed that a decrease in δl in the presence of NH4+ and Glu was related to cortical microtubule disorganization with the involvement of cytosolic calcium Cacyt2+. A decrease in the δD/D and L p in the presence of NH4+ was related to apoplast acidification and a high activity of the plasmalemmal H+-pump. An increase in the δD/D and L p in the presence of Glu indicates the inhibition of the plasmalemmal H+-pump. On the 2nd–4th days of exposure to Glu, root growth ceased, as distinct from treatment with NH4+. This complete root growth inhibition by Glu was possibly related to a rapid uptake of Ca2+ through Glu-sensitive Ca2+-channels, Ca2+-dependent inhibition of the plasmalemmal H+-pump, and a decrease in mitotic activity.  相似文献   

14.
NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and 13Cβ chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and 13Cβ atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ15N, δ13C’, δ13Cα, δ13Cβ, δ1Hα and δ1HN, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2–10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.  相似文献   

15.
The southeastern border of the European Alps is not well resourced with high-resolution climate proxies and experiences a distinct climatic regime from the northern and western Alpine zones. Here, we present new high-resolution climatic proxies (AD 1907–2006) from ring widths and stable carbon (δ13C), non-exchangeable hydrogen (δ2H) and oxygen (δ18O) isotope ratios of cellulose extracted from Larix decidua tree rings, growing at the forest limit in the southeastern European Alps (Slovenia). δ13C, δ2H and δ18O are strongly (p < 0.001) and positively correlated with each other. June temperature has the strongest control on tree ring width (TRW), while later summer conditions (July–August) influence the stable isotope composition. All four proxies are strongly correlated (r > 0.4; p < 0.001) with summer temperature and also sunshine hours, while precipitation has less impact. A combination of TRW and δ13C provides the greatest potential for reconstructing past temperatures (June–August) with significant (p < 0.001) correlations with gridded temperatures extending across a very large part of southern and western Europe west of the Carpathian Mountains. The water isotopes (oxygen and hydrogen) record conditions in the Adriatic and Mediterranean, which are the source area for the air masses that bring precipitation to this region giving strong correlations with temperatures in southern Italy and the western part of the Balkan Peninsula. Combining proxies with different spatial and temporal signals allows the strength and spatial footprint of climate signals to be enhanced. These findings open new perspectives for climate reconstruction in the southeastern European Alps and Western Balkans.  相似文献   

16.
Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid in the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to differentiate juvenile habitats of winter flounder (Pseudopleuronectes americanus). Young-of-the-year (YOY) juvenile winter flounder were collected annually over a three-year period from 18 stations along the coast of Rhode Island, USA. Sagittal otoliths were removed from fish and analyzed for stable carbon (13C/12C or δ13C) and oxygen (18O/16O or δ18O) isotope ratios using continuous flow isotope ratio mass spectrometry. Differences in isotope ratios were observed among stations and along salinity gradients in the Narragansett Bay estuary and an estuarine river system (Narrow River). Overall, the isotope ratio patterns observed among stations were consistent over the three sampling years; however, differences were noted in isotope ratios and the magnitude of the isotope ratio gradients among years. Significant positive correlations were noted between salinity and δ13C for two of the three years. For each of the three years sampled there was a highly significant positive correlation (2002, r = 0.93, P < 0.01; 2003, r = 0.85, P < 0.01; 2004, r = 0.97, P < 0.01) between δ18O and the salinity of the collection site. Also, there was a significant negative correlation between the number of months of above average river flow and δ18O for the three sampling years (r = 0.99, P < 0.05). These findings suggest that yearly changes in the volume of freshwater inputs to these estuarine habitats may be related to the differences observed in otolith δ18O isotope ratios. Because of these year-to-year differences, sampling of each cohort may be necessary in order to use this isotopic technique for winter flounder connectivity studies.  相似文献   

17.
A comparison between the Torpedo and muscle-type acetylcholine receptors (AChRs) reveals differences in several lipid-exposed amino acids, particularly in the polarity of those residues. The goal of this study was to characterize the role of eight lipid-exposed residues in the functional differences between the Torpedo and muscle-type AChRs. To this end, residues αS287, αC412, βY441, γM299, γS460, δM293, δS297 and δN305 in the Torpedo AChR were replaced with those found in the muscle-type receptor. Mutant receptor expression was measured in Xenopus oocytes using [125I]-α-bungarotoxin, and AChR ion channel function was evaluated using the two-electrode voltage clamp. Eight mutant combinations resulted in an increase (1.5- to 5.2-fold) in AChR expression. Four mutant combinations produced a significant 46% decrease in the ACh 50% inhibitory concentration (EC50), while three mutant combinations resulted in 1.7- to 2-fold increases in ACh EC50. Finally, seven mutant combinations resulted in a decrease in normalized, ACh-induced currents. Our results suggest that these residues, although remote from the ion channel pore, (1) contribute to ion channel gating, (2) may affect trafficking of AChR into specialized membrane domains and (3) account for the functional differences between Torpedo and muscle-type AChR. These findings emphasize the importance of the lipid-protein interface in the functional differences between the Torpedo and muscle-type AChRs.  相似文献   

18.
Penicillium ulaiense is a post-harvest pathogenic fungus that attacks citrus fruits. The objective of this work was to study this microorganism as an α-l-rhamnosidase producer and to characterize it from P. ulaiense. The enzyme under study is used for different applications in food and beverage industries. α-l-Rhamnosidase was produced in a stirred-batch reactor using rhamnose as the main carbon source. The kinetic parameters for the growth of the fungi and for the enzyme production were calculated from the experimental values. A method for partial purification, including (NH4)2SO4 precipitation, incubation at pH 12 and DEAE-sepharose chromatography yielded an enzyme with very low β-glucosidase activity. The pH and temperature optima were 5.0 and 60°C, respectively. The Michaelis–Menten constants for the hydrolysis of p-nitrophenyl-α-l-rhamnoside were V max = 26 ± 4 IU ml−1 and K m  = 11 ± 2 mM. The enzyme showed good thermostability up to 60°C and good operational stability in white wine. Co2+ affected positively the activity; EDTA, Mn2+, Mg2+, dithiotreitol and Cu2+ reduced the activity by different amounts, and Hg2+ completely inhibited the enzyme. The enzyme showed more activity on p-nitrophenyl-α-l-rhamnoside than on naringin. According to these results, this enzyme has potential for use in the food and pharmacy industries since P. ulaiense does not produce mycotoxins.  相似文献   

19.
In humans, the quantity of α-l-fucosidase in serum is determined by heredity. The mechanism controlling levels of the enzyme in serum is unknown. Lymphoid cell lines derived from individuals with either low, intermediate, or high α-l-fucosidase in serum were established. Steady-state levels of intracellular and extracellular α-l-fucosidase as well as rates of synthesis and secretion of enzyme overlapped among the cell lines. Thus,vivo} serum phenotypes were not expressed in this system. No appreciable differences in the qualitative processing of newly made α-l-fucosidase were observed among these lymphoid cell lines. Cells pulse-labeled with35S-methionine from 0.25 to 2 hr had an intracellular form of enzyme with aM r=58,000. Cells pulsed for 1.5 hr and chased for 21 hr with unlabeled methionine had an intracellular form ofM r=60,000 and an extracellular form ofM r=62,000. All three enzyme forms were glycoproteins with a common polypeptide chain ofM r=52,000 but with different carbohydrate moieties. No evidence for a high molecular mass precursor form of α-l-fucosidase was found. Fucosidosis is a rare, inherited disease in which α-l-fucosidase activity in tissues and body fluids is low or absent. The mutations for fucosidosis and the serum polymorphism map separately. Lymphoid cells from two siblings with fucosidosis had 8-fold to 341-fold less intracellular α-l-fucosidase protein with 11-fold to 56-fold lower specific activities than control cells. Residual mutant enzyme was a glycoprotein with a polypeptide chain virtually the same size (M r=52,000) as control enzyme. However, residual mutant enzyme was hypoglycosylated and hypersecreted as compared to control enzyme. This research was supported by National Institutes of Health Grant DK 32161.  相似文献   

20.
The α1 subunit coding for the human brain type E calcium channel (Schneider et al., 1994) was expressed in Xenopus oocytes in the absence, and in combination with auxiliary α2δ and β subunits. α1E channels directed with the expression of Ba2+ whole-cell currents that completely inactivated after a 2-sec membrane pulse. Coexpression of α1E with α2bδ shifted the peak current by +10 mV but had no significant effect on whole-cell current inactivation. Coexpression of α1E with β2a shifted the peak current relationship by −10 mV, and strongly reduced Ba2+ current inactivation. This slower rate of inactivation explains that a sizable fraction (40 ± 10%, n= 8) of the Ba2+ current failed to inactivate completely after a 5-sec prepulse. Coinjection with both the cardiac/brain β2a and the neuronal α2bδ subunits increased by ≈10-fold whole-cell Ba2+ currents although coinjection with either β2a or α2bδ alone failed to significantly increase α1E peak currents. Coexpression with β2a and α2bδ yielded Ba2+ currents with inactivation kinetics similar to the β2a induced currents, indicating that the neuronal α2bδ subunit has little effect on α1E inactivation kinetics. The subunit specificity of the changes in current properties were analyzed for all four β subunit genes. The slower inactivation was unique to α1E2a currents. Coexpression with β1a, β1b, β3, and β4, yielded faster-inactivating Ba2+ currents than currents recorded from the α1E subunit alone. Furthermore, α1E2bδ/β1a; α1E2bδ/β1b; α1E2bδ/β3; α1E2bδ/β4 channels elicited whole-cell currents with steady-state inactivation curves shifted in the hyperpolarized direction. The β subunit-induced changes in the properties of α1E channel were comparable to modulation effects reported for α1C and α1A channels with β3≈β1b > β1a≈β4≫β2a inducing fastest to slowest rate of whole-cell inactivation. Received: 27 March 1997/Revised: 10 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号