首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Stability of nucleosomes in native and reconstituted chromatins.   总被引:35,自引:19,他引:16       下载免费PDF全文
The stability of nucleosomes of SV40 minichromosomes extracted from infected cells or reconstituted by association of SV40 DNA and the four histones H2A, H2B, H3 and H4 was studied as a function of the ionic strength. As a measure of the stability of the nucleosome, we followed the disappearance of the nucleosomes from the original chromatin and their appearance on a "competing" DNA. We show here that the DNA and the histone components of the nucleosomes do not apprecially dissociate below 800 mM NaCl. At 800 mM and above, the histone moiety of the nucleosomes can dissociate from the DNA and efficiently participate to the formation of nucleosomes on a "competing" DNA.  相似文献   

3.
Subunit structure of simian-virus-40 minichromosome.   总被引:34,自引:0,他引:34  
Electron microscopic evidence indicates that Simian virus 40 (SV40) minichromosomes extracted from infected cells consist of 20 +/- 2 nucleosomes, each containing 190 -- 200 base pairs of DNA. About 50% of the nucleosomes are not close together, but connected by segments of DNA of irregular lengths which correspond to about 15% of the viral genome, irrespective of the ionic strength. Micrococcal nuclease digestion studies show that there is about 200 base pairs of DNA in the biochemical unit of SV40 chromatin. Therefore, the visible internucleosomal DNA of the SV40 minichromosome does not arise from an unfolding of a fraction of the 190 - 200 base pairs of DNA initially wound in the nucleosome. These results support the chromatin model which proposes that the same DNA length is contained in the nucleosome and the biochemical unit. Results from extensive micrococcal nuclease digestion suggest that an SV40 nucleosome consists of a 'core' containing a DNA segment of about 135 base pairs associated to a DNA fragment more susceptible to nuclease attack. The addition of histone H1 results in a striking condensation of the SV40 minichromosome, which supports the assumption that histone H1 is involved in the folding of chromatin fibers.  相似文献   

4.
The solubilization of nucleosomes and histone H1 with increasing concentrations of NaCl has been investigated in rat liver nuclei that had been digested with micrococcal nuclease under conditions that did not substantially alter morphological properties with respect to differences in the extent of chromatin condensation. The pattern of nucleosome and H1 solubilization was gradual and noncoordinate and at least three different types of nucleosome packing interactions could be distinguished from the pattern. A class of nucleosomes containing 13-- 17% of the DNA and comprising the chromatin structures most available for micrococcal nuclease attack was eluted by 0.2 M NaCl. This fraction was solubilized with an acid-soluble protein of apparent molecular weight of 20,000 daltons and no histone H1. It differed from the nucleosomes released at higher NaCl concentrations in content of nonhistone chromosomal proteins. 40--60% of the nucleosomes were released by 0.3 M NaCl with 30% of the total nuclear histone H1 bound. The remaining nucleosomes and H1 were solublized by 0.4 M or 0.6 M NaCl. H1 was not nucleosome bound at these ionic strengths, and these fractions contained, respectively, 1.5 and 1.8 times more H1 per nucleosome than the population released by 0.3 M NaCl. These fractions contained the DNA least available for micrococcal nuclease attach. The strikingly different macromolecular composition, availability for nuclease digestion, and strength of the packing interactions of the nucleosomes released by 0.2 M NaCl suggest that this population is involved in a special function.  相似文献   

5.
Abstract: Total cerebral hemisphere nuclei purified from adult rabbit brain were subfractionated into neuronal and glial populations. Previous studies have shown that chromatin in neuronal nuclei is organized in an unusual nucleosome conformation compared with glial or kidney nuclei, i.e., a short DNA repeat length is present. We now analyze whether this difference in chromatin organization is associated with an alteration in the histone component of nucleosomes. Total histone isolated by acid/urea-protamine extraction of purified neuronal, glial, and kidney nuclei was analyzed by electrophoresis on SDS-polyacrylamide slab gels. Histone H1 that was selectively extracted from nuclei was also examined. Differences were not observed on SDS gels in the electrophoretic mobilities of histones associated with either the nucleosome core particle (histones H2A, H2B, H3, H4) or the nucleosome linker region (histone H1). Total histone and selectively extracted histone H1 were also analyzed on acid/urea slab gels that resolve histones on the basis of both molecular weight and charge differences. When analyzed in this system, differences with respect to electrophoretic mobility were not detected when comparing either selectively extracted histone H1 or total histone from neuronal and glial nuclei. Quantitative analyses were also performed and neuronal nuclei were found to contain less histone H1 per milligram DNA compared with glial or kidney nuclei. Neuronal nuclei also demonstrated a lower ratio of histone H1/core histone. These results suggest that the pronounced difference in chromatin organization in neuronal compared with glial nuclei, which is reflected by a short DNA repeat length in neurons, appears to be associated with quantitative differences in neuronal histone H1.  相似文献   

6.
Nucleosome dimers containing, on average, a single molecule of histone H5 have been isolated from chicken erythrocyte nuclei and the associated DNA fragments cloned and sequenced. The average sequence organization of at least one of the two nucleosomes in the dimers is highly asymmetric and suggests that the torsional, as well as the axial, flexibility of DNA is a determinant of nucleosome positioning. On average the nucleosome dimer is a polar structure containing linker DNA of variable lengths. The sequences associated with H5 containing nucleosomes and core particles are sufficiently different to indicate that removal of histone H5 (or H1) from chromatin may result in the migration of the histone octamer and a consequent exposure of sites for regulatory proteins.  相似文献   

7.
8.
D B Jump  T R Butt  M Smulson 《Biochemistry》1979,18(6):983-990
The relationship between poly(adenosine diphosphate) ribosylation of nuclear proteins and functionally different forms of chromatin from mid-S-phase HeLa nuclei was investigated. The major observations emerging from this study were that unique nonhistone proteins were modified in mid-S-phase HeLa nuclei. The major acceptor for poly(adenosine diphosphate-ribose) [poly(ADP-Rib)] was an internucleosomal nonhistone protein (protein C; 125 000 molecular weight). Histones H3, H1, H2b, and H2a but not H4 were ADP-ribosylated in S-phase nuclei. Chromatin fragments preferentially released by micrococcal nuclease were enriched in nonhistone proteins, poly(ADP)-ribosylated nuclear proteins, poly(ADP-Rib) polymerase activity and nascent DNA from the DNA replicating fork. In extended forms of chromatin, contiguous to the DNA replicating fork, poly(ADP-Rib) polymerase was maximally active. However, in chromatin distal to the replicating fork (i.e., more condensed structures), nucleosomal histones and histone H1 were not significantly ADP-ribosylated, and poly(ADP-Rib) polymerase activity was depressed two- to threefold. The data suggest that a subset of nucleosomes in extended regions of chromatin is subject to extensive ADP ribosylation.  相似文献   

9.
The distribution of preformed ("old") histone octamers between the two arms of DNA replication forks was analyzed in simian virus 40(SV40)-infected cells following treatment with cycloheximide to prevent nucleosome assembly from nascent histones. Viral chromatin synthesized in the presence of cycloheximide was shown to be deficient in nucleosomes. Replicating SV40 DNA (wild-type 800 and capsid assembly mutant, tsB11) was radiolabeled in either intact cells or nuclear extracts supplemented with cytosol. Nascent nucleosomal monomers were then released by extensive digestion of isolated nuclei, nuclear extracts or isolated viral chromosomes with micrococcal nuclease. The labeled nucleosomal DNA was purified and found to hybridize to both strands of SV40 DNA restriction fragments taken from each side of the origin of DNA replication, whereas Okazaki fragments hybridized only to the strand representing the retrograde DNA template. In addition, isolated, replicating SV40 chromosomes were digested with two strand-specific exonucleases that excised nascent DNA from either the forward or the retrograde side of replication forks. Pretreatment of cells with cycloheximide did not result in an excess of prenucleosomal DNA on either side of replication forks, but did increase the amount of internucleosomal DNA. These data are consistent with a dispersive model for nucleosome segregation in which "old" histone octamers are distributed to both arms of DNA replication forks.  相似文献   

10.
Phasing of nucleosomes in SV40 chromatin reconstituted in vitro   总被引:4,自引:0,他引:4  
  相似文献   

11.
The high mobility group proteins 1 and 2 (HMG1/2) and histone B4 are major components of chromatin within the nuclei assembled during the incubation of Xenopus sperm chromatin in Xenopus egg extract. To investigate their potential structural and functional roles, we have cloned and expressed Xenopus HMG1 and histone B4. Purified histone B4 and HMG1 form stable complexes with nucleosomes including Xenopus 5S DNA. Both proteins associate with linker DNA and stabilize it against digestion with micrococcal nuclease, in a similar manner to histone H1. However, neither histone B4 nor HMG1 influence the DNase I or hydroxyl radical digestion of DNA within the nucleosome core. We suggest that HMG1/2 and histone B4 have a shared structural role in organizing linker DNA in the nucleosome.  相似文献   

12.
Amino acid analyses of nuclear basic proteins of an anuran amphibian, Rana catesbeiana, revealed that they are comprised of a full set of core histones and three types of lysine-rich, sperm-specific proteins. On the basis of their amino-acid compositions and partial amino-acid sequences of their trypsin-resistant cores, the sperm-specific proteins could be defined as members of the histone H1 family. Both micrococcal nuclease digestion and electron microscopy indicated that sperm chromatin consists of nucleosomal and fibrillar DNA structures which are irregularly interspersed with each other. When sperm nuclei were incubated with nucleoplasmin, nuclei decondensed to some extent, and the sperm-specific H1s were removed, but not completely. The residual sperm-specific histone H1 variants were also found in reconstituted male pronuclear chromatin, comprising regularly spaced nucleosomes. We conclude that sperm-specific histone H1 variants are essential for chromatin condensation in the sperm nuclei, but that their complete removal is not necessary for the remodeling into somatic chromatin that takes place after fertilization. Mol. Reprod. Dev. 47:181–190, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Digestion of chromatin by endogenous nucleases to nucleosomes (140-160 base pairs of DNA) is accompanied by the accumulation of subnucleosomal DNP particles with high electrophoretic mobility (20-40 base pairs of DNA). All histones associate with the 140-160 base pairs fragment. The production of subnucleosomal DNP particles does not correlate with the degradation of histone H1 and the appearance of nucleosomes lacking histone H1. Degradation of the protein in this fragment is accompanied by the appearance of free DNA. The data obtained are in agreement with the hypothesis on the origin of subnucleosomes from the nucleosomal locus preferentially associated with the non-histone proteins and on the autonomy of these loci and of the loci associated with histone H1 in the nucleosome.  相似文献   

14.
Chromatin was assembled in vitro from relaxed closed circular DNA (SV40) and core histones at histone to DNA ratios of 0.2 to 0.3 (g/g) and incubated with topoisomerase I to relax supercoils in DNA regions not constrained by protein. Addition of histones H1 + H5 to the chromatin at an ionic strength of 0.1 M, in the presence of the solubilizing agent, polyglutamic acid, and topoisomerase I, increased the magnitude of the DNA linking number change, relative to protein-free DNA. No change in the linking number distribution occurred for relaxed protein-free DNA under these conditions. Control experiments indicated that the increase in the absolute value of the DNA linking number change in the chromatin could not be attributed to an increase in the number of nucleosomes per DNA molecule. These data suggest a solution to the linking number problem associated with models of chromatin structure.  相似文献   

15.
The susceptibility of the DNA in chromatin to single strand-specific nucleases was examined using nuclease P1, mung bean nuclease, and venom phosphodiesterase. A stage in the reaction exists where the size range of the solubilized products is similar for each of the three nucleases and is nearly independent of incubation time. During this stage, the chromatin fragments sediment in the range of 30 to 100 S and contain duplex DNA ranging from 1 to 10 million daltons. Starting with chromatin depleted of histones H1 and H5 similar fragments are generated. In both cases these nucleoprotein fragments are reduced to nucleosomes and their multimers by micrococcal nuclease. Thus, chromatin contains a limited number of DNA sites which are susceptible to single strand-specific nucleases. These sites occur at intervals of 8 to 80 nucleosomes and are distributed throughout the chromatin. Nucleosome monomers, dimers, or trimers were not observed at any stage of single strand-specific nuclease digestion of nuclei, H1- and H5-depleted chromatin, or micrococcal nuclease-generated oligonucleosomes. Each of the three nucleases converted mononucleosomes (approximately 160 base pairs) to nucleosome cores (approximately 140 base pairs) probably by exonucleolytic action that was facilitated by the prior removal of H1 and H5. The minichromosome of SV40 is highly resistant to digestion by nuclease P1.  相似文献   

16.
The structure of simian virus 40 (SV40) chromatin was probed by treatment with single- and multiple-site bacterial restriction endonucleases. Approximately the same fraction of the chromatin DNA was cleaved by each of three different single-site endonucleases, indicating that the nucleosomes do not have unique positions with regard to specific nucleotide sequences within the population of chromatin molecules. However, the extent of digestion was found to be strongly influenced by salt concentration. At 100 mM NaCl-5 mM MgCl2, only about 20% of the simian virus 40 (SV40) DNA I in chromatin was converted to linear SV40 DNA III. In contrast, at lower concentrations of NaCl (0.05 or 0.01 M), an additional 20 to 30% of the DNA was cleaved. These results suggest that at 100 mM NaCl only the DNA between nucleosomes was accessible to the restriction enzymes, whereas at the lower salt concentrations, DNA within the nucleosome regions became available for cleavage. Surprisingly, when SV40 chromatin was digested with multiple-site restriction enzymes, less than 2% of the DNA was digested to limit digest fragment, whereas only a small fraction (9 to 15%) received two or more cuts. Instead, the principal digest fragment was full-length linear SV40 DNA III. The failure to generate limit digest fragments was not a consequence of reduced enzyme activity in the reaction mixtures or of histone exchange. When the position of the principal cleavage site was mapped after HpaI digestion, it was found that this site was not unique. Nevertheless, all sites wree not cleaved with equal probability. An additional finding was that SV40 chromatin containing nicked-circular DNA II produced by random nicking of DNA I was also resistant to digestion by restriction enzymes. These results suggest that the initial cut which causes relaxation of topological constraint in SV40 chromatin DNA imparts resistance to further digestion by restriction enzymes. We propose that this may be accomplished by either "winding" of the internucleosomal DNA into the body of the nucleosome, or as suggested by others, by successive right-hand rotation of nucleosomes.  相似文献   

17.
Modifications on histones or on DNA recruit proteins that regulate chromatin function. Here, we use nucleosomes methylated on DNA and on histone H3 in an affinity assay, in conjunction with a SILAC-based proteomic analysis, to identify "crosstalk" between these two distinct classes of modification. Our analysis reveals proteins whose binding to nucleosomes is regulated by methylation of CpGs, H3K4, H3K9, and H3K27 or a combination thereof. We identify the origin recognition complex (ORC), including LRWD1 as a subunit, to be a methylation-sensitive nucleosome interactor that is recruited cooperatively by DNA and histone methylation. Other interactors, such as the lysine demethylase Fbxl11/KDM2A, recognize nucleosomes methylated on histones, but their recruitment is disrupted by DNA methylation. These data establish SILAC nucleosome affinity purifications (SNAP) as a tool for studying the dynamics between different chromatin modifications and provide a modification binding "profile" for proteins regulated by DNA and histone methylation.  相似文献   

18.
S Smith  B Stillman 《Cell》1989,58(1):15-25
The purification and characterization of a replication-dependent chromatin assembly factor (CAF-I) from the nuclei of human cells is described. CAF-I is a multisubunit protein that, when added to a crude cytosol replication extract, promotes chromatin assembly on replicating SV40 DNA. Chromatin assembly by CAF-I requires and is coupled with DNA replication. The minichromosomes assembled de novo by CAF-I consist of correctly spaced nucleosomes containing the four core histones H2A, H2B, H3, and H4, which are supplied in a soluble form by the cytosol replication extract. Thus, by several criteria, the CAF-I-dependent chromatin assembly reaction described herein reflects the process of chromatin formation during DNA replication in vivo.  相似文献   

19.
Using in vitro replication assays, we compared native with salt-treated simian virus 40 minichromosomes isolated from infected cell nuclei. Minichromosomes from both preparations contain the full complement of nucleosomes, but salt treatment removes histone H1 and a fraction of nonhistone chromatin proteins. Both types of minichromosomes served well as templates for in vitro replication, but the structures of the replication products were strikingly different. Replicated salt-treated minichromosomes contained, on average, about half the normal number of nucleosomes as previously shown (T. Krude and R. Knippers, Mol. Cell. Biol. 11:6257-6267, 1991). In contrast, the replicated untreated minichromosomes were found to be densely packed with nucleosomes, indicating that an assembly of new nucleosomes occurred during in vitro replication. Biochemical and immunological data showed that the fraction of nonhistone chromatin proteins associated with native minichromosomes includes a nucleosome assembly activity that appears to be closely related to chromatin assembly factor I (S. Smith and B. W. Stillman, Cell 58:15-25, 1989). Furthermore, this minichromosome-bound nucleosome assembly factor is able to exert its activity in trans to replicating protein-free competitor DNA. Thus, native chromatin itself contains the activities required for an ordered assembly of nucleosomes during the replication process.  相似文献   

20.
Double-nucleosome periodicity of DNA fragmentation with DNAse I in the nuclei of cells differing in size of the linker DNA length and lysine-rich histone composition was analyzed by means of nondenaturing agarose gel electrophoresis. DNAse I revealed this type of periodicity in rat thymus and CHO cell nuclei as well as in erythrocyte nuclei. It has been deduced that the so-called nucleodisome structure is also typical of cells possessing a usual DNA repeat length (200 bp or less) and lysine-rich histone H1. Two probably related events are important for establishing a clear double-nucleosome periodicity of DNA fragmentation: the replacement of H1 histone by a specific arginine-rich histone fraction (H5 histone in the case of erythrocyte) and the increase of the linker DNA length. The results are interpreted in terms of supranucleosomal organization of chromatin which may determine the dinucleosome periodicity of DNA fragmentation due to a specific packing of nucleosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号