首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a taxonomic study on the ascomycetous yeasts isolated from plant materials collected in tropical forests in Yunnan and Hainan Provinces, southern China, four strains isolated from tree sap (YJ2E(T)) and flowers (YF9E(T), YWZH3C(T) and YYF2A(T)) were revealed to represent four undescribed yeast species. Molecular phylogenetic analysis based on the large subunit (26S) rRNA gene D1/D2 domain sequences showed that strain YJ2E(T) was located in a clade together with Candida haemulonii and C. pseudohaemulonii. Strain YF9E(T) was most closely related to C. azyma and strain YWZH3C(T) to C. sorbophila and C. spandovensis. Strain YYF2A(T) was clustered in a clade containing small-spored Metschnikowia species and related anamorphic Candida species. The new strains differed from their closely related described species by more than 10% mismatches in the D1/D2 domain. No sexual states were observed for the four strains on various sporulation media. The new species are therefore assigned to the genus Candida and described as Candida alocasiicola sp. nov. (type strain, YF9E(T) = AS 2.3484(T) = CBS 10702(T)), Candida hainanensis sp. nov. (type strain, YYF2A(T) = AS 2.3478(T) = CBS 10696(T)), Candida heveicola sp. nov. (type strain, YJ2E(T) = AS 2.3483(T) = CBS 10701(T)) and Candida musiphila sp. nov. (type strain, YWZH3C(T) = AS 2.3479(T) = CBS 10697(T)).  相似文献   

2.
Three new yeast species, Candida kashinagacola (JCM 15019(T) = CBS 10903(T)), C. pseudovanderkliftii (JCM 15025(T) = CBS 10904(T)), and C. vanderkliftii (JCM 15029(T) = CBS 10905(T)) are described on the basis of comparison of nucleotide sequences of large subunit ribosomal DNA D1/D2 region (LSU rDNA D1/D2). The nearest assigned species of the three new species was Candida llanquihuensis. Candida kashinagacola and C. pseudovanderkliftii differed from C. llanquihuensis by 3.8% nucleotide substitution of the region, while C. vanderkliftii did by 4.4%. Three new species differed in a number of physiological and growth characteristics from any previously assigned species and from one another. A phylogenetic tree based on the sequences of LSU rDNA D1/D2 showed that these new species together with Candida sp. ST-246, Candida sp. JW01-7-11-1-4-y2, Candida sp. BG02-7-20-001A-2-1 and C. llanquihuensis form a clade near Ambrosiozyma species. The new species did not assimilate methanol as a sole source of carbon, which supported the monophyly of these non methanol-assimilating species which are closely related to the methylotrophic yeasts. Candida kashinagacola was frequently isolated from the beetle galleries of Platypus quercivorus in three different host trees (Quercus serrata, Q. laurifolia and Castanopsis cuspidata) located in the sourthern part of Kyoto, Japan, thus indicating that this species may be a primary ambrosia fungus of P. quercivorus. On the other hand, C. pseudovanderkliftii and C. vanderkliftii were isolated only from beetle galleries in Q. laurifolia. Candida vanderkliftii was isolated from beetle gallery of Platypus lewisi as well as those of P. quercivorus. Candida pseudovanderkliftii and C. vanderkliftii are assumed to be auxiliary ambrosia fungi of P. quercivorus.  相似文献   

3.
4.
5.
A novel anamorphic yeast species belonging to the genus Candida has been isolated from cellar surfaces in North Patagonia. Morphological and physiological observation and phylogenetic analysis were performed. Pseudomycelium was plentifully produced. No sexual reproduction was observed. From sequence analysis of the 26S rDNA D1/D2 region, Candida bituminiphila and Zygoascus hellenicus were the closest species with 40 and 79 bp substitutions, respectively. C. bituminiphila differed physiologically from the novel species in its ability to assimilate sucrose and erythritol, in not fermenting any sugars, in growing without some vitamin compounds, and in growing at 40°C. All these data support the hypothesis that the new yeast, named Candida patagonica, is a novel species related to C. bituminiphila. The type strain is UNCOMA 159.5 (= CECT 12029 = CBS 10443).  相似文献   

6.
Eight strains of a novel yeast species were isolated from rotting wood and wood-boring insects in Atlantic Rain Forest ecosystems in Brazil. Sequences of the D1/D2 domains of the large subunit of the rRNA gene showed that the yeast belongs to the Scheffersomyces clade and that it is related to Candida lignicola and Candida coipomoensis. The new species was isolated from rotting wood of three different localities and a wood-boring insect suggesting that these substrates are its ecological niche. This new yeast species is able to assimilate cellobiose and other compounds related to rotting wood. Strong fermentation of cellobiose in Durham tubes was observed for the strains of this new yeast. The new species produced an intracellular β-glucosidase responsible for cellobiose hydrolysis. The novel species, Candida queiroziae sp. nov., is proposed to accommodate these isolates. The type strain of C. queiroziae is UFMG-CLM 5.1(T) (=CBS 11853(T) = NRRL Y-48722(T)).  相似文献   

7.
李娟  白逢彦 《微生物学报》2009,49(8):1011-1017
摘要: 【目的】探讨酵母菌临床分离株26S rDNA D1/D2区序列种内相似性和种间差异性的快速检测方法,为临床酵母菌菌种鉴定方法的改进奠定基础。调查北京地区临床酵母菌的种群多样性,为国内酵母菌感染的流行病学研究提供新的基础数据。【方法】用5种常见临床酵母菌种的模式和权威菌株作为标准参考菌株,从北京四家综合性医院收集临床酵母菌260余株,PCR扩增其26S rDNA D1/D2区,对扩增产物进行单链构象多态性(Single-Strand Conformation Polymorphism,SSCP)分析和序列测定分析。【结果】常见病原酵母菌26S rDNA D1/D2区的SSCP图谱具有明显的种间差异性和种内相似性,可以通过该方法对菌株进行初步的菌种鉴定。D1/D2-SSCP和序列分析相结合,对260余株临床酵母菌进行了菌种鉴定,共鉴定有10个属20个种,优势属为念珠菌属(Candida),优势种及其所占比例分别是:C. albicans (57.7%), C. parapsilosis (10.0%), C. tropicalis (9.2%), C. glabrata (6.7%)和C. krusei (5.8%),并发现过去从未或很少报道致病的酵母菌种,愈来愈多地出现在临床分离菌株中。【结论】 26S rDNA D1/D2区的SSCP图谱分析为临床酵母菌株的快速鉴定提供了新的方法;北京地区酵母菌临床分离株呈种群多样性分布,C. albicans虽然仍占优势,但其它念珠菌种的比例已达42%。  相似文献   

8.
Two yeast strains, producing needle-shaped ascospores under suitable conditions, were isolated from grapes grown in Hungary. Based on these two strains, Metschnikowia viticola (type strain NCAIM Y.01705, CBS 9950, JCM 12561) is proposed as a new yeast species. Considering its phenotypic features, the restriction fragment patterns of 18S rDNA and the sequence of the D1/D2 domain of 26S rDNA, the proposed new species is closely related to Candida kofuensis.  相似文献   

9.
Nine anamorphic, ascomycetous yeast strains belonging to the Pichia anomala clade were recovered from forest soil in 2006 in Taiwan. The nine yeast strains represent four novel yeast species based on the sequences of their D1/D2 domain of the large subunit (LSU) rRNA gene and their physiological characteristics. The scientific names of Candida dajiaensis sp. nov., Candida yuanshanicus sp. nov., Candida jianshihensis sp. nov., and Candida sanyiensis sp. nov. are proposed for these novel yeast species. The type strains are C. dajiaensis SM11S03(T) (=CBS 10590(T)=BCRC 23099(T)), C. yuanshanicus SY3S02(T) (=CBS 10589(T)=BCRC 23100(T)), C. jianshihensis SM8S04(T) (=CBS 10591(T)=BCRC 23096(T)), and C. sanyiensis SA1S06(T) (=CBS 10592(T)=BCRC 23094(T)). Sequence analysis of the D1/D2 of the LSU rRNA gene revealed that the three species, C. dajiaensis, C. yuanshanicus and Pichia onychis, shared a separate branch in the phylogenetic tree, C. jianshihensis is phylogenetically related to Candida ulmi and Pichia alni, and the phylogenetically closest relative of C. sanyiensis is Pichia populi.  相似文献   

10.
In a study of yeast diversity in Thailand, eight strains of hitherto undescribed anamorphic yeasts were isolated: four from insect frass, two from Marasmius sp. fruiting bodies, one from a flower, and one from jackfruit exudates. Phylogenetic analysis of the D1/D2 domain of 26S ribosomal DNA nucleotide sequences indicated that the eight strains represented two new species related to Candida friedrichii. Genetic separation of the two new species was further supported by DNA-DNA hybridization analysis, which resulted in between-species similarity values of less than 48%, and by electrophoretic karyotyping. The two new species are C. jaroonii sp. nov. (type strain, ST-300(T) = NBRC 103209(T) = BCC 11783(T) = CBS 10790(T)) and C. songkhlaensis sp. nov. (type strain, ST-328(T) = NBRC 103214(T) = BCC 11804(T) = CBS 10791(T)).  相似文献   

11.
The PCR amplification and subsequent restriction analysis of the ribosomal region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene is applied to the identification of yeasts belonging to the genus Candida. This methodology has previously been used for the identification of some species of this genus, but in the present work this application has been applied to the identification and characterisation of a greater number of species of the genus Candida, with a special survey of species of clinical and biotechnological interest. Among the species of the genus Candida, the high variability observed, both in the length of the amplified region (ranging between 390 and 900 bp) and in their restriction patterns, allows the unequivocal identification to the species level, with the exception of the group of species that comprises C. membranifaciens, C. conglobata, C. atlantica, C. atmosphaerica, and C. oleophila, that required the sequencing of the D1/D2 domain of the 26S rRNA gene or the 5.8S-ITS region for their proper differentiation. The 5.8S-ITS restriction analysis also failed in the differentiation of species within the pairs C.aaseri/C.butyri,C.fructus/C.musae,C.santamariae var. santamariae / C. beechii and C. zeylanoides / C. krissii. In this case, the high sequence similarities obtained for their 26S D1/D2 domain and the 5.8S-ITS region indicate that each pair of species should be considered as a single species. The main purpose of this work is to generate a database for a high number of yeast species, of both biotechnological and clinical interest, and to facilitate their easy, fast, and reliable identification. The present work improves the database available online at the IATA web page (http://motor.edinfo.es/iata/) with the patterns of 75 species belonging to the genus Candida.  相似文献   

12.
13.
Four novel yeast species are described, two from decaying mushrooms, viz. Candida cretensis and Candida vadensis, and two from rotten wood, viz. Blastobotrys robertii and Candida scorzettiae. Accession numbers for the CBS and ARS Culture Collections, and GenBank accession numbers for the D1/D2 domains of the large subunit of ribosomal DNA are: B. robertii CBS 10106T, NRRL Y-27775, DQ839395; C. cretensis CBS 9453T, NRRL Y-27777, AY4998861 and DQ839393; C. scorzettiae CBS 10107T, NRRL Y-27665, DQ839394; C. vadensis CBS 9454T, NRRL Y-27778, AY498863 and DQ839396. The GenBank accession number for the ITS region of C. cretensis is AY498862 and that for C. vadensis is AY498864. C. cretensis was the only species of the four that displayed fermentative activity. All four type strains grew on n-hexadecane. C. scorzettiae is the only one of the new species that assimilates some phenolic compounds, viz. 3-hydroxy derivatives of benzoic, phenylacetic and cinnamic acids, but not the corresponding 4-hydroxy acids. This is indicative of an operative gentisate pathway.  相似文献   

14.
Flower-visiting beetles belonging to three species of Cetoniidae were collected on three mountains near Beijing, China, and yeasts were isolated from the gut of the insects collected. Based on the 26S rDNA D1/D2 domain and internal transcribed spacer (ITS) region sequence analysis and phenotypic characterization, four novel anamorphic yeast species located in the Candida albicans/Lodderomyces elongisporus clade were identified from 18 of the strains isolated. The new species and type strains are designated as Candida blackwellae AS 2.3639T (=CBS 10843T), Candida jiufengensis AS 2.3688T (=CBS 10846T), Candida oxycetoniae AS 2.3656T (=CBS 10844T), and Candida pseudojiufengensis AS 2.3693T (=CBS 10847T). C. blackwellae sp. nov. was basal to the branch formed by C. albicans and C. dubliniensis with moderately strong bootstrap support. The closest relative of C. oxycetoniae was L. elongisporus. C. jiufengensis sp. nov. and C. pseudojiufengensis sp. nov. were closely related with each other and formed a branch in a subclade represented by C. parapsilosis and L. elongisporus.  相似文献   

15.
Candida arabinofermentans (type strain NRRL YB-2248, CBS 8468), a new yeast that ferments the pentose L-arabinose, is described. The three known strains of this new species were isolated from insect frass of pine and larch trees in the U.S. Phylogenetic analysis of nucleotide sequences from the D1/D2 domain of large subunit (26S) ribosomal DNA places C. arabinofermentans among the methanol-assimilating yeasts and most closely related to Candida ovalis. Strains of the new species produce 0.7-1.9 g/l ethanol from L-arabinose.  相似文献   

16.
Two new yeast strains of the genus Candida were isolated from insect frass collected in Khao-Yai National Park, Nakhonrachasima, Thailand. Based on the morphological, physiological and chemotaxonomic characteristics, and sequence analysis of the D1/D2 domain of 26S rRNA gene, these two strains were found to represent two distinct undescribed species and were named Candida thailandica sp. nov. (ST-17 = BCC 7717(T) = NBRC 102562(T)=CBS 10 610) and Candida lignicola sp. nov. (ST-33 = BCC 7733(T) = NBRC 102564(T) = CBS 10612). In the D1/D2 domain of 26S rRNA gene, C. thailandica (GeneBank accession no. AY228491) differs from Candida tsuchiyae, the nearest species, in 66 nucleotide substitutions (10%) and C. lignicola (GeneBank accession no. AY845350) differs from Candida coipomoensis, the nearest species, in nine nucleotides (1.6%). These two new species are clearly distinguished from their closest species by the assimilation of several carbon compounds.  相似文献   

17.
A new species of Pichia and two new species of Candida are described and were determined to be genetically isolated from all other currently recognized ascomycetous yeasts from their sequence divergence in the species-variable D1/D2 domain of large subunit (26S) ribosomal DNA. The three species were primarily isolated from the frass of wood-boring insects living in pine and spruce trees. The new species and their type strains are the following: Pichia ramenticola NRRL YB-1985 (CBS 8699), mating type alpha (NRRL YB-3835, CBS 8700, mating type a), Candida piceae NRRL YB-2107 (CBS 8701), and Candida wyomingensis NRRL YB-2152 (CBS 8703). Pichia ramenticola and C. piceae assimilate methanol as a carbon source; P. ramenticola is the first known heterothallic ascomycetous yeast to utilize this compound.  相似文献   

18.
Candida dubliniensis, yeast closely related to Candida albicans, is a new pathogen associated mainly with infections of immunocompromised hosts. In this study, we report the first isolation of three isolates of C. dubliniensis in Slovakia. The first selection of both C. albicans and C. dubliniensis from the other Candida species was done on the basis of specific green color of primoculture grown on CHROMagar Candida. The presumptive identification was completed by supplemental tests: germ-tube formation, production of chlamydospores, ability or inability to grow at 42 and 45,°C and by commercial set API 20C AUX. Parallely, the discrimination between both species was performed by PCR assay using primers specific for Candida dubliniensis  相似文献   

19.
20.
Two new ascomycetous yeast species belonging to the Starmerella clade were discovered in nests of two solitary bee species in the Atlantic rain forest of Brazil. Candida riodocensis was isolated from pollen-nectar provisions, larvae and fecal pellets of nests of Megachile sp., and Candida cellae was found in pollen-nectar provisions of Centris tarsata. Analysis of the sequences of the D1/D2 large-subunit ribosomal DNA showed that C. riodocensis is phylogenetically related to C. batistae, and the closest relative of C. cellae is C. etchellsii. The type strains are C. riodocensis UFMG-MG02 (=CBS 10087(T) = NRRL Y-27859(T)) and C. cellae UFMG-PC04 (=CBS 10086(T) = NRRL Y-27860(T)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号