首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The action of sodium nitroprusside, nitrite-anions and hydrogen peroxide on Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (Ca(2+)-independent) enzymatic activity in myometrium sarcolemma fraction is investigated. It is established, that 0.1 mM sodium nitroprusside and 10(-8)-10(-5) M nitrite-anions essentially reduce Ca2+, Mg(2+)-ATPase activity whereas Mg(2+)-ATPase proved to be absolutely resistant to them. At rather high concentration of nitrite-anions (0.1 mM) appreciable stimulation of Ca2+, Mg(2+)-ATPase was observed. Hydrogen peroxide (10(-8)-10(-4)), depending on the concentration suppressed both enzymes activity. However, Ca2+, Mg(2+)-ATPase proved to be more sensitive to the action of H2O2 (seeming K(i) = 0.42 +/- 0.1 microM), than Mg(2+)-ATPase (seeming K(i) = 3.1 +/- 0.9 microM). At presence of 1 mM ditiothreitole (a reducer of SH groups of the membrane surface) action of investigated substances considerably decreased. Reagents on carboxic- (dicyclogexilcarbodiimid) and amino- groups of the membrane (trinitrobenzolsulfonic acid) inhibited both Ca2+, Mg(2+)-ATPase, and Mg(2+)-ATPase activity in membrane fractions. In the presence of noted reagents sodium nitroprusside and nitrite-anions action was not almost shown. Hence, nitrogen oxide, nitrite-anions and hydrogen peroxide suppress Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (only hydrogen peroxide) activity in the plasmatic membrane of myometrium cells, and this action can be connected with direct updating of superficial chemical groups of the membrane.  相似文献   

2.
It was shown that organic solvents (dioxane, acetone, ethanol, dimethylsulfoxide) at concentrations of < 10% suppress the activity of transport Ca2+, Mg(2+)-ATPase solubilized from plasmatic membranes of smooth muscle cells and Mg(2+)-ATP-dependent accumulation of Ca2+ ions in inverted membrane vesicles. It was found that one of the reasons for the inhibition of enzymatic and transport activity of Ca2+, Mg(2+)-ATPase by the action of these solvents is an increase in the attractive force between oppositely charged active center of the enzyme and the product (products) of the ATP-hydrolase reaction, which is induced by a decrease in the dielectric permeability of incubation medium.  相似文献   

3.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Inhibition of red cell Ca2+-ATPase by vanadate   总被引:3,自引:0,他引:3  
1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate. 3. Among the ligands tests, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K 1/2 for vanadate was 1.5 microM and inhibition was nearly complete at saturating vanadate concentrations. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.  相似文献   

5.
It is shown, that for correct definition of "basal" Ca(2+)-independent Mg(2+)-dependent ATPase ac-activity (10-13 mmol Pi/hour on 1 mg of protein) in a fraction of uterus smooth muscle cell plasma membranes is necessary to use in medium without calcium of an incubation not only EGTA and digitonin--of the factor of infringement in activity by this subcellular structure, but inhibitors of others Mg(2+)-dependent ATP-hydrolyse enzymatic systems localized as in plasma membrane (Na+, K(+)-ATPase) and in others subcellular frames, first of all, in mitochondria (Mg(2+)-ATPase) and endoplasmic reticulum (transport Ca2+, Mg(2+)-ATPase). In the case of a sacolemal fraction of a smooth muscle the contribution of others Mg(2+)-dependent ATP-hydrolyse systems in a common enzymatic hydrolysis ATP, which unconnected to functioning "basal" Ca(2+)-independent Mg(2+)-dependent ATPase, is very appreciable and achieves 35%. The researches, carried out in the frameworks of definition of initial velocity of enzymatic reaction, have enabled to define its some properties--cationic and anionic specificity, and also sensitivity to action of some inhibitors. It has appeared, that the "basal" Ca(2+)-independent Mg(2+)-dependent ATP-hydrolyse reaction is nonspecific rather both in relation to cations of divalent metals Me2+, and cations of monovalent metals and anions, which were utilized for support of ionic strength. The cations La--antagonist of cations Ca--practically did not influence enzymatic activity. The non-specific inhibitors transport of ATPases--p-chloromercuribenzoate, o-vanadate and eosine Y with a various degree of efficiency inhibited "basal" Ca(2+)-independent Mg(2+)-dependent ATP-hydrolyse reaction. On the basis of the analysis of the own and literary data the conclusion is made that "basal" Ca(2+)-independent Mg(2+)-dependent ATPase of a smooth muscle cell plasma membrane is considerably less sensitive to action of nonspecific inhibitors of the Ca(2+)-transporting systems, than these systems.  相似文献   

6.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

7.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

8.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

9.
A Mg2+-induced change of the (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from Electrophorus electricus was investigated by kinetics and fluorescence techniques. Binding of Mg2+ to a low affinity site(s) caused inhibition of (Na+,K+)-ATPase activity, an effect which was antagonized by both Na+ and ATP. Mg2+ also caused inhibition of K+-dependent dephosphorylation of the enzyme without inhibiting either (Na+)-ATPase activity or Na+-dependent phosphorylation. Mg2+ also induced a 5 to 6% enhancement in the fluorescence intensity of enzyme labeled with the fluorescent sulfhydryl reagent, 2-(4-maleimidylanilino)naphthalene-6-sulfonate. As in the case of Mg2+ inhibition of activity, the affinity for Mg2+ as an inducing agent for this effect was significantly reduced by both Na+ and ATP, suggesting that the same change was being monitored in both cases. The Mg2+ effect was reduced by both Na+ and ATP, suggesting that the same change was being monitored in both cases. The Mg2+ effect was reduced in magnitude by ouabain and prevented by oligomycin, specific inhibitors of the enzyme. In addition, K+ (and cations that substitute for K+ in supporting activity) induced a 3 to 4% enhancement in fluorescence intensity in the presence of Na+, Mg2+, and ATP, although the K+ and Mg2+ effects appeared to be different on the basis of their excitation spectra. The K+ effect was inhibited by ouabain and occurred with a rate greater than the rate of turnover of the enzyme, permitting its involvement in the catalytic cycle.  相似文献   

10.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution the authors investigated influence of the calix[4]arenes C-97 and C-107 (codes are shown) on ouabain effect on the Na+,K+-ATPase activity. It was shown that calixarenes in concentration 100 tiM inhibited by 97-98% the enzymatic Na+,K+-ATPase activity, while they did not practically influence on the basal Mg2+-ATPase activity, and suppressed much more effective than ouabain the sodium pump enzymatic activity: in the case of the action of the calixarenes the value of the apparent constant of inhibition I0.5 was < 0.1 microM while for ouabain it was 15-25 microM. The negative cooperative effect was typical of the inhibitory action of calixarenes, as well as ouabain: the value of Hills factor nH = 0.3-0.5 <1. The modelling compound M-3 (0.1 microM 4 microM)--a fragment of the calixarene C-107--did not practically influence the enzymatic activities as Na+,K+-ATPase and basal Mg2+-ATPase. Hence the influence of calixarene C-107 on the Na+, K+-ATPase activity is caused by cooperative action of two fragments M-3 and effect of calixarene bowl, rather than by simple action of the fragment M-3. Calixarenes C-97 and C-107, used in concentration corresponding to values of I0.5 (40 and 60 nM, accordingly), essentially stimulated inhibiting action of ouabain on the specific Na+, K+-ATPase activity in the memrane fraction. Under coaction of ouabain with calixarene C-97 or C-107 there was no additive effect of the action of these inhibitors on the Na+,K+-ATPase activity. Calixarene C-97 brought in the incubation medium in concentration of 10 nM not only led to inhibition of the Na+,K+-ATPase activity relative to control, but also simultaneously increased the affinity of the enzyme for the cardiac glycoside: the magnitudes of the apparent constant of inhibition I0.5 were 21.0 +/- 5.2 microM and 5.3 +/- 0.7 microM. It is concluded, that highly effective inhibitors of the Na+,K+-ATPase activity--calixarenes C-97 and C-107 can enhance the effect of the sodium pump conventional inhibitor--ouabain, increasing the affinity of the enzyme for the cardiac glycoside (on the example of calixarene C-97).  相似文献   

11.
The sarcoplasmic reticulum (SR) Ca(2+) release channel (RyR1) from malignant hyperthermia-susceptible (MHS) porcine skeletal muscle has a decreased sensitivity to inhibition by Mg(2+). This diminished Mg(2+) inhibition has been attributed to a lower Mg(2+) affinity of the inhibition (I) site. To determine whether alterations in the Ca(2+) and Mg(2+) affinity of the activation (A) site contribute to the altered Mg(2+) inhibition, we estimated the Ca(2+) and Mg(2+) affinities of the A- and I-sites of normal and MHS RyR1. Compared with normal SR, MHS SR required less Ca(2+) to half-maximally activate [(3)H]ryanodine binding (K(A,Ca): MHS = 0.17 +/- 0.01 microM; normal = 0.29 +/- 0.02 microM) and more Ca(2+) to half-maximally inhibit ryanodine binding (K(I,Ca): MHS = 519.3 +/- 48.7 microM; normal = 293.3 +/- 24.2 microM). The apparent Mg(2+) affinity constants of the MHS RyR1 A- and I-sites were approximately twice those of the A- and I-sites of the normal RyR1 (K(A,Mg): MHS = 44.36 +/- 4.54 microM; normal = 21.59 +/- 1.66 microM; K(I,Mg): MHS = 660.8 +/- 53.0 microM; normal = 299.2 +/- 24.5 microM). Thus, the reduced Mg(2+) inhibition of the MHS RyR1 compared with the normal RyR1 is due to both an enhanced selectivity of the MHS RyR1 A-site for Ca(2+) over Mg(2+) and a reduced Mg(2+) affinity of the I-site.  相似文献   

12.
Henzl MT  Agah S  Larson JD 《Biochemistry》2004,43(34):10906-10917
Association of the parvalbumin AB and CD-EF domains was examined in Hepes-buffered saline, pH 7.4, employing fragments from rat alpha and beta. All of the interactions require Ca(2+). In saturating Ca(2+), the alpha AB/alpha CD-EF (alpha/alpha) complex displays an association constant of (7.6 +/- 0.4) x 10(7) M(-1). Ca(2+)-binding data for a mixture of the alpha fragments are compatible with an identical two-site model, yielding an average binding constant of (8.5 +/- 0.2) x 10(5) M(-1). The beta/beta interaction is significantly weaker, exhibiting an association constant of (3.0 +/- 0.6) x 10(6) M(-1). The Ca(2+)-binding constants for beta/beta are likewise diminished, at (1.0 +/- 0.1) x 10(5) and (2.3 +/- 0.2) x 10(4) M(-1). The magnitude of the apparent DeltaDeltaG(degree)' for Ca(2+) binding by alpha/alpha and beta/beta, at 3.4 kcal/mol, approaches that measured for the intact proteins (3.6 kcal/mol) and is substantially larger than the 1.5 kcal/mol value previously measured for the isolated CD-EF domains. This result suggests that the AB domain can modulate the Ca(2+) affinities of the CD and EF sites. Interestingly, the heterologous alpha/beta complex displays a larger association constant [(6.6 +/- 0.4) x 10(6) M(-1)] than the homologous beta/beta complex and heightened Ca(2+) affinity [binding constants of (1.3 +/- 0.1) x 10(6) and (8.8 +/- 0.2) x 10(4) M(-1)]. By contrast, beta/alpha associates more weakly than alpha/alpha and exhibits sharply reduced affinity for Ca(2+). Thus, the interaction between the beta AB domain and beta CD-EF domain may act to attenuate Ca(2+) affinity in the intact protein.  相似文献   

13.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

14.
K+ interactions with a rat brain (Na+ + K+)-dependent ATPase and the associated K+-dependent nitrophenyl phosphatase activity were examined. Classes of sites for K+ were distinguished, initially, on the basis of affinity estimated by kinetic analysis in terms of KO.5 (the concentration for half-maximal activation), and by K+-accelerated enzyme inactivation by F-minus, which permits evaluation of a dissociation constant for K+, KD. Moderate-affinity sites ("alpha sites"), with a KD near 1 mM, were demonstrable for the phosphatase activity and for the "free" enzyme. High-affinity sites ("beta sites"), with a KD near 0.1 mM, were seen for the overall ATPase activity and under conditions in which enzyme phosphorylation by substrate also occurs. Further differentiation between alpha and beta sites was made in terms of (i) the characteristic changes in affinity with pH, and (ii) the efficacy of Li+ relative to K+, Rb+, Cs+, and Tl+ at these two classes of sites. Low-affinity sites ("gamma sites") through which K+ inhibits enzymatic activity were also detectable, with a KD around 140 mM. These data are incorporated into a model for the reaction sequence to accommodate both transport processes and certain K+/ATP antagonisms.  相似文献   

15.
In the present work we reported the results of the study of erythrocyte membrane Na+,K(+)-adenosine triphosphatase (ATPase) and Mg(2+)-ATPase in patients with essential hypertension and controls. In the 40 patients with hypertension, a more marked decrease of Na+, K(+)-ATPase was observed. The behavior of the enzyme at Mg2+ activation, ouabain inhibition and the response to different temperature suggest the possibility of differences between the two groups. The normal erythrocyte Mg(2+)-ATPase activity in two groups suggest also the possible role of ratio Na+, K(+)-ATPase/Mg(2+)-ATPase in the study of essential hypertension. However the relevance of magnesium and Mg(2+)-ATPase to the pathogenesis of essential hypertension remains unclear but merits further study. On the basis of these considerations the aim of the present study was to identify, in a kinetic approach, the presence of different abnormalities of Na+ transport and Na+, K(+)-ATPase in erythrocytes from patients with essential hypertension. Much evidence has supported the hypothesis that essential hypertension is a heterogeneous disease in the pathophysiological mechanisms as well as in its clinical and therapeutical consideration.  相似文献   

16.
The effect of the membrane potential (K(+)-valinomycin system) on the Mg2+, ATP-dependent transport of Ca2+ in inside-out vesicles of myometrium sarcolemma has been studied. The membrane potential was identified by using a cyanine potential-sensitive probe, diS-C3-(5). In the presence of valinomycin (5.10(-8) M) the inside-out directed K+ gradient (delta psi = -86 mV, with a negative charge inside) stimulated the initial rate of the energy-dependent accumulation of Ca2+ transfer whereas the oppositely directed K+ gradient (delta psi = +72 mV, with a positive charge inside) had no effect on this process. The K+ gradient was formed by isotonic substitution of K+ in intra- or extravesicular space for choline +. At the same time, in the absence of K+ gradient the Mg2+, ATP-dependent accumulation of Ca2+ in membrane vesicles did not depend on the chemical nature of the cations (K+ or choline+) used for isotonicity. The decrease of delta psi from 0 to -86 mV affects the initial rate of Ca2+ accumulation but not the maximal content of the accumulated cation. Preliminary dissipation of the membrane potential (delta psi = -86 mV) in Mg2(+)-free isotonic (with respect of K+ and choline+) media containing ATP and Ca2+ resulted in the inhibition of Mg2+, ATP-dependent Ca2+ transport induced by subsequent addition of Mg2+. These results indicate that the negative (intravesicular) electrical potential activates the Ca-pump of smooth muscle sarcolemma. This activation is based on the increase in the turnover number of the Ca2+ transporting system but not on its affinity for the transfer substrate. The use of the absolute reaction rates theory made it possible to establish that the Ca-pump effectuates the transport of a single positive charge in inside-out vesicles of smooth muscle plasma membranes, i.e., the energy-dependent transport of Ca2+ occurs either as a symport (with an anion (Cl-) or an antiport with a monovalent cation (K+) or a proton. It is assumed that the potential dependence of the Ca-pump in the smooth muscle plasma membrane plays a role in the realization of effects of mediators and physiologically active substances that are manifested as stimulation of the contractile response and depolarization of the sarcolemma. In is quite probable that the delta psi-dependent Ca-pump is also responsible for the maintenance of intracellular homeostasis of monovalent cations (K+, H+, Cl-) in smooth muscle tissues.  相似文献   

17.
The inhibition of guinea-pig heart (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) by calcium has been studied at pH 7.4, 6.8 and 6.4. 1. A decrease in pH reduced the threshold inhibitory concentration of calcium and the calcium concentration producing an inhibition of 50% of the enzyme activity. 2. Calcium reduced the apparent affinity of the enzyme of Na+, this effect occurred only at pH 7.4. 3. Calcium increased the apparent affinity of the enzyme for K+, this effect was enhanced at acidic pH. 4. Activation of the enzyme by Na+ for a constant Na+ : K+ ratio has been studied at pH 7.4 and at pH 6.8 in the absence and in the presence of 3.10(-4) M Ca 2+; the results of this experiment indicate that Ca2+ effect at pH 7.4 was not influenced by Na+ -- K+ competition and was probably due to a Na+ -- Ca2+ interaction. 5. At pH 7.4, the calcium inhibitory threshold concentration and the concentration producing 50% inhibition were reduced when Na+ was low; at pH 6.8, the calcium inhibition was not markedly modified by the change of Na+ concentration. 6. The Ca2+ -activated ATPase of myosin B which is related to the contractile behaviour of muscle and the Ca2+ -ATPase of the sarcoplasmic reticulum which is related to the ability of this structure to accumulate calcium were activated in a range of calcium concentration producing an inhibition of (Na2+ + K+) -ATPase. The present results indicate that the increase by acidity of the (Na2+ + K+) -ATPase sensitivity to calcium might be due to a suppression of a Na+ -Ca2+ interaction. On the basis of these observations, it is proposed that calcium might inhibit the Na+ -pump during the repolarization phase of the action potential and that, by this effect, it might control cell excitability.  相似文献   

18.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1.10(-4) M. The sarcolemmal markers, ouabain-sensitive (Na+ +K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ +Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27-39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ +Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ +Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K1/2 for inhibition approx. 1.5 microM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

19.
1. Gilthead gill 10(-3) M ouabain-inhibited (Na+ + K+)-ATPase and 10(-2) M ouabain-insensitive Na+-ATPase require the optimal conditions of pH 7.0, 160 mM Na+, 20 mM K+, 5 mM MgATP and pH 4.8-5.2, 75 mM Na+, 2.5 mM Mg2+, 1.0 mM ATP, respectively. 2. The main distinctive features between the two activities are confirmed to be optimal pH, the ouabain-sensitivity and the monovalent cation requirement, Na+ plus another cationic species (K+, Rb+, Cs+, NH4+) in the (Na+ + K+)-ATPase and only one species (Na+, K+, Li+, Rb+, Cs+, NH4+ or choline+) in the Na+-ATPase. 3. The aspecific Na+-ATPase activation by monovalent cations, as well as by nucleotide triphosphates, opposed to the (Na+ + K+)-ATPase specificity for ATP and Na+, relates gilthead gill ATPases to lower organism ATPases and differentiates them from mammalian ones. 4. The discrimination between the two activities by the sensitivity to ethacrynic acid, vanadate, furosemide and Ca2+ only partially agrees with the literature. 5. Present findings are viewed on the basis of the ATPase's presumptive physiological role(s) and mutual relationship.  相似文献   

20.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号