首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane transporter proteins play critical physiological roles in the cell and constitute 5-10% of prokaryotic and eukaryotic genomes. High-resolution structural information is essential for understanding the functional mechanism of these proteins. A prerequisite for structural study is to overexpress such proteins in large quantities. In the last few years, over 20 bacterial membrane transporters were overexpressed at a level of 1 mg/l of culture or higher, most often in Escherichia coli. In this review, we analyzed those factors that affect the quantity and quality of the protein produced, and summarized recent progress in overexpression of membrane transporters from bacterial inner membrane. Rapid progress in genome sequencing provides opportunities for expressing several homologues and orthologues of the target protein simultaneously, while the availability of various expression vectors allows flexible experimental design. Careful optimization of cell culture conditions can drastically improve the expression level and homogeneity of the target protein. New sample preparation techniques for mass spectrometry of membrane proteins have enabled one to identity the rigid protein core, which can be subsequently overexpressed. Size-exclusion chromatography on HPLC has proven to be an efficient method in screening detergent, pH an other conditions required for maintaining the stability and monodispersity of the protein. Such high-quality preparations of membrane transporter proteins will probably lead to successful crystallization and structure determination of these proteins in the next few years.  相似文献   

2.
Membrane transporter proteins play critical physiological roles in the cell and constitute 5-10% of prokaryotic and eukaryotic genomes. High-resolution structural information is essential for understanding the functional mechanism of these proteins. A prerequisite for structural study is to overexpress such proteins in large quantities. In the last few years, over 20 bacterial membrane transporters were overexpressed at a level of 1 mg/l of culture or higher, most often in Escherichia coli. In this review, we analyzed those factors that affect the quantity and quality of the protein produced, and summarized recent progress in overexpression of membrane transporters from bacterial inner membrane. Rapid progress in genome sequencing provides opportunities for expressing several homologues and orthologues of the target protein simultaneously, while the availability of various expression vectors allows flexible experimental design. Careful optimization of cell culture conditions can drastically improve the expression level and homogeneity of the target protein. New sample preparation techniques for mass spectrometry of membrane proteins have enabled one to identity the rigid protein core, which can be subsequently overexpressed. Size-exclusion chromatography on HPLC has proven to be an efficient method in screening detergent, pH an other conditions required for maintaining the stability and monodispersity of the protein. Such high-quality preparations of membrane transporter proteins will probably lead to successful crystallization and structure determination of these proteins in the next few years.  相似文献   

3.
Purification of milligram quantities of target proteins is required for structural and biophysical studies. However, mammalian membrane proteins, many of which are important therapeutic targets, are too unstable to be expressed in heterologous hosts and to be solubilized by detergents. One of the most promising ways to overcome these limitations is to stabilize the membrane proteins by generating variants via introduction of truncated flexible regions, fusion partners, and site‐directed mutagenesis. Therefore, an effective screening strategy is a key to obtaining successful protein stabilization. Herein, we report the micro‐scale and high‐throughput screening of stabilized membrane protein variants using Saccharomyces cerevisiae as a host. All steps of the screening, including cultivation and disruption of cells, solubilization of the target protein, and the pretreatment for fluorescence‐detected size exclusion chromatography (FSEC), could be performed in a 96‐well microplate format. We demonstrated that the dispersion among wells was small, enabling detection of a small but important improvement in the protein stability. We also demonstrated that the thermally stable mutants of a human G protein‐coupled receptor could be distinguished based on an increase of the peak height in the FSEC profile, which was well correlated with increased ligand binding activity of the protein. This strategy represents a significant platform for handling numerous mutants, similar to alanine scanning.  相似文献   

4.
We report here a general strategy to overproduce and characterize membrane transporters. To illustrate our approach, we selected one member of the CorA transporter family among four tested that belonged to different species. This approach is transposable to other membrane proteins and involves the following steps: (i) cloning by homologous recombination, (ii) high-throughput expression screening, (iii) fermenter-based large-scale production, (iv) high-throughput detergent solubilization screening, (v) protein purification, (vi) multiangle static light scattering/refractometry characterization of purified proteins, (vii) circular dichroism spectroscopy, and (viii) detergent concentration measurements by Fourier transform infrared (FT-IR) spectroscopy. Methanosarcina mazei CorA was expressed in milligram quantities and purified (> 95% pure). n-Dodecyl-β-d-maltopyranoside (DDM) retained the pentameric native structure of this transporter; thus, we selected it as working detergent. Furthermore, we measured the detergent concentration in our purified and concentrated protein sample by FT-IR to maintain it as low as possible. Our strategy can be adapted to many structural biology approaches as well as for study of single membrane proteins in a variety of conditions.  相似文献   

5.
In Escherichia coli and other cell-based expression systems, there are critical difficulties in synthesizing membrane proteins, such as the low protein expression levels and the formation of insoluble aggregates. However, structure determinations by X-ray crystallography require the purification of milligram quantities of membrane proteins. In this study, we tried to solve these problems by using cell-free protein expression with an E. coli S30 extract, with G protein coupled receptors (GPCRs) as the target integral membrane proteins. In this system, the thioredoxin-fusion vector induced high protein expression levels as compared with the non-fusion and hexa-histidine-tagged proteins. Two detergents, Brij35 and digitonin, effectively solubilized the produced GPCRs, with little or no effect on the protein yields. The synthesized proteins were detected by Coomassie brilliant blue staining within 1h of reaction initiation, and were easily reconstituted within phospholipid vesicles. Surprisingly, the unpurified, reconstituted thioredoxin-fused receptor proteins had functional activity, in that a specific affinity binding value of an antagonist was obtained for the receptor. This cell-free translation system (about 1mg/ml of reaction volume for 6-8 h) has biophysical and biochemical advantages for the synthesis of integral membrane proteins.  相似文献   

6.
The preparation of cell membranes by ultracentrifugation of bacterial cell lysates, a pre-requisite for the purification of over-expressed membrane proteins, is both time-consuming and difficult to perform on a large scale. To overcome this bottleneck in the structural investigation of such proteins in the UK Membrane Protein Structure Initiative, we have investigated the alternative use of tangential flow filtration for preparation of membranes from Escherichia coli. This method proved to be superior to the conventional use of ultracentrifuges both in speed and in yield of membrane protein. Moreover, it could more readily be scaled up to process larger quantities of bacterial cells. Comparison of the purity and monodispersity of an over-expressed membrane protein purified from conventionally-prepared membranes and from membranes prepared by filtration revealed no substantial differences. The approach described should therefore be of general use for membrane protein preparation for a wide range of applications, including both structural and functional studies.  相似文献   

7.
Eukaryotic membrane protein expression is still a major bottleneck for structural studies. Production in E. coli often leads to low expression level and/or aggregated proteins. In the last decade, strategies relying on new fusion protein expression revealed promising results. Fusion with the amphipatic Mistic protein has been described to favor expression in E. coli membranes. Although, this approach has already been reported for a few membrane proteins, little is known about the activity of the fused proteins. We used this strategy and obtained high expression levels of a chloroplast ATP/ADP transporter from A. thaliana (NTT1) and characterized its transport properties. NTT1 fused to Mistic has a very low transport activity which can be recovered after in vivo Mistic fusion cleavage. Moreover, detailed molecular characterization of purified NTT1 mature form, NTT1 fused to Mistic or NTT1 cleaved-off from this fusion highlights the correct fold of the latter one. Therefore, considering the higher quantity of purified NTT1 mature form obtained via the Mistic fusion approach, this is a valuable strategy for obtaining quantities of pure and active proteins that are adequate for structural studies.  相似文献   

8.
Membrane proteins are challenging targets for structural biologists. Finding optimal candidates for such studies requires extensive and laborious screening of protein expression and/or stability in detergent. The use of green fluorescent protein (GFP) as a reporter has enormously facilitated these studies; however, its 238 residues can potentially alter the intrinsic properties of the target (e.g., expression or stability). With the aim of minimizing undesired effects of full-length GFP, here we describe the utility of a split GFP reporter during precrystallization studies of membrane proteins. GFP fluorescence appeared by complementation of the first 15 residues of GFP (GFP(11)) (fused to the C terminus of a membrane protein target) with the remaining nonfluorescent GFP (GFP(1-10)). The signal obtained after sequential expression of SteT (l-serine/l-threonine exchanger of Bacillus subtilis) fused to GFP(11) followed by GFP(1-10) specifically measured the protein fraction inserted into the Escherichia coli cytoplasmic membrane, thereby discarding protein aggregates confined as inclusion bodies. Furthermore, in vitro complementation of purified SteT-GFP(11) with purified GFP(1-10) was exploited to rapidly assess the stability of wild-type and G294V mutant versions of SteT-GFP(11) following detergent solubilization and purification. This method can be applied in a medium- to high-throughput manner with multiple samples.  相似文献   

9.
Recombinant production of HPV oncoprotein E6 is notoriously difficult. The unfused sequence is produced in inclusion bodies. By contrast, fusions of E6 to the C-terminus of carrier proteins such as maltose-binding protein or glutathione-S-transferase are produced soluble. However, it has not yet been possible to purify E6 protein from such fusion constructs. Here, we show that this was due to the biophysical heterogeneity of the fusion preparations. We find that soluble MBP-E6 preparations contain two subpopulations. A major fraction is aggregated and contains exclusively misfolded E6 moieties ('soluble inclusion bodies'). A minor fraction is monodisperse and contains the properly folded E6 moieties. Using monodispersity as a screening criterion, we optimized the expression conditions, the purification process and the sequence of E6, finally obtaining stable monodisperse MBP-E6 preparations. In contrast to aggregated MBP-E6, these preparations yielded fully soluble E6 after proteolytic removal of MBP. Once purified, these E6 proteins are stable, folded and biologically active. The first biophysical measurements on pure E6 were performed. This work shows that solubility is not a sufficient criterion to check that the passenger protein in a fusion construct is properly folded and active. By contrast, monodispersity appears as a better quality criterion. The monodispersity-based strategy presented here constitutes a general method to prepare fusion proteins with optimized folding and biological activity.  相似文献   

10.
The overexpression of milligram quantities of protein remains a key bottleneck in membrane protein structural biology. A challenge of particular difficulty has been the overproduction of eukaryotic membrane proteins. In order to cope with the frequently poor expression levels associated with these challenging proteins, it is often necessary to screen a large number of homologues to find a well expressing clone. To facilitate this process using the heterologous, eukaryotic expression host Pichia pastoris, we have developed a simple fluorescent induction plate‐screening assay that allows for the rapid detection of well expressing clones of eukaryotic membrane proteins that have been fused to GFP. Using a eukaryotic membrane protein known to express well in P. pastoris (human aquaporin 4) and homologues of the ER associated membrane protein phosphatidylethanolamine N‐methyltransferase (PEMT), we demonstrate that when a large number of clones are screened, a small number of highly expressing “jackpot” clones can be isolated. A jackpot PEMT clone resulted in 5 mg/L yield after purification. The method allows for the facile simultaneous screening of hundreds of clones providing an alternate to in‐culture screening and will greatly accelerate the search for overexpressing eukaryotic membrane proteins.  相似文献   

11.
Membrane organization describes the relationship of proteins to the membrane, that is, whether the protein crosses the membrane or is integral to the membrane and its orientation with respect to the membrane. Membrane organization is determined primarily by the presence of two features which target proteins to the secretory pathway: the endoplasmic reticulum signal peptide and the ?-helical transmembrane domain. In order to generate membrane organization annotation of high quality, confidence and throughput, the Membrane Organization (MemO) pipeline was developed, incorporating consensus feature prediction modules with integration and annotation rules derived from biological observations. The pipeline classifies proteins into six categories based on the presence or absence of predicted features: Soluble, intracellular proteins; Soluble, secreted proteins; Type I membrane proteins; Type II membrane proteins; Multi-span membrane proteins and Glycosylphosphatidylinositol anchored membrane proteins. The MemO pipeline represents an integrated strategy for the application of state-of-the-art bioinformatics tools to the annotation of protein membrane organization, a property which adds biological context to the large quantities of protein sequence information available.  相似文献   

12.
Crystallographic studies of membrane proteins have been steadily increasing despite their unique physical properties that hinder crystal formation. Co-crystallization with antibody fragments has emerged as a promising solution to obtain diffraction quality crystals. Antibody binding to the target membrane protein can yield a homogenous population of the protein. Interantibody interactions can also provide additional crystal contacts, which are minimized in membrane proteins due to micelle formation around the transmembrane segments. Rapid identification of antibody fragments that can recognize native protein structure makes phage display a valuable method for crystallographic studies of membrane proteins. Methods that speed the reliable characterization of phage display selected antibody fragments are needed to make the technology more generally applicable. In this report, a phage display biopanning procedure is described to identify Fragments antigen binding (Fabs) for membrane proteins. It is also demonstrated that Fabs can be rapidly grouped based on relative affinities using enzyme linked immunosorbent assay (ELISA) and unpurified Fabs. This procedure greatly speeds the prioritization of candidate binders to membrane proteins and will aid in subsequent structure determinations.  相似文献   

13.
The baculovirus expression system has been used to express large quantities of various proteins, including membrane receptors. Here, we reveal a novel property of this expression system to be that certain membrane proteins can be displayed on the budded virus itself. We introduced the genes encoding sterol regulatory element-binding protein-2 (SREBP-2) or SREBP cleavage-activating protein (SCAP), important integral membrane proteins of the endoplasmic reticulum (ER) and/or the Golgi apparatus related to cellular cholesterol regulation, into a baculovirus vector. When insect cells were infected with SREBP-2 or SCAP recombinant viruses, it was found that these ER membrane proteins appeared on the budded baculovirus in addition to the host cell membrane fraction. Compared to proteins expressed on the cell membrane, membrane proteins displayed on virus exhibited both less aggregation and less degradation upon immunoblotting. Using this viral displayed SCAP as the screening antigen, we then generated a new monoclonal antibody specific against SCAP, which was useful for immunological localization studies. This system, which takes advantage of the viral display of membrane proteins, should prove to be a powerful additional tool for postgenomic protein analysis.  相似文献   

14.
15.
The recombinant expression of integral membrane proteins is considered a major challenge, and together with the crystallization step, the major hurdle toward routine structure determination of membrane proteins. Basic methodologies for high-throughput (HTP) expression optimization of soluble proteins have recently emerged, providing statistically significant success rates for producing such proteins. Experimental procedures for handling integral membrane proteins are generally more challenging, and there have been no previous comprehensive reports of HTP technology for membrane protein production. Here, we present a generic and integrated parallel HTP strategy for cloning and expression screening of membrane proteins in their detergent solubilized form. Based on this strategy, we provide overall success rates for membrane protein production in Escherichia coli, as well as initial benchmarking statistics of parameters such as expression vectors, strains, and solubilizing detergents. The technologies were applied to 49 E. coli integral membrane proteins with human homologs and revealed that 71% of these proteins could be produced at sufficient levels to allow milligram amounts of protein to be relatively easily purified, which is a significantly higher success rate than anticipated. We attribute the high success rate to the quality and robustness of the methodology used, and to introducing multiple parameters such as different vectors, strains, and detergents. The presented strategy demonstrates the usefulness of HTP technologies for membrane protein production, and the feasibility of large-scale programs for elucidation of structure and function of bacterial integral membrane proteins.  相似文献   

16.
Small molecules that bind proteins can be used as ligands for protein purification and for investigating protein-protein and protein-drug interactions. Unfortunately, many methods used to identify new ligands to desired proteins suffer from common shortcomings, including the requirement that the target protein be purified and/or the requirement that the ligands be selected under conditions different from those under which it will be used. We have developed a new method called the Bead blot that can (i) select ligands to unpurified proteins, including trace proteins, present in complex materials (e.g., unfractionated plasma); (ii) select ligands to multiple proteins under a variety of conditions in a single experiment; and (iii) be used with libraries of different types of ligands. In the Bead blot, a library of ligands, synthesized on chromatography resin beads, is incubated with a starting material containing a target protein for which a ligand is sought. The proteins in the material bind to their complementary ligands according to specific affinity interactions. Then the protein-loaded beads are immobilized in a porous matrix, and the proteins are directionally eluted from the beads and captured on a membrane superimposed on the beads. The location of the target protein on the membrane is determined, and because the position of the protein(s) on the membrane reflects the position of the bead(s) in the matrix, the bead that originally bound the protein is identified, with subsequent elucidation of the ligand sequence. Ligands to several targets can be identified in one experiment. Here we demonstrate the broad utility of this method by the selection of ligands that purify plasma protein complexes or that remove pathogens from whole blood with very high affinity constants. We also select ligands to a protein based on competitive elution.  相似文献   

17.
The use of blue native polyacrylamide gel electrophoresis (BN-PAGE) has been reported in the literature to retain both water-soluble and membrane protein complexes in their native hetero-oligomeric state and to determine the molecular weight of membrane proteins. However, membrane proteins show abnormal mobility when compared with water-soluble markers. Although one could use membrane proteins as markers or apply a conversion factor to the observed molecular weight to account for the bound Coomassie blue dye, when one just wants to assess homo-oligomeric size, these methods appear to be too time-consuming or might not be generally applicable. Here, during detergent screening studies to identify the best detergent for achieving a monodisperse sample, we observed that under certain conditions membrane proteins tend to form ladders of increasing oligomeric size. Although the ladders themselves contain no indication of which band represents the correct oligomeric size, they provide a scale that can be compared with a single band, representing the native homo-oligomeric size, obtained in other conditions of the screen. We show that this approach works for three membrane proteins: CorA (42 kDa), aquaporin Z (25 kDa), and small hydrophobic (SH) protein from respiratory syncytial virus (8 kDa). In addition, polydispersity results and identification of the most suitable detergent correlate optimally not only with size exclusion chromatography (SEC) but also with results from sedimentation velocity and equilibrium experiments. Because it involves minute quantities of sample and detergent, this method can be used in high-throughput approaches as a low-cost technique.  相似文献   

18.
Large-scale purification of a Dictyostelium discoideum cell surface glycoprotein, which is anchored in the membrane via a glycosylphosphatidylinositol (GPI) moiety, is described. The purification protocol involved four steps: separation of crude cell membranes by low-speed centrifugation, delipidization of these membranes using acetone, extraction of the membrane proteins using the detergent Octyl beta-D-thioglucopyranoside (OTP), and purification of a specific membrane protein by monoclonal antibody immunoaffinity chromatography. The protein purified, PsA (prespore-specific antigen), is a developmentally regulated membrane glycoprotein found on a subset of cells from the cellular slime mould, D. discoideum. The protocol provides an efficient, economical, and technically simple way to purify GPI proteins in sufficient quantities for structural and functional studies. PsA was recovered at a yield of about 60%; with a purity of 97%, the extraction of 1 x 10(10) cells (1.1 g dry weight) yielded about 0.5 mg PsA glycoprotein. Techniques are described for growing kilogram quantities of D. discoideum cells in stainless steel trays at little cost. D. discoideum has considerable potential as a novel expression system for the production of foreign membrane-associated proteins. The purification strategy provides a means of purifying other GPI proteins, including those produced by protein engineering techniques.  相似文献   

19.
A general strategy for the amplified expression in Escherichia coli of membrane transport and receptor proteins from other bacteria is described. As an illustration we report the cloning of the putative alpha-ketoglutarate membrane transport gene from the genome of Helicobacter pylori, overexpression of the protein tagged with RGS(His)6 at the C-terminus, and its purification in mg quantities. The retention of structural and functional integrity was verified by circular dichroism spectroscopy and reconstitution of transport activity. This strategy for overexpression and purification is extended to additional membrane proteins from H. pylori and from other bacteria.  相似文献   

20.
The Escherichia coli heat-shock protein ClpB can efficiently solubilize protein aggregates and refold them into active proteins in cooperation with the DnaK–DnaJ–GrpE chaperone (DnaKJE) system. However, the application of this bichaperone system at a large-scale was restricted because of the difficulties and high cost to express and purify each of these molecular chaperones. In this study, we constructed a plasmid encoding ClpB with a 6xHis-tag at its C-terminus (His-ClpB) to facilitate its purification through Immobilized Metal Affinity Chromatography (IMAC). A different plasmid capable of expressing the DnaKJE was used to obtain a cell extract containing unpurified DnaKJE. The effect of purified His-ClpB and unpurified DnaKJE on the refolding of heat-denatured malate dehydrogenase (MDH) was investigated, and proved to be highly efficient for MDH refolding. Furthermore, the use of both unpurified His-ClpB and DnaKJE available in the cell extract enabled highly successful refolding of the heat-denatured MDH with efficacy comparable to the case where the purified His-ClpB was used. To the best of our knowledge, this is the first attempt to apply a refolding cocktail comprising unpurified bichaperone system to the refolding of a heat-denatured protein, providing a practical and economically viable way of implementing a large-scale folding-like-refolding strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号