首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levels of two subunits of chloroplast ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), total soluble proteins, carbon and leaf nitrogen content, and photosynthetic pigments in various plants (avocado, oak, olive, and strawberry) grown in vitro and ex vitro were analysed. Compared to ex vitro grown plants, micropropagated avocado, oak, and strawberry showed a markable decrease in large subunit Rubisco. However, the small subunit only decreased in strawberry and oak. Contrary to this, olive did not reveal any difference in the level of either subunit. The C/N ratio increased significantly in in vitro grown plants, except in the case of olive, where an opposite behaviour was found. Leaf chlorophyll concentration on unit mass basis was higher in all the in vitro plants than in those of greenhouse- grown plants. Only avocado plantlets showed a statistically significant decrease in total soluble proteins. Further, overall data suggest that in vitro cultural conditions have a species-specific influence on large and small subunits of Rubisco, independent of the protein, chlorophyll, or nitrogen level.  相似文献   

2.
The banana weevil, Cosmopolites sordidus (Germar), is an important pest of bananas. Predatory ants are increasingly being viewed as possible biological control agents of this pest because they are capable of entering banana plants and soil in search of prey. We studied ant predation on banana weevil in Uganda in crop residues and live plants in both laboratory and field experiments. Field studies with live plants used chemical ant exclusion in some plots and ant enhancement via colony transfer in others to measure effects of Pheidole sp. 2 and Odontomachus troglodytes Santschi on plant damage and densities of immature banana weevils.In crop residues, an important pest breeding site, twice as many larvae were removed from ant-enhanced plots as in control plots. In young (2 month) potted suckers held in shade houses, ant ability to reduce densities of banana weevil life stages varied with the weevil inoculation rate. At the lowest density (2 female weevils per pot), densities of eggs, larvae, and pupae were reduced by ants. At higher rates there was no effect. In older suckers (5–11 months) grown in larger containers, banana weevil densities were not affected by ants, but damage levels were reduced. In a field trial lasting a full crop cycle (30 months), we found that the ants tested reduced the density of banana weevil eggs in suckers during the crop, but did not affect larval densities in the sampled suckers. However, most larvae occur in the main banana plants, rather than associated suckers. Nevertheless, levels of damage in mature plants at harvest did not differ between Amdro-treated and ant-enhanced plots, suggesting the ant species studied were not able to provide economic control of banana weevil under our test conditions.  相似文献   

3.
S-ethyldipropylthiocarbamate (EPTC) applied as a soil treatment or over-the-top spray on cabbage plants (Brassica oleracea L.) caused the leaves to turn ‘glossy’ for as long as 30 days. EPTC-induced glossy plants were damaged significantly less than untreated plants by diamondback moth,Plutella xylostella (L.), imported cabbage worm,Pieris rapae (L.), and cabbage looper,Trichoplusia ni (Hbn.). Reductions in damage were equivalent to those obtained from treatment with permethrin. When used in combination with permethrin, EPTC provided additive control of damage by these pests. Our calculations show EPTC-induced resistance to be cost-effective. This use of EPTC has several limitations, however. Younger plants (<9 leaves) were killed or injured by the herbicide. The growth of older plants was not affected, but plants did not become glossy for ca. 10 days after they were treated with EPTC. The crop must be protected with insecticides until the plants are mature enough to treat with EPTC, and until treated plants become glossy. In addition, since the glossy trait is only effective against first instar larvae, populations of later instars on glossy plants must be reduced with an application of insecticide. Finally, EPTC formulations are water-soluble and can be washed away from the plants by heavy rains and irrigation, which may make this use of EPTC impractical in some situations. Where its use is practical, and the indicated precautions are taken, EPTC-induced resistance could reduce dependence on chemical insecticides and reduce selection for insecticide resistance in diamondback moth.  相似文献   

4.
We tested whether a plant's life time seed production is increased by parasitization of herbivores in a tritrophic system, Arabidopsis thaliana (Brassicaceae) plants, Pieris rapae (Lepidoptera: Pieridae) caterpillars and the solitary endoparasitoid Cotesia rubecula (Hymenoptera: Braconidae). We established seed production for intact A. thaliana plants, plants that were mechanically damaged, plants fed upon by parasitized caterpillars and plants fed upon by unparasitized caterpillars. In the first experiment, with ecotype Landsberg (erecta mutant), herbivory by unparasitized P. rapae caterpillars resulted in a strongly reduced seed production compared to undamaged plants. In contrast, damage by P. rapae caterpillars that had been parasitized by C. rubecula did not result in a significant reduction in seed production. For the second experiment with the ecotype Columbia, the results were identical. Plants damaged by unparasitized caterpillars only produced seeds on regrown shoots. Seed production of plants that had been mechanically damaged was statistically similar to that of undamaged plants. Production of the first ripe siliques by plants fed upon by unparasitized caterpillars was delayed by 18–22 days for Landsberg and 9–10 days for Columbia. We conclude that parasitization of P. rapae by C. rubecula potentially confers a considerable fitness benefit for A. thaliana plants when compared to plants exposed to feeding damage by unparasitized P. rapae larvae. Plants that attract parasitoids and parasitoids that respond to herbivore-induced plant volatiles will both experience selective advantage, justifying the use of the term mutualism for this parasitoid-plant interaction. This type of mutualism is undoubtedly very common in nature.  相似文献   

5.
Agrotis segetum Schiff granulosis virus (AsGV) propagated in Denmark was supplied against naturally occurring cutworm populations (A. ipsilon and to a less extentA. segetum) in experimental field plots of tobacco, okra, potato and sugar beet in northern Pakistan. AsGV doses varied between 4 × 107 and 4 × 1011 capsules per m2 plot, and no. of applications between 1 and 3. One treatment with AsGV did not reduce cutworm damage significantly to tobacco seedlings and potato plants. Two treatments with AsGV reduced cutworm damage significantly. In tobacco, reduction was 64–82%, in okra and potato 85% and 77% respectively. Damage in sugar beet was reduced 78%. Three treatments with AsGV dis not reduce damage significantly better than two treatments. AsGV and the chemical insecticides Tamaran and Dieldrin, andBacillus thuringiensis (Thuricide) were about equally effective, reducing damage by 85%, 79%, 87% and 69%, respectively. No difference was found between the efficiency of highly purified AsGV to which activated charcoal was added and partially purified AsGV without charcoal.   相似文献   

6.
Two experiments were conducted to determine patterns of N change in tissues of autumn olive (Elaeagnus umbellata Thunb.) and black alder (Alnus glutinosa [L.] Gaertn.) during autumn in central Illinois, U.S.A. In the first study leaf nitrogen concentrations of autumn olive decreased 40% at an infertile minespoil site and 39% at a fertile prairie site throughout autumn whereas nitrogen concentrations in respective bark samples increased by 39% and 37%. Salt-extractable protein concentrations increased in bark and decreased in leaves over the sampling period. Free amino acid concentrations of autumn olive leaves decreased over the course of the experiment from peak concentrations in August. Asparagine, glutamic acid and proline were major constituents of the free amino acid pools in leaves. Total phosphorus concentrations of autumn olive leaves declined by 40–46% during autumn while bark concentrations of P did not significantly change.In the second experiment non-nodulated seedlings of alder receiving a low level of N-fertilization did not exhibit net resorption of leaf N during autumn whereas foliar N concentration of contrasting nonactinorhizal cottonwood plants (Populus deltoides Bartr. ex. Marsh) under the same fertilization regime decreased by 27% after the first frost. A gradual but significant decrease of 38% in foliar N concentration of nodulated alder seedlings grown under a low N-fertilization regime was associated with the cessation of nitrogenase activity during autumn in nodules. Compared with the low N fertilization regime, the higher level of N-fertilization resulted in smaller autumnal decreases of foliar N concentration in nodulated alder (17%) and in cottonwood (20%); but there was no decrease in foliar N concentration in non-nodulated alder. The higher level of N-fertilization promoted a greater accumulation of N in the roots than in the bark of both tree species after the first frost.Our results suggest that black alder lackingFrankia symbionts does not exhibit net leaf N resorption and that autumnal decreases in leaf N ofFrankia-nodulated black alder result primarily from declining foliar N import relative to export due to low temperature inhibition of N2 fixation. In contrast, autumn olive exhibited greater and more precipitous autumnal declines in foliar N concentration than those of alder, and the pattern of N decline was unaffected by site fertility.  相似文献   

7.
Galen C 《Oecologia》2005,144(1):80-87
According to the distraction hypothesis, extrafloral nectaries (EFN) evolved under selection to entice ants away from floral nectaries, reducing ant-mediated damage to flowers and/or interference with pollinators. Predator-satiation, through production of nectar in either surplus flowers or EFN, provides an alternative mechanism for reducing the impact of ants as flower visitors. I tested these two hypotheses by experimentally adding EFN to flowering plants of the alpine wildflower, Polemonium viscosum, and by surveying the relationship between ant visitation and nectary number in nature. Plants of P. viscosum lack EFN and experience flower damage by ants of Formica neorufibarbus gelida. Ant behavior was compared on plants with five flowers and three experimental EFN and on controls with equal floral display, but no EFN. Addition of EFN increased flower visitation by ants. The effect of EFN on flower visitation did not depend on proximity of EFN to flowers or attractiveness of EFN to ants. Findings suggest that ants perceived patch quality on a whole plant basis, rather than responding to EFN and flowers as distinct nectar patches. Ant visitation did not keep pace with nectary number in nature. The relationship between ant visitation and nectary number per plant was weak and shallow as predicted under satiation. Ant foraging choices on experimental inflorescences showed that ants bypass flowers avoided by earlier ants, enhancing probability of escape via satiation. Results do not support the idea that EFN evolve to reduce flower visitation by ants, but show instead that nectar in surplus flowers can satiate ants and reduce their negative impacts on flower function and integrity.  相似文献   

8.
Defense costs provide a major explanation for why plants in nature have not evolved to be better defended against pathogens and herbivores; however, evidence for defense costs is often lacking. Plants defend by deploying resistance traits that reduce damage, and tolerance traits that reduce the fitness effects of damage. We first tested the defense-stress cost (DSC) hypothesis that costs of defenses increase and become important under competitive stress. In a greenhouse experiment, uniparental maternal families of the host plant Arabis perennans were grown in the presence and absence of the bunch grass Bouteloua gracilis and the herbivore Plutella xylostella. Costs of resistance and tolerance manifest as reduced growth in the absence of herbivory were significant when A. perennans grew alone, but not in the competitive environment, in contrast to the DSC hypothesis. We then tested the defense-stress benefit (DSB) hypothesis that plant defenses may benefit plants in competitive situations thereby reducing net costs. For example, chemical resistance agents and tolerance may also have functions in competitive interactions. To test the DSB hypothesis, we compared differentially competitive populations for defense costs, assuming that poorer competitors from less dense habitats were less likely to have evolved defenses that also function in competition. Without competitive benefits of defenses, poorer competitors were expected to have higher net costs of defenses under competition in accordance with DSB. Populations of A. perennans and A. drummondii that differed dramatically in competitiveness were compared for costs, and as the DSB hypothesis predicts, only the poor competitor population showed costs of resistance under competition. However, cost of tolerance under competition did not differ among populations, suggesting that the poor competitors might have evolved a general stress tolerance. Although the DSC hypothesis may explain cases where defense costs increase under stress, the DSB hypothesis may explain some cases where costs decrease under competitive stress.  相似文献   

9.
S. Hanhimäki  J. Senn 《Oecologia》1992,91(3):318-331
Summary Studies on rapidly inducible resistance in trees against insect herbivores show substantial variation in the strength of responses. Here we report the results of a study which examined causes of this variation. We bioassayed the quality of leaves of two developmental phases (young vs. mature) of the mountain birch Betula pubescens ssp. tortuosa by measuring the growth of two instars of Epirrita autumnata larvae. We used only short shoot leaves from trees of a natural stand, uniform in size and age. Damage was caused by larvae and artificial tearing of leaf lamina, varying the scale and time. We separated seasonal changes in plants from instar-dependent effects of the animals by testing experimental larvae in two subsequent growth trials. We found that only larval-made damage induced responses in leaves that made the leaves significantly poorer quality for the test larvae. Artificial damage induced only weak responses, and artificial canopy-wide damage even caused slight improvement of leaf quality. Cumulative leaf damage did not strengthen birch responses. Leaves that were in the expansion phase responded to damage while fully-expanded, mature leaves showed no response. The pattern of responses indicated that there might be physiological constraints: small-scale damage induced resistance against the larvae but largescale damage did not. Prevalent weather conditions might have modified these responses. Larvae of two instars and sexes, of low- and high-density populations responded to leaf damage similarly. However, prior experience of larvae with the host plant may have affected subsequent larval performance. Variation in rapidly inducible responses in birches was caused by plant characters rather than by test animals.  相似文献   

10.
Eva Stoltz  Maria Greger 《Plant and Soil》2005,276(1-2):251-261
Vegetation cover with two Eriophorum species on old unweathered sulphidic mine tailings has earlier been found to reduce the element levels and to prevent production of acidity in drainage water. The present study aims to find out if Carex rostrata Stokes, Eriophorum angustifolium Honck. and Phragmites australis (Cav.) Steud. had other effects on metal and As release in fresh unweathered sulphidic mine tailings, if the species showed different effects and if this depended on plant mechanisms such as O2, carbonate or organic acid release. Plants were grown in pots with fresh sulphidic mine tailings for 13 months. Arsenic, Cd, Cu, Fe, Pb, Zn, pH, SO 4 2− , alkalinity and organic acids in the drainage water as well as metals and As in roots and shoot and O2 and redox potential in pore water were analysed. The tailings weathered slowly due to high buffering capacity thus no pH decrease was found and therefore similar buffering effects by plants as shown in the previous investigation could not be found. The plants increased the total release of metals and As from the tailings. The release did not depend on carbonate or organic acid release from plants. However, the Fe and As release was due to changed redox potential, caused by O2 release, and high concentration of Fe and As was found in plant roots. Phragmites australis released more As and Fe but less Cd than E. angustifolium and C. rostrata which make P. australis not suitable for plant establishment on sulphidic mine tailings containing high levels of As. Plants did take up the elements and the lowest translocation of elements to the shoot was found in P. australis while the highest in E. angustifolium.  相似文献   

11.
The mechanisms by which invasive species affect native communities are not well resolved. For example, invasive plants may influence other species through competition, altered ecosystem processes, or other pathways. We investigated one potential mechanism by which invasive plants may harm native species, allelopathy. Specifically, we explored whether native tree species respond differently to potential allelopathic effects of two invasive plant species. We assessed the separate effects of Lolium arundinaceam (tall fescue) and Elaeagnus umbellata (autumn olive) on three common successional tree species: Acer saccharinum (silver maple), Populus deltoides (eastern cottonwood), and Platanus occidentalis (sycamore). Tall fescue and autumn olive are widely planted and highly invasive or persistent throughout North America where they often grow in forest edges, old fields, and other sites colonized by pioneering tree species. In an exploratory greenhouse experiment, we applied aqueous extracts derived from soil, leaf litter, or live leaves to native trees. We compared these treatments to a sterile water control and also to minced leaves leached in water, a common, but potentially less realistic method of testing for allelopathy. For all tree species, minced leaves from tall fescue reduced the probability that seedlings emerged, and minced leaves of autumn olive reduced the number of days to emergence. During other demographic stages, the three native tree species diverged in their responses to the invasive plants. Platanus occidentalis exhibited the widest range of responses, with reduced root biomass due to minced tissue from both invasive species, reduced days to emergence and marginally reduced survival from minced tall fescue, and reduced leaf biomass from tall fescue leaf litter. Populus deltoides appeared insensitive to most extracts, although survival was marginally increased with application of minced or fresh leaf extracts from autumn olive. In addition, minced tall fescue shortened the time to seedling emergence for Acer saccharinum, potentially a positive effect. Overall, results suggest that allelopathy may be one mechanism underlying the negative impacts of tall fescue and autumn olive on other plant species, but that effects can depend strongly upon the source of allelochemicals and the tree species examined.  相似文献   

12.
Studies were conducted on the host searching behavior of the larval parasitoid Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae) and the pupal parasitoid Dentichasmias busseolae Heinrich (Hymenoptera: Ichneumonidae), both of which attack lepidopteran (Crambidae, Noctuidae) cereal stemborers. The behavior of D. busseolae was observed in a diversified habitat that consisted of stemborer host plants (maize, Zea mays L. and sorghum, Sorghum bicolor (L). Moench (Poaceae)) and a non-host plant (molasses grass, Melinis minutiflora Beauv. (Poaceae)), while C. sesamiae was observed separately on host plants and molasses grass. In previous olfactometer studies, C. sesamiae was attracted to molasses grass volatiles while hboxD. busseolae was repelled. The aim of the present study was to investigate the influence of molasses grass on close-range foraging behavior of the parasitoids in an arena that included infested and uninfested host plants. Dentichasmias busseolae strongly discriminated between host and non-host plants, with female wasps spending most of the time on infested host plants and least time on molasses grass. Likewise, C. sesamiae spent more time on uninfested and infested host plants than it did on molasses grass in single choice bioassays. While on infested plants, the wasps spent more time foraging on the stem, the site of damage, than on other areas of the plant. Overall, the results indicate that presence of the non-host plant does not hinder close range foraging activities of either parasitoid.  相似文献   

13.
Y. Ayal  I. Izhaki 《Oecologia》1993,93(4):518-523
The effect of feeding of the mirid bug Capsodes infuscatus on fruit production of the geophyte Asphodelus ramosus was studied in a desert area in Israel. Plant and bug densities and percent loss of fruit production were measured in a relatively dry lower colluvial slope, an intermediate upper colluvial slope, and a relatively mesic wadi. Overall damage levels were very high, with 100% loss of fruit production in many plants. Within each habitat, the number of nymphs per plant clone was positively correlated with the number of ramets per clone and percent damage was positively correlated with number of nymphs per clone. However, percent damage was not correlated with number of plants per clone in any habitat. Although damage did significantly increase with plant density in the slope habitats, mean damage to fruit production per clone was lowest (50%) in the wadi where Asphodelus density was highest. As new ramets are tightly interwoven with their mother plants, occupation of new microsites depends on establishment of new clones from seeds. Therefore, the strong and density-dependent reduction in fruit production inflicted by Capsodes on the Asphodelus population on the slope has the potential to regulate the plant density in this habitat.  相似文献   

14.
Flory SL  Mattingly WB 《Oecologia》2008,156(3):649-656
Insect oviposition on plants is widespread across many systems, but studies on the response of host plants to oviposition damage are lacking. Although patterns of oviposition vary spatially and temporally, ovipositing insects that exhibit outbreak characteristics may have strong effects on host plants during peak abundance. Periodical cicadas (Magicicada spp.), in particular, may reduce the performance of host plants when they synchronously emerge in massive numbers to mate and oviposit on host plants. Here we provide the first experimental manipulation of host plant use by periodical cicadas to evaluate the impact of cicada oviposition on plant performance across a diversity of host species within an ecologically relevant setting. Using a randomized block design, we established a plantation of three native and three exotic host plant species common to the successional forests in which cicadas occur. During the emergence of Brood X in 2004, we employed a highly effective cicada exclusion treatment by netting half of the host plants within each block. We assessed multiple measures of host plant performance, including overall plant growth and the growth and reproduction of individual branches, across three growing seasons. Despite our thorough assessment of potential host plant responses to oviposition damage, cicada oviposition did not generally inhibit host plant performance. Oviposition densities on unnetted host plants were comparable to levels documented in other studies, reinforcing the ecological relevance of our results, which indicate that cicada oviposition damage did not generally reduce the performance of native or exotic host plants.  相似文献   

15.
[目的] 探讨不同生育期和不同种植方式的茼蒿对蚕豆蚜虫的诱集作用,为利用茼蒿控制蚕豆蚜虫提供理论依据。[方法] 在蚕豆田四周种植不同生育期(幼苗期、现蕾期、开花期)和不同行数(1行、2行)的茼蒿,观察不同处理的蚕豆田有蚜株率和蚜害等级,各处理设在互不干扰的小区内进行。[结果] 蚕豆四周种植不同生育期茼蒿后,蚕豆上有蚜株率和蚜害等级比例存在显著差异,且与茼蒿的生育期有明显的相关性,各处理有蚜株率从低到高分别为茼蒿开花期(28.33%) < 现蕾期(41.67%) < 幼苗期(55.00%),并均显著低于对照(63.33%);种植不同生育期茼蒿后,各处理蚕豆蚜害等级也不同,5级蚜害在种植开花期茼蒿处理后仅为5.00%,现蕾期为23.33%,幼苗期为33.33%,对照蚕豆上蚜害最高,达40.00%。分别种植1行(33.33%)和2行(23.33%)茼蒿后,最高有蚜株率均显著低于对照(66.67%),低蚜害等级比例明显增高,高蚜害比例明显下降,且种植2行的效果更佳。[结论] 开花期的茼蒿对蚕豆蚜虫诱集作用最强,种植2行开花期茼蒿可以有效降低蚕豆蚜虫为害。在蚕豆生产上,种植茼蒿可以作为蚕豆蚜虫生态防控的重要手段之一。  相似文献   

16.
Karban R 《Oecologia》2007,153(1):81-88
Deciduous leaf fall is thought to be an adaptation that allows plants living in seasonal environments to reduce water loss and damage during unfavorable periods while increasing photosynthetic rates during favorable periods. Observations of natural variation in leaf shedding suggest that deciduous leaf fall may also allow plants to reduce herbivory. I tested this hypothesis by experimentally manipulating leaf retention for Quercus lobata and observing natural rates of herbivory. Quercus lobata is primarily deciduous although individuals show considerable natural variation in leaf retention. Oak saplings with no leaves through winter experienced reduced attack by cynipid gall makers the following spring. This pattern was consistent with the positive correlation between natural leaf persistence and gall numbers. These cynipids do not overwinter on the leaves that trees retain through winter, although they appear to use persistent leaves as oviposition cues. If these results are general for woody plants in continental temperate habitats, they suggest that an important and unrecognized consequence of deciduous leaf shedding may be a reduction in herbivore damage, and that this effect should be included in models of deciduous and evergreen behavior.  相似文献   

17.
Elderd BD 《Oecologia》2006,147(2):261-271
Disturbances, such as flooding, play important roles in determining community structure. Most studies of disturbances focus on the direct effects and, hence, the indirect effects of disturbances are poorly understood. Within terrestrial riparian areas, annual flooding leads to differences in the arthropod community as compared to non-flooded areas. In turn, these differences are likely to alter the survival, growth, and reproduction of plant species via an indirect effect of flooding (i.e., changes in herbivory patterns). To test for such effects, an experiment was conducted wherein arthropod predators and herbivores were excluded from plots in flooded and non-flooded areas and the impact on a common riparian plant, Mimulus guttatus was examined. In general, the direct effect of flooding on M. guttatus was positive. The indirect effects, however, significantly decreased plant survival for both years of the experiment, regardless of predator presence, because of an increased exposure to grasshoppers, the most abundant herbivore in the non-flooded sites. Leafhoppers, which were more abundant in the flooded sites, had much weaker and varying effects. During 2000, when the leafhopper herbivory was high, arthropod predators did not significantly reduce damage to plants. In 2001, the mean herbivory damage was lower and predators were able to significantly reduce overall leafhopper damage. The effects of predators on leafhoppers, however, did not increase plant survival, final weight, or the reproduction potential and, thus, did not initiate a species-level trophic cascade. Overall, it was the differences in the herbivore community that led to a significant decrease in plant survival. While flooding certainly alters riparian plant survival through direct abiotic effects, it also indirectly affects riparian plants by changing the arthropod community, in particular herbivores, and hence trophic interactions.  相似文献   

18.
Seedlings of spring barley, meadow fescue, and winter rape were fumigated with 180 μg kg−1 of ozone for 12 d, and effect of O3 on photosynthesis and cell membrane permeability of fumigated plants was determined. Electrolyte leakage and chlorophyll fluorescence were measured after 6, 9, and 12 d of fumigation, while net photosynthetic rate (P N) and stomatal conductance (g s) were measured 9 d after the start of ozone exposure. O3 treatment did not change membrane permeability in fescue and barley leaves, while in rape a significant decrease in ion leakage was noted within the whole experiment. O3 did not change the photochemical efficiency of photosystem 2 (PS2), i.e., Fv/Fm, and the initial fluorescence (F0). The values of half-rise time (t1/2) from F0 to maximal fluorescence (Fm) decreased in fescue and barley after 6 and 9 d of fumigation. P N decreased significantly in ozonated plants, in the three species. The greatest decrease in P N was observed in ozonated barley plants (17 % of the control). The ozone-induced decrease in P N was due to the closure of stomata. Rape was more resistant to ozone than fescue or barley. Apparently, the rape plants show a large adaptation to ozone and prevent loss of membrane integrity leading to ion leakage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Transgenic apple (Malus × domestica Borkh.) Florina plants were obtained by Agrobacterium-mediated transformation. The efficiency of gene transfer was 7.9%, calculated as a number of explants producing at least one transgenic shoot, after co-cultivation of leaf explants from in vitro-grown shoots in a thin layer of the A. tumefaciens C58C1 strain with the binary vector pCMB-B:GUS. Polymerase chain reaction revealed that all the clones contained the nptII and rolB genes, while four of them did not contain the gus gene. Southern blot analysis confirmed the integration of the nptII and rolB genes, with one to three copies per genome being present. All independent rolB-transgenic lines were able to produce roots in vitro on the hormone free medium, while the plants, transformed with the vector pIB16.1, or untransformed control plants did not root, and only half of shoots of MM106 rootstock rooted on this medium. The average root number in the rolB-transgenic clones ranged from 4 to 7.7. Pretreatment with indole-3-butyric acid caused root formation in all transgenic and control plants and significantly increased root number in the rolB-transgenic lines, compared to untransformed plants. RolB-transgenic plants, grown in vivo in greenhouse for 2 years, did not differ phenotypically from the wild type line with the exception of root parts. All rolB-transformed plants produced altered root systems containing more fine roots leading to significantly increased fresh root weight in five plant lines.  相似文献   

20.
We quantified the accumulation of and tolerance to exogenously-fed nicotine by monitoring photosynthetic capacity and growth in two nicotine producing species of Solanaceous plants (Nicotiana sylvestris andN. glauca) as well as two Solanaceous species (Datura stramonium andLycopersicon esculentum) that do not produce nicotine to examine the relationship between tolerence and the ability to produce nicotine in defensive quantities. SinceN. sylvestris uses nicotine as an inducible defense, we examined whether nicotine tolerance is induced by damage to examine further the relationship between nicotine tolerence and synthesis. All species were grown in a 1 mM nicotine-containing hydroponic solution. Reductions in the photosynthetic capacity of nicotine-fed plants were found in all species tested. Nicotine-producing species showed no greater tolerance as measured by photosynthetic capacity than the two non-producing species. Leaf damage marginally increased the tolerence ofN. sylvestris to exogeneouslyfed nicotine suggesting that photosynthetic tolerance is coordinated with nicotine production in this nicotine-producing species.N. glauca plants regained photosynthetic capacity after their accumulated nicotine was demethylated to form nornicotine. Leaf nicotine pools in the other three species did not decrease, suggesting that for these species alkaloid metabolism does not play a major role in tolerance. Tolerance, as measured by biomass gained, was higher in the two non-producing species than in the nicotine-producing species suggesting that nicotine may also be functioning as a growth regulator. These results do not support the hypothesis that tolerance is as important as biosynthetic ability in determining which species accumulate defensively significant quantities of nicotine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号