首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Many genomes have been completely sequenced. However, detecting and analyzing their protein-protein interactions by experimental methods such as co-immunoprecipitation, tandem affinity purification and Y2H is not as fast as genome sequencing. Therefore, a computational prediction method based on the known protein structural interactions will be useful to analyze large-scale protein-protein interaction rules within and among complete genomes. RESULTS: We confirmed that all the predicted protein family interactomes (the full set of protein family interactions within a proteome) of 146 species are scale-free networks, and they share a small core network comprising 36 protein families related to indispensable cellular functions. We found two fundamental differences among prokaryotic and eukaryotic interactomes: (1) eukarya had significantly more hub families than archaea and bacteria and (2) certain special hub families determined the topology of the eukaryotic interactomes. Our comparative analysis suggests that a very small number of expansive protein families led to the evolution of interactomes and seemed to have played a key role in species diversification. SUPPLEMENTARY INFORMATION: http://interactomics.org.  相似文献   

2.
MOTIVATION: Identifying protein-protein interactions is critical for understanding cellular processes. Because protein domains represent binding modules and are responsible for the interactions between proteins, computational approaches have been proposed to predict protein interactions at the domain level. The fact that protein domains are likely evolutionarily conserved allows us to pool information from data across multiple organisms for the inference of domain-domain and protein-protein interaction probabilities. RESULTS: We use a likelihood approach to estimating domain-domain interaction probabilities by integrating large-scale protein interaction data from three organisms, Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. The estimated domain-domain interaction probabilities are then used to predict protein-protein interactions in S.cerevisiae. Based on a thorough comparison of sensitivity and specificity, Gene Ontology term enrichment and gene expression profiles, we have demonstrated that it may be far more informative to predict protein-protein interactions from diverse organisms than from a single organism. AVAILABILITY: The program for computing the protein-protein interaction probabilities and supplementary material are available at http://bioinformatics.med.yale.edu/interaction.  相似文献   

3.
MOTIVATION: The current need for high-throughput protein interaction detection has resulted in interaction data being generated en masse through such experimental methods as yeast-two-hybrids and protein chips. Such data can be erroneous and they often do not provide adequate functional information for the detected interactions. Therefore, it is useful to develop an in silico approach to further validate and annotate the detected protein interactions. RESULTS: Given that protein-protein interactions involve physical interactions between protein domains, domain-domain interaction information can be useful for validating, annotating, and even predicting protein interactions. However, large-scale, experimentally determined domain-domain interaction data do not exist. Here, we describe an integrative approach to computationally derive putative domain interactions from multiple data sources, including protein interactions, protein complexes, and Rosetta Stone sequences. We further prove the usefulness of such an integrative approach by applying the derived domain interactions to predict and validate protein-protein interactions. AVAILABILITY: A database of putative protein domain interactions derived using the method described in this paper is available at http://interdom.lit.org.sg.  相似文献   

4.
马海蓉  李维琪   《微生物学通报》2003,30(6):119-123
蛋白质-蛋白质之间的相互作用是蛋白质发挥其功能的重要途径之一。通过研究蛋白质组中所有蛋白质之间的相互作用做出蛋白质相互作用对图谱是功能基因组时代许多科学家关注的问题,而大规模的酵母双杂交系统是蛋白质相互作用对图谱的研究中应用较为广泛的策略。近两年来该策略最具代表的实例是用它进行酵母中所有蛋白之间相互作用的检查。但是巨大的蛋白质网络比我们想象要大得多,单一的双杂交系统不能解决所有问题,需要同其它的方法有效地结合。  相似文献   

5.
大规模蛋白质相互作用研究方法进展   总被引:2,自引:0,他引:2  
关薇  王建  贺福初 《生命科学》2006,18(5):507-512
随着2000年酵母大规模蛋白质相互作用网络图谱的成功描绘,蛋白质相互作用特别是大规模蛋白质相互作用研究成为生命科学领域的又一个研究热点。酵母、果蝇、线虫以及人类蛋白的大规模相互作用图谱的相继完成,不仅对系统研究细胞内各种生命活动有着重要意义,也标志着蛋白质相互作用研究方法的不断发展和完善。本文综述了当前大规模研究蛋白质相互作用的技术方法并进行了比较分析。每种技术都有其各自的优缺点,在实验中要根据不同的要求和目的选择适宜的方法。  相似文献   

6.
Functional annotation from predicted protein interaction networks   总被引:1,自引:0,他引:1  
MOTIVATION: Progress in large-scale experimental determination of protein-protein interaction networks for several organisms has resulted in innovative methods of functional inference based on network connectivity. However, the amount of effort and resources required for the elucidation of experimental protein interaction networks is prohibitive. Previously we, and others, have developed techniques to predict protein interactions for novel genomes using computational methods and data generated from other genomes. RESULTS: We evaluated the performance of a network-based functional annotation method that makes use of our predicted protein interaction networks. We show that this approach performs equally well on experimentally derived and predicted interaction networks, for both manually and computationally assigned annotations. We applied the method to predicted protein interaction networks for over 50 organisms from all domains of life, providing annotations for many previously unannotated proteins and verifying existing low-confidence annotations. AVAILABILITY: Functional predictions for over 50 organisms are available at http://bioverse.compbio.washington.edu and datasets used for analysis at http://data.compbio.washington.edu/misc/downloads/nannotation_data/. SUPPLEMENTARY INFORMATION: A supplemental appendix gives additional details not in the main text. (http://data.compbio.washington.edu/misc/downloads/nannotation_data/supplement.pdf).  相似文献   

7.
Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein-protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the non-interacting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain-domain interactions. Given a protein-protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain-domain interactions, and used known domain-domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain-domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites.  相似文献   

8.
Plant protein-protein interaction networks have not been identified by large-scale experiments. In order to better understand the protein interactions in rice, the Predicted Rice Interactome Network (PRIN; http://bis.zju.edu.cn/ prin/) presented 76,585 predicted interactions involving 5,049 rice proteins. After mapping genomic features of rice (GO annotation, subcellular localization prediction, and gene expression), we found that a well-annotated and biologically significant network is rich enough to capture many significant functional linkages within higher-order biological systems, such as pathways and biological processes. Furthermore, we took MADS-box do- main-containing proteins and circadian rhythm signaling pathways as examples to demonstrate that functional protein complexes and biological pathways could be effectively expanded in our predicted network. The expanded molecular network in PRIN has considerably improved the capability of these analyses to integrate existing knowledge and provide novel insights into the function and coordination of genes and gene networks.  相似文献   

9.
MOTIVATION: Experimental limitations in high-throughput protein-protein interaction detection methods have resulted in low quality interaction datasets that contained sizable fractions of false positives and false negatives. Small-scale, focused experiments are then needed to complement the high-throughput methods to extract true protein interactions. However, the naturally vast interactomes would require much more scalable approaches. RESULTS: We describe a novel method called IRAP* as a computational complement for repurification of the highly erroneous experimentally derived protein interactomes. Our method involves an iterative process of removing interactions that are confidently identified as false positives and adding interactions detected as false negatives into the interactomes. Identification of both false positives and false negatives are performed in IRAP* using interaction confidence measures based on network topological metrics. Potential false positives are identified amongst the detected interactions as those with very low computed confidence values, while potential false negatives are discovered as the undetected interactions with high computed confidence values. Our results from applying IRAP* on large-scale interaction datasets generated by the popular yeast-two-hybrid assays for yeast, fruit fly and worm showed that the computationally repurified interaction datasets contained potentially lower fractions of false positive and false negative errors based on functional homogeneity. AVAILABILITY: The confidence indices for PPIs in yeast, fruit fly and worm as computed by our method can be found at our website http://www.comp.nus.edu.sg/~chenjin/fpfn.  相似文献   

10.
We develop a stochastic model for quantifying the binary measurements of protein-protein interactions. A key concept in the model is the binary response function (BRF) which represents the conditional probability of successfully detecting a protein-protein interaction with a given number of the protein complexes. A popular form of the BRF is introduced and the effect of the sharpness (Hill's coefficient) of this function is studied. Our model is motivated by the recently developed yeast two-hybrid method for measuring protein-protein interaction networks. We suggest that the same phenomenological BRF can also be applied to the mass spectroscopic measurement of protein-protein interactions. Based on the model, we investigate the contributions to the network topology of protein-protein interactions from (i) the distribution of protein binary association free energy, and from (ii) the cellular protein abundance. It is concluded that the association constants among different protein pairs cannot be totally independent. It is also shown that not only the association constants but also the protein abundance could be a factor in producing the power-law degree distribution of protein-protein interaction networks.  相似文献   

11.
Experiments to probe for protein-protein interactions are the focus of functional proteomic studies, thus proteomic data repositories are increasingly likely to contain a large cross-section of such information. Here, we use the Global Proteome Machine database (GPMDB), which is the largest curated and publicly available proteomic data repository derived from tandem mass spectrometry, to develop an in silico protein interaction analysis tool. Using a human histone protein for method development, we positively identified an interaction partner from each histone protein family that forms the histone octameric complex. Moreover, this method, applied to the α subunits of the human proteasome, identified all of the subunits in the 20S core particle. Furthermore, we applied this approach to human integrin αIIb and integrin β3, a major receptor involved in the activation of platelets. We identified 28 proteins, including a protein network for integrin and platelet activation. In addition, proteins interacting with integrin β1 obtained using this method were validated by comparing them to those identified in a formaldehyde-supported coimmunoprecipitation experiment, protein-protein interaction databases and the literature. Our results demonstrate that in silico protein interaction analysis is a novel tool for identifying known/candidate protein-protein interactions and proteins with shared functions in a protein network.  相似文献   

12.
MOTIVATION: The increasing availability of large-scale protein-protein interaction (PPI) data has fueled the efforts to elucidate the building blocks and organization of cellular machinery. Previous studies have shown cross-species comparison to be an effective approach in uncovering functional modules in protein networks. This has in turn driven the research for new network alignment methods with a more solid grounding in network evolution models and better scalability, to allow multiple network comparison. RESULTS: We develop a new framework for protein network alignment, based on reconstruction of an ancestral PPI network. The reconstruction algorithm is built upon a proposed model of protein network evolution, which takes into account phylogenetic history of the proteins and the evolution of their interactions. The application of our methodology to the PPI networks of yeast, worm and fly reveals that the most probable conserved ancestral interactions are often related to known protein complexes. By projecting the conserved ancestral interactions back onto the input networks we are able to identify the corresponding conserved protein modules in the considered species. In contrast to most of the previous methods, our algorithm is able to compare many networks simultaneously. The performed experiments demonstrate the ability of our method to uncover many functional modules with high specificity. AVAILABILITY: Information for obtaining software and supplementary results are available at http://bioputer.mimuw.edu.pl/papers/cappi.  相似文献   

13.
Comparison of human protein-protein interaction maps   总被引:1,自引:0,他引:1  
MOTIVATION: Large-scale mappings of protein-protein interactions have started to give us new views of the complex molecular mechanisms inside a cell. After initial projects to systematically map protein interactions in model organisms such as yeast, worm and fly, researchers have begun to focus on the mapping of the human interactome. To tackle this enormous challenge, different approaches have been proposed and pursued. While several large-scale human protein interaction maps have recently been published, their quality remains to be critically assessed. RESULTS: We present here a first comparative analysis of eight currently available large-scale maps with a total of over 10,000 unique proteins and 57,000 interactions included. They are based either on literature search, orthology or by yeast-two-hybrid assays. Comparison reveals only a small, but statistically significant overlap. More importantly, our analysis gives clear indications that all interaction maps imply considerable selection and detection biases. These results have to be taken into account for future assembly of the human interactome. AVAILABILITY: An integrated human interaction network called Unified Human Interactome (UniHI) is made publicly accessible at http://www.mdc-berlin.de/unihi. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

14.
MOTIVATION: We are motivated by the fast-growing number of protein structures in the Protein Data Bank with necessary information for prediction of protein-protein interaction sites to develop methods for identification of residues participating in protein-protein interactions. We would like to compare conditional random fields (CRFs)-based method with conventional classification-based methods that omit the relation between two labels of neighboring residues to show the advantages of CRFs-based method in predicting protein-protein interaction sites. RESULTS: The prediction of protein-protein interaction sites is solved as a sequential labeling problem by applying CRFs with features including protein sequence profile and residue accessible surface area. The CRFs-based method can achieve a comparable performance with state-of-the-art methods, when 1276 nonredundant hetero-complex protein chains are used as training and test set. Experimental result shows that CRFs-based method is a powerful and robust protein-protein interaction site prediction method and can be used to guide biologists to make specific experiments on proteins. AVAILABILITY: http://www.insun.hit.edu.cn/~mhli/site_CRFs/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

15.
MOTIVATION: In model organisms such as yeast, large databases of protein-protein and protein-DNA interactions have become an extremely important resource for the study of protein function, evolution, and gene regulatory dynamics. In this paper we demonstrate that by integrating these interactions with widely-available mRNA expression data, it is possible to generate concrete hypotheses for the underlying mechanisms governing the observed changes in gene expression. To perform this integration systematically and at large scale, we introduce an approach for screening a molecular interaction network to identify active subnetworks, i.e., connected regions of the network that show significant changes in expression over particular subsets of conditions. The method we present here combines a rigorous statistical measure for scoring subnetworks with a search algorithm for identifying subnetworks with high score. RESULTS: We evaluated our procedure on a small network of 332 genes and 362 interactions and a large network of 4160 genes containing all 7462 protein-protein and protein-DNA interactions in the yeast public databases. In the case of the small network, we identified five significant subnetworks that covered 41 out of 77 (53%) of all significant changes in expression. Both network analyses returned several top-scoring subnetworks with good correspondence to known regulatory mechanisms in the literature. These results demonstrate how large-scale genomic approaches may be used to uncover signalling and regulatory pathways in a systematic, integrative fashion.  相似文献   

16.
Using indirect protein-protein interactions for protein complex prediction   总被引:1,自引:0,他引:1  
Protein complexes are fundamental for understanding principles of cellular organizations. As the sizes of protein-protein interaction (PPI) networks are increasing, accurate and fast protein complex prediction from these PPI networks can serve as a guide for biological experiments to discover novel protein complexes. However, it is not easy to predict protein complexes from PPI networks, especially in situations where the PPI network is noisy and still incomplete. Here, we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. We know from previous work that proteins which do not interact but share interaction partners (level-2 neighbors) often share biological functions. We have proposed a method in which all direct and indirect interactions are first weighted using topological weight (FS-Weight), which estimates the strength of functional association. Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction network. Existing clustering algorithms can then be applied to this modified network. We have also proposed a novel algorithm that searches for cliques in the modified network, and merge cliques to form clusters using a "partial clique merging" method. Experiments show that (1) the use of indirect interactions and topological weight to augment protein-protein interactions can be used to improve the precision of clusters predicted by various existing clustering algorithms; and (2) our complex-finding algorithm performs very well on interaction networks modified in this way. Since no other information except the original PPI network is used, our approach would be very useful for protein complex prediction, especially for prediction of novel protein complexes.  相似文献   

17.
The vast majority of the chores in the living cell involve protein-protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein-protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.  相似文献   

18.
MOTIVATION: A major post-genomic scientific and technological pursuit is to describe the functions performed by the proteins encoded by the genome. One strategy is to first identify the protein-protein interactions in a proteome, then determine pathways and overall structure relating these interactions, and finally to statistically infer functional roles of individual proteins. Although huge amounts of genomic data are at hand, current experimental protein interaction assays must overcome technical problems to scale-up for high-throughput analysis. In the meantime, bioinformatics approaches may help bridge the information gap required for inference of protein function. In this paper, a previously described data mining approach to prediction of protein-protein interactions (Bock and Gough, 2001, Bioinformatics, 17, 455-460) is extended to interaction mining on a proteome-wide scale. An algorithm (the phylogenetic bootstrap) is introduced, which suggests traversal of a phenogram, interleaving rounds of computation and experiment, to develop a knowledge base of protein interactions in genetically-similar organisms. RESULTS: The interaction mining approach was demonstrated by building a learning system based on 1,039 experimentally validated protein-protein interactions in the human gastric bacterium Helicobacter pylori. An estimate of the generalization performance of the classifier was derived from 10-fold cross-validation, which indicated expected upper bounds on precision of 80% and sensitivity of 69% when applied to related organisms. One such organism is the enteric pathogen Campylobacter jejuni, in which comprehensive machine learning prediction of all possible pairwise protein-protein interactions was performed. The resulting network of interactions shares an average protein connectivity characteristic in common with previous investigations reported in the literature, offering strong evidence supporting the biological feasibility of the hypothesized map. For inferences about complete proteomes in which the number of pairwise non-interactions is expected to be much larger than the number of actual interactions, we anticipate that the sensitivity will remain the same but precision may decrease. We present specific biological examples of two subnetworks of protein-protein interactions in C. jejuni resulting from the application of this approach, including elements of a two-component signal transduction systems for thermoregulation, and a ferritin uptake network.  相似文献   

19.
Protein-protein interactions are essential for nearly all cellular processes. Therefore, an important goal of post-genomic research for defining gene function and understanding the function of macromolecular complexes involves creating 'interactome' maps from empirical or inferred datasets. Systematic efforts to conduct high-throughput surveys of protein-protein interactions in plants are needed to chart the complex and dynamic interaction networks that occur throughout plant development. However, no single approach can build a complete map of the interactome. Here, we review the utility and potential of various experimental approaches for creating large-scale protein-protein interaction maps in plants. Bioinformatics approaches for curating and assessing the confidence of these datasets through inter-species comparisons will be crucial in achieving a complete understanding of protein interaction networks in plants.  相似文献   

20.
Advances in proteomics technologies have enabled novel protein interactions to be detected at high speed, but they come at the expense of relatively low quality. Therefore, a crucial step in utilizing the high throughput protein interaction data is evaluating their confidence and then separating the subsets of reliable interactions from the background noise for further analyses. Using Bayesian network approaches, we combine multiple heterogeneous biological evidences, including model organism protein-protein interaction, interaction domain, functional annotation, gene expression, genome context, and network topology structure, to assign reliability to the human protein-protein interactions identified by high throughput experiments. This method shows high sensitivity and specificity to predict true interactions from the human high throughput protein-protein interaction data sets. This method has been developed into an on-line confidence scoring system specifically for the human high throughput protein-protein interactions. Users may submit their protein-protein interaction data on line, and the detailed information about the supporting evidence for query interactions together with the confidence scores will be returned. The Web interface of PRINCESS (protein interaction confidence evaluation system with multiple data sources) is available at the website of China Human Proteome Organisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号