首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The proteasome has been shown to make the proper C-terminal cleavage for the generation of several immunodominant class I-presented peptides whereas aminopeptidases generate their proper N termini. In this study, we show that these two distinct proteolytic processes are also involved in generating a subdominant OVA peptide KVVRFDKL (K-L). Moreover, proteasome inhibitors did not enhance the presentation of any K-L construct, suggesting that destruction of this peptide by proteasomes, if any, does not limit its presentation. We have further examined in intact cells the influence of residues flanking this epitope on these proteolytic processes. When the N-terminal flanking residues of K-L are fused to an immunodominant OVA peptide SIINFEKL (S-L), the presentation of S-L is reduced as compared with a construct with its natural flanking sequence and was not inhibited (or enhanced) by proteasome inhibitors. Similarly, a reduction in presentation was observed when the C-terminal flanking residues of the subdominant epitope were attached to S-L. A detailed analysis revealed that the Pro at the P1' position of K-L was responsible for this reduction, and presentation of these C-terminally extended constructs was sensitive to proteasome inhibitor. The study suggests that both the N- and C-terminal flanks of the subdominant peptide are suboptimal for Ag presentation. Moreover, three of four C-terminal residues that flank other subdominant or cryptic epitopes in OVA reduced the presentation of S-L. Therefore, the residues that flank the C termini of several subdominant and cryptic epitopes are often suboptimal for cleavage and may contribute to the phenomenon of immunodominance.  相似文献   

2.
Peptides presented to cytotoxic T lymphocytes by the class I major histocompatability complex are 8-11 residues long. Although proteasomal activity generates the precise C termini of antigenic epitopes, the mechanism(s) involved in generation of the precise N termini is largely unknown. To investigate the mechanism of N-terminal peptide processing, we used a cell-free system in which two recombinant ornithine decarboxylase (ODC) constructs, one expressing the native H2-K(b)-restricted ovalbumin (ova)-derived epitope SIINFEKL (ODC-ova) and the other expressing the extended epitope LESIINFEKL (ODC-LEova), were targeted to degradation by 26 S proteasomes followed by import into microsomes. We found that the cleavage specificity of the 26 S proteasome was influenced by the N-terminal flanking amino acids leading to significantly different yields of the final epitope SIINFEKL. Following incubation in the presence of purified 26 S proteasome, ODC-LEova generated largely ESIINFEKL that was efficiently converted to the final epitope SIINFEKL following translocation into microsomes. The conversion of ESIINFEKL to SIINFEKL was strictly dependent on the presence of H2-K(b) and was completely inhibited by the metalloaminopeptidase inhibitor 1,10-phenanthroline. Importantly, the converting activity was resistant to a stringent salt/EDTA wash of the microsomes and was only apparent when transport of TAP, the transporter associated with antigen processing, was facilitated. These results strongly suggest a crucial role for a luminal endoplasmic reticulum-resident metalloaminopeptidase in the N-terminal trimming of major histocompatability complex class I-associated peptides.  相似文献   

3.
A series of synthetic peptides representing authentic proteolytic cleavage sites of human rhinovirus type 14 were assayed as substrates for purified 3C protease. Competition cleavage assays were employed to determine the relative specificity constants (Kcat/Km) for substrates with sequences related to the viral 2C-3A cleavage site. Variable length peptides representing the 2C-3A cleavage site were cleaved with comparable efficiency. These studies defined a minimum substrate of 6 amino acids (TLFQ/GP), although retention of the residue at position P5 (ETLFQ/GP) resulted in a better substrate by an order of magnitude. Amino acid substitutions at position P5, P4, P1', or P2' indicated that the identity of the residue at position P5 was not critical, whereas substitutions at position P4, P1' or P2' resulted in substrates with Kcat/Km values varying over 2 orders of magnitude. In contrast to the 2C-3A cleavage site, small peptide derivatives representative of the 3A-3B cleavage site were relatively poor substrates, which suggested that residues flanking the minimum core sequence may influence susceptibility to cleavage. The 3C protease of rhinovirus type 14 was also capable of cleaving peptides representing comparable cleavage sites predicted for coxsackie B virus and poliovirus.  相似文献   

4.
The cleavage specificity of protease C1, isolated from soybean (Glycine max (L.) Merrill) seedling cotyledons, was examined using oligopeptide substrates in an HPLC based assay. A series of peptides based on the sequence Ac-KVEKEESEEGE-NH2 was used, mimicking a natural cleavage site of protease C1 in the alpha subunit of the storage protein beta-conglycinin. A study of substrate peptides truncated from either the N- or C-terminus indicates that the minimal requirements for cleavage by protease C2 are three residues N-terminal to the cleaved bond, and two residues C-terminal (i.e. P3-P2'). The maximal rate of cleavage is reached with substrates containing four to five residues N-terminal to the cleaved bond and four residues C-terminal (i.e. P4 or P5 to P4'). The importance of Glu residues at the P1, P1', and P4 positions was examined using a series of substituted nonapeptides (P5-P4') with a base sequence of Ac-KVEKEESEE-NH2. At the P1 position, the relative ranking, based on kcat/Km, was E>Q>K>A>D>F>S. Substitutions at the P1' position yield the ranking E congruent withQ>A>S>D>K>F, while those at P4' had less effect on kcat/Km, yielding the ranking F congruent with S congruent with E congruent withD>K>A congruent withQ. These data show that protease C1 prefers to cleave at Glu-Glu and Glu-Gln bonds, and that the nature of the P4' position is less important. The fact that there is specificity in the cleavage of the oligopeptides suggests that the more limited specific cleavage of the alpha and alpha' subunits of beta-conglycinin by protease C1 is due to a combination of the sequence cleavage specificity of the protease and the accessibility of appropriate scissile peptide bonds on the surface of the substrate protein.  相似文献   

5.
Methionine aminopeptidase (MAP) is a ubiquitous, essential enzyme involved in protein N-terminal methionine excision. According to the generally accepted cleavage rules for MAP, this enzyme cleaves all proteins with small side chains on the residue in the second position (P1'), but many exceptions are known. The substrate specificity of Escherichia coli MAP1 was studied in vitro with a large (>120) coherent array of peptides mimicking the natural substrates and kinetically analyzed in detail. Peptides with Val or Thr at P1' were much less efficiently cleaved than those with Ala, Cys, Gly, Pro, or Ser in this position. Certain residues at P2', P3', and P4' strongly slowed the reaction, and some proteins with Val and Thr at P1' could not undergo Met cleavage. These in vitro data were fully consistent with data for 862 E. coli proteins with known N-terminal sequences in vivo. The specificity sites were found to be identical to those for the other type of MAPs, MAP2s, and a dedicated prediction tool for Met cleavage is now available. Taking into account the rules of MAP cleavage and leader peptide removal, the N termini of all proteins were predicted from the annotated genome and compared with data obtained in vivo. This analysis showed that proteins displaying N-Met cleavage are overrepresented in vivo. We conclude that protein secretion involving leader peptide cleavage is more frequent than generally thought.  相似文献   

6.
The cleavage specificity of a monobasic processing dynorphin converting endoprotease is examined with a series of quench fluorescent peptide substrates and compared with the cleavage specificity of prohormone convertases. A dynorphin B-29-derived peptide, Abz-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-Arg-Ser-Glneddnp (where Abz is o-aminobenzoyl and eddnp is ethylenediamine 2,4-dinitrophenyl), that contains both dibasic and monobasic cleavage sites is efficiently cleaved by the dynorphin converting enzyme and not cleaved by two propeptide processing enzymes, furin and prohormone convertase 1. A shorter prorenin-related peptide, Dnp-Arg-Met-Ala-Arg-Leu-Thr-Leu-eddnp, that contains a monobasic cleavage site is cleaved by the dynorphin converting enzyme and prohormone convertase 1 and not by furin. Substitution of the P1' position by Ala moderately affects cleavage by the dynorphin-processing enzyme and prohormone convertase 1. It is interesting that this substitution results in efficient cleavage by furin. The site of cleavage, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry, is N-terminal to the Arg at the P1 position for the dynorphin converting enzyme and C-terminal to the Arg at the P1 position for furin and prohormone convertase 1. Peptides with additional basic residues at the P2 and at P4 positions also serve as substrates for the dynorphin converting enzyme. This enzyme cleaves shorter peptide substrates with significantly lower efficiency as compared with the longer peptide substrates, suggesting that the dynorphin converting enzyme prefers longer peptides that contain monobasic processing sites as substrates. Taken together, these results suggest that the cleavage specificity of the dynorphin converting enzyme is distinct but related to the cleavage specificity of the prohormone convertases and that multiple enzymes could be involved in the processing of peptide hormones and neuropeptides at monobasic and dibasic sites.  相似文献   

7.
Substrate specificity of the Escherichia coli outer membrane protease OmpT   总被引:1,自引:0,他引:1  
OmpT is a surface protease of gram-negative bacteria that has been shown to cleave antimicrobial peptides, activate human plasminogen, and degrade some recombinant heterologous proteins. We have analyzed the substrate specificity of OmpT by two complementary substrate filamentous phage display methods: (i) in situ cleavage of phage that display protease-susceptible peptides by Escherichia coli expressing OmpT and (ii) in vitro cleavage of phage-displayed peptides using purified enzyme. Consistent with previous reports, OmpT was found to exhibit a virtual requirement for Arg in the P1 position and a slightly less stringent preference for this residue in the P1' position (P1 and P1' are the residues immediately prior to and following the scissile bond). Lys, Gly, and Val were also found in the P1' position. The most common residues in the P2' position were Val or Ala, and the P3 and P4 positions exhibited a preference for Trp or Arg. Synthetic peptides based upon sequences selected by bacteriophage display were cleaved very efficiently, with kcat/Km values up to 7.3 x 10(6) M(-1) s(-1). In contrast, a peptide corresponding to the cleavage site of human plasminogen was hydrolyzed with a kcat/Km almost 10(6)-fold lower. Overall, the results presented in this work indicate that in addition to the P1 and P1' positions, additional amino acids within a six-residue window (between P4 and P2') contribute to the binding of substrate polypeptides to the OmpT binding site.  相似文献   

8.
The C-terminal cysteine protease domain of Semliki Forest virus nonstructural protein 2 (nsP2) regulates the virus life cycle by sequentially cleaving at three specific sites within the virus-encoded replicase polyprotein P1234. The site between nsP3 and nsP4 (the 3/4 site) is cleaved most efficiently. Analysis of Semliki Forest virus-specific cleavage sites with shuffled N-terminal and C-terminal half-sites showed that the main determinants of cleavage efficiency are located in the region preceding the cleavage site. Random mutagenesis analysis revealed that amino acid residues in positions P4, P3, P2, and P1 of the 3/4 cleavage site cannot tolerate much variation, whereas in the P5 position most residues were permitted. When mutations affecting cleavage efficiency were introduced into the 2/3 and 3/4 cleavage sites, the resulting viruses remained viable but had similar defects in P1234 processing as observed in the in vitro assay. Complete blockage of the 3/4 cleavage was found to be lethal. The amino acid in position P1' had a significant effect on cleavage efficiency, and in this regard the protease markedly preferred a glycine residue over the tyrosine natively present in the 3/4 site. Therefore, the cleavage sites represent a compromise between protease recognition and other requirements of the virus life cycle. The protease recognizes at least residues P4 to P1', and the P4 arginine residue plays an important role in the fast cleavage of the 3/4 site.  相似文献   

9.
The proteasome plays a crucial role in the proteolytic processing of antigens presented to T cells in the context of major histocompatibility complex class I molecules. However, the rules governing the specificity of cleavage sites are still largely unknown. We have previously shown that a cytolytic T lymphocyte-defined antigenic peptide derived from the MAGE-3 tumor-associated antigen (MAGE-3(271-279), FLWGPRALV in one-letter code) is not presented at the surface of melanoma cell lines expressing the MAGE-3 protein. By using purified proteasome and MAGE-3(271-279) peptides extended at the C terminus by 6 amino acids, we identified predominant cleavages after residues 278 and 280 but no detectable cleavage after residue Val(279), the C terminus of the antigenic peptide. In the present study, we have investigated the influence of Pro(275), Leu(278), and Glu(280) on the proteasomal digestion of MAGE-3(271-285) substituted at these positions. We show that positions 278 and 280 are major proteasomal cleavage sites because they tolerate most amino acid substitutions. In contrast, the peptide bond after Val(279) is a minor cleavage site, influenced by both distal and proximal amino acid residues.  相似文献   

10.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

11.
Wounding of tomato leaves results in the accumulation of an exoprotease called leucine aminopeptidase (LAP-A) that preferentially hydrolyzes amino acid-p-nitroanilide and -beta-naphthylamide substrates with N-terminal Leu, Met and Arg residues. To determine the substrate specificity of LAP-A on more natural substrates, the rates of hydrolysis of 60 dipeptide and seven tripeptide substrates were determined. For comparison, the specificities of the porcine and Escherichia coli LAPs were evaluated in parallel. Several marked differences in substrate specificities for the animal, plant and prokaryotic LAP enzymes were observed. Substrates with variable N-terminal (P1) residues (Xaa) were evaluated; these substrates had Leu or Gly in the penultimate (P1') position. The plant, animal, and prokaryotic LAPs hydrolyzed dipeptides with N-terminal nonpolar aliphatic (Leu, Val, Ile, and Ala), basic (Arg), and sulfur-containing (Met) residues rapidly, while P1 Asp or Gly were cleaved inefficiently from peptides. Significant differences in the cleavage of dipeptides with P1 aromatic residues (Phe, Tyr, and Trp) were noted. To systematically evaluate the impact of the P1' residue on cleavage of dipeptides, three series of dipeptides (Leu-Xaa, Gly-Xaa, and Arg-Xaa) were evaluated. The P1' residue strongly influenced hydrolysis of dipeptides and the magnitude of its effect was dependent on the P1 residue. P1' Pro, Asp, Lys and Gly slowed the hydrolysis rates of the tomato LAP-A, porcine LAP, and E. coli PepA markedly. Analysis six Arg-Gly-Xaa tripeptides showed that more diversity was tolerated in the P2' position. P2' Arg inhibited tripeptide cleavage by all three enzymes, while P2' Asp enhanced hydrolysis rates for the porcine and prokaryotic LAPs.  相似文献   

12.
Beck ZQ  Lin YC  Elder JH 《Journal of virology》2001,75(19):9458-9469
We have used a random hexamer phage library to delineate similarities and differences between the substrate specificities of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) proteases (PRs). Peptide sequences were identified that were specifically cleaved by each protease, as well as sequences cleaved equally well by both enzymes. Based on amino acid distinctions within the P3-P3' region of substrates that appeared to correlate with these cleavage specificities, we prepared a series of synthetic peptides within the framework of a peptide sequence cleaved with essentially the same efficiency by both HIV-1 and FIV PRs, Ac-KSGVF/VVNGLVK-NH(2) (arrow denotes cleavage site). We used the resultant peptide set to assess the influence of specific amino acid substitutions on the cleavage characteristics of the two proteases. The findings show that when Asn is substituted for Val at the P2 position, HIV-1 PR cleaves the substrate at a much greater rate than does FIV PR. Likewise, Glu or Gln substituted for Val at the P2' position also yields peptides specifically susceptible to HIV-1 PR. In contrast, when Ser is substituted for Val at P1', FIV PR cleaves the substrate at a much higher rate than does HIV-1 PR. In addition, Asn or Gln at the P1 position, in combination with an appropriate P3 amino acid, Arg, also strongly favors cleavage by FIV PR over HIV PR. Structural analysis identified several protease residues likely to dictate the observed specificity differences. Interestingly, HIV PR Asp30 (Ile-35 in FIV PR), which influences specificity at the S2 and S2' subsites, and HIV-1 PR Pro-81 and Val-82 (Ile-98 and Gln-99 in FIV PR), which influence specificity at the S1 and S1' subsites, are residues which are often involved in development of drug resistance in HIV-1 protease. The peptide substrate KSGVF/VVNGK, cleaved by both PRs, was used as a template for the design of a reduced amide inhibitor, Ac-GSGVF Psi(CH(2)NH)VVNGL-NH(2.) This compound inhibited both FIV and HIV-1 PRs with approximately equal efficiency. These findings establish a molecular basis for distinctions in substrate specificity between human and feline lentivirus PRs and offer a framework for development of efficient broad-based inhibitors.  相似文献   

13.
J Bouvier  P Schneider  R Etges  C Bordier 《Biochemistry》1990,29(43):10113-10119
The promastigote surface protease (PSP) of Leishmania is a neutral membrane-bound zinc enzyme. The protease has no exopeptidase activity and does not cleave a large selection of substrates with chromogenic and fluorogenic leaving groups at the P1' site. The substrate specificity of the enzyme was studied by using natural and synthetic peptides of known amino acid sequence. The identification of 11 cleavage sites indicates that the enzyme preferentially cleaves peptides at the amino side when hydrophobic residues are in the P1' site and basic amino acid residues in the P2' and P3' sites. In addition, tyrosine residues are commonly found at the P1 site. Hydrolysis is not, however, restricted to these residues. These results have allowed the synthesis of a model peptide, H2N-L-I-A-Y-L-K-K-A-T-COOH, which is cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 1.8 X 10(6) M-1 s-1. Furthermore, a synthetic nonapeptide overlapping the last four amino acids of the prosequence and the first five residues of mature PSP was found to be cleaved by the protease at the expected site to release the mature enzyme. This result suggests a possible autocatalytic mechanism for the activation of the protease. Finally, the hydroxamate-derivatized dipeptide Cbz-Tyr-Leu-NHOH was shown to inhibit PSP competitively with a KI of 17 microM.  相似文献   

14.
The tricorn-interacting factor F1 of the archaeon Thermoplasma acidophilum cleaves small hydrophobic peptide products of the proteasome and tricorn protease. F1 mutants of the active site residues that are involved in substrate recognition and catalysis displayed distinct activity patterns toward fluorogenic test substrates. Crystal structures of the mutant proteins complexed with peptides Phe-Leu, Pro-Pro, or Pro-Leu-Gly-Gly showed interaction of glutamates 213 and 245 with the N termini of the peptides and defined the S1 and S1' sites and the role of the catalytic residues. Evidence was found for processive peptide cleavage in the N-to-C direction, whereby the P1' product is translocated into the S1 site. A functional interaction of F1 with the tricorn protease was observed with the inactive F1 mutant G37A. Moreover, small angle x-ray scattering measurements for tricorn and inhibited F1 have been interpreted as formation of transient and substrate-induced complexes.  相似文献   

15.
Factor Xa is a central protease in the coagulation cascade and the target for many anticoagulant compounds currently under development. The preferences of the enzyme for substrates incorporating residues N-terminal to the cleavage site (P1, P2, etc.) have been elucidated, but little is known of its preferences for residues C-terminal to the cleavage site (P1', P2', etc.). The preferences of bovine factor Xa for substrate residues in the P1', P2' and P3' positions were mapped using fluorescence-quenched substrates. Bovine factor Xa, often used as a model for factor Xa, was most selective for the P2' position, less selective at the P1' position and almost completely non-selective at the P3' position. It appears that while the prime side subsites of factor Xa impose some selectivity towards substrates, the influence of these sites on factor Xa cleavage specificity is relatively low in comparison to related enzymes such as thrombin.  相似文献   

16.
K E Reed  A Grakoui    C M Rice 《Journal of virology》1995,69(7):4127-4136
Cleavage at the 2/3 site of hepatitis C virus (HCV) is thought to be mediated by a virus-encoded protease composed of the region of the polyprotein encoding NS2 and the N-terminal one-third of NS3. This protease is distinct from the NS3 serine protease, which is responsible for downstream cleavages in the nonstructural region. Site-directed mutagenesis of residues surrounding the 2/3 cleavage site showed that cleavage is remarkably resistant to single-amino-acid substitutions from P5 to P3' (GWRLL decreases API). The only mutations which dramatically inhibited cleavage were the ones most likely to alter the conformation of the region, such as Pro substitutions at the P1 or P1' position, deletion of both amino acids at P1 and P1', or simultaneous substitution of multiple Ala residues. Cotransfection experiments were done to provide additional information on the polypeptide requirements for bimolecular cleavage. Polypeptides used in these experiments contained amino acid substitutions and/or deletions in NS2 and/or the N-terminal one-third of NS3. Polypeptides with defects in either NS2 or the N-terminal portion of NS3 but not both were cleaved when cotransfected with constructs expressing intact versions of the defective region. Cotransfection experiments also showed that certain defective NS2-3 constructs partially inhibited cleavage of wild-type polypeptides. Although these results show that inefficient cleavage can occur in a bimolecular reaction, they suggest that both molecules must contribute a functional subunit to allow formation of a protease which is capable of cleavage at the 2/3 site. This reaction may resemble the cis cleavage thought to occur at the 2/3 site during processing of the wild-type HCV polyprotein.  相似文献   

17.
Rabbit hemorrhagic disease virus, a positive-stranded RNA virus of the family Caliciviridae, encodes a trypsin-like cysteine protease as part of a large polyprotein. Upon expression in Escherichia coli, the protease releases itself from larger precursors by proteolytic cleavages at its N and C termini. Both cleavage sites were determined by N-terminal sequence analysis of the cleavage products. Cleavage at the N terminus of the protease occurred with high efficiency at an EG dipeptide at positions 1108 and 1109. Cleavage at the C terminus of the protease occurred with low efficiency at an ET dipeptide at positions 1251 and 1252. To study the cleavage specificity of the protease, amino acid substitutions were introduced at the P2, P1, and P1' positions at the cleavage site at the N-terminal boundary of the protease. This analysis showed that the amino acid at the P1 position is the most important determinant for substrate recognition. Only glutamic acid, glutamine, and aspartic acid were tolerated at this position. At the P1' position, glycine, serine, and alanine were the preferred substrates of the protease, but a number of amino acids with larger side chains were also tolerated. Substitutions at the P2 position had only little effect on the cleavage efficiency. Cell-free expression of the C-terminal half of the ORF1 polyprotein showed that the protease catalyzes cleavage at the junction of the RNA polymerase and the capsid protein. An EG dipeptide at positions 1767 and 1768 was identified as the putative cleavage site. Our data show that rabbit hemorrhagic disease virus encodes a trypsin-like cysteine protease that is similar to 3C proteases with regard to function and specificity but is more similar to 2A proteases with regard to size.  相似文献   

18.
The specificity of the p15 proteinase of myeloblastosis-associated virus (MAV) was tested with nonviral high molecular weight substrates and with synthetic peptides. Peptides with sequences spanning known cleavage sites in viral polyproteins of Rous sarcoma virus (RSV) and avian leukemia viruses, as well as in BSA and HSA, were synthesized, and the rate of their cleavage by the MAV proteinase was compared. Synthetic peptides require for successful cleavage at least 4 residues at the N-terminal side and 3 residues at the C-terminal side. The proteinase shows a preference for hydrophobic residues with bulky side chains (Met, Tyr, Phe) in P3, although Arg and Gln can also be accepted. Small hydrophobic residues are required in P2 and P2', and large hydrophobic residues (Tyr, Met, Phe/p-nitro-Phe) are preferred in both P1 and P1'. The difference between the specificity of the p15 proteinase and that of the HIV-1 proteinase mostly pertains to position P2' of the substrate, where bulkier side chains are accepted by the HIV-1 proteinase (Richards et al., 1990). A good chromogenic substrate for the MAV and RSV proteinases was developed and used to further characterize the MAV proteinase activity with respect to ionic strength and pH. The activity of the proteinase is strongly dependent on ionic strength and pH. Both the kcat and Km values contribute to a higher cleavage efficiency at higher salt concentrations and show a bell-shaped pH dependence curve with a sharp maximum at pH 5.5 (kcat) and 6.5 (Km).  相似文献   

19.
IL-1 converting enzyme (ICE) specifically cleaves the human IL-1 beta precursor at two sequence-related sites: Asp27-Gly28 (site 1) and Asp116-Ala117 (site 2). Cleavage at Asp116-Ala117 results in the generation of mature, biologically active IL-1 beta. ICE is unusual in that preferred cleavage at Asp-X bonds (where X is a small hydrophobic residue), has not been described for any other eukaryotic protease. To further examine the substrate specificity of ICE, proteins that contain Asp-X linkages including transferrin, actin, complement factor 9, the murine IL-1 beta precursor, and human and murine IL-1 alpha precursors, were assayed for cleavage by 500-fold purified ICE. The human and murine IL-1 beta precursors were the only proteins cleaved by ICE, demonstrating that ICE is an IL-1 beta convertase. Analysis of human IL-1 beta precursor mutants containing amino acid substitutions or deletions within each processing site demonstrated that omission or replacement of Asp at site 1 or site 2 prevented cleavage by ICE. To quantitatively assess the substrate requirements of ICE, a peptide-based cleavage assay was established using a 14-mer spanning site 2. Cleavage between Asp [P1] and Ala [P1']2 was demonstrated. Replacement of Asp with Ala, Glu, or Asn resulted in a greater than 100-fold reduction in cleavage activity. The rank order in position P1' was Gly greater than Ala much greater than Leu greater than Lys greater than Glu. Substitutions at P2'-P4' and P6' had relatively little effect on cleavage activity. These results show that ICE is a highly specific IL-1 beta convertase with absolute requirements for Asp in P1 and a small hydrophobic amino acid in P1'.  相似文献   

20.
Cytotoxic T cells (CTLs) perceive the world through small peptides that are eight to ten amino acids long. These peptides (epitopes) are initially generated by the proteasome, a multi-subunit protease that is responsible for the majority of intra-cellular protein degradation. The proteasome generates the exact C-terminal of CTL epitopes, and the N-terminal with a possible extension. CTL responses may diminish if the epitopes are destroyed by the proteasomes. Therefore, the prediction of the proteasome cleavage sites is important to identify potential immunogenic regions in the proteomes of pathogenic microorganisms (or humans). We have recently shown that NetChop, a neural network-based prediction method, is the best method available at the moment to do such predictions; however, its performance is still lower than desired. Here, we use novel sequence encoding methods and show that the new version of NetChop predicts approximately 10% more of the cleavage sites correctly while lowering the number of false positives with close to 15%. With this more reliable prediction tool, we study two important questions concerning the function of the proteasome. First, we estimate the N-terminal extension of epitopes after proteasomal cleavage and find that the average extension is relatively short. However, more than 30% of the peptides have N-terminal extensions of three amino acids or more, and thus, N-terminal trimming might play an important role in the presentation of a substantial fraction of the epitopes. Second, we show that good TAP ligands have an increased chance of being cleaved by the proteasome, i.e., the specificity of TAP has evolved to fit the specificity of the proteasome. This evolutionary relationship allows for a more efficient antigen presentation.The new version of NetChop (NetChop 3.0) is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号