首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The purpose of this study was to examine the influence of interelectrode distance (IED) over the estimated innervation zone (IZ) for the vastus lateralis muscle and normalization on the torque-related patterns of responses for electromyographic (EMG) amplitude and mean power frequency (MPF) during concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the leg extensors. Eight men performed submaximal to maximal concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the dominant leg extensors. Surface EMG signals were recorded simultaneously with two bipolar electrode arrangements in single differential configuration (20 and 40 mm IEDs) placed over the estimated IZ for the vastus lateralis muscle and a third electrode arrangement in single differential configuration (20 mm IED) placed distal to the estimated IZ. The results indicated that there were only a few (six of 90 statistical comparisons) significant (p < 0.05) mean differences among the three electrode arrangements for absolute EMG amplitude. There were no mean differences among the three electrode arrangements for absolute or normalized EMG MPF values or normalized EMG amplitude for the three types of muscle actions. Thus, it may be possible to reduce the potential influence of the IZ on amplitude and spectral parameters of the EMG signal through normalization.  相似文献   

2.
The purpose of this study was to examine the effects of interelectrode distance (IED) on the absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) versus isokinetic and isometric torque relationships for the biceps brachii muscle. Ten adults [mean+/-SD age=22.0+/-3.4 years] performed submaximal to maximal, isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects performed randomly ordered, submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed over the biceps brachii muscle with IEDs of 20, 40, and 60mm. Absolute and normalized EMG amplitude (muVrms and %max) increased linearly with torque during the isokinetic and isometric muscle actions (r(2) range=0.988-0.998), but there were no significant changes for absolute or normalized EMG MPF (Hz or %max) from 10% to 100% PT and MVC. In some cases, there were significant (p<0.05) differences among the three IED arrangements for absolute EMG amplitude and MPF values, but not for the normalized values. These findings suggested that for the biceps brachii muscle, IEDs between 20 and 60mm resulted in similar patterns for the EMG amplitude or MPF versus dynamic and isometric torque relationships. Furthermore, unlike the absolute EMG amplitude and MPF values, the normalized EMG data were not influenced by changes in IED between 20 and 60mm. Thus, normalized EMG data can be compared among previous studies that have utilized different IED arrangements.  相似文献   

3.
In comparison to isometric muscle action models, little is known about the electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) responses to fatiguing dynamic muscle actions. Simultaneous examination of the EMG and MMG amplitude and MPF may provide additional insight with regard to the motor control strategies utilized by the superficial muscles of the quadriceps femoris during a concentric fatiguing task. Thus, the purpose of this study was to examine the EMG and MMG amplitude and MPF responses of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during repeated, concentric muscle actions of the dominant leg. Seventeen adults (21.8+/-1.7 yr) performed 50 consecutive, maximal concentric muscle actions of the dominant leg extensors on a Biodex System 3 Dynamometer at velocities of 60 degrees s(-1) and 300 degrees s(-1). Bipolar surface electrode arrangements were placed over the mid portion of the VL, RF, and VM muscles with a MMG contact sensor placed adjacent to the superior EMG electrode on each muscle. Torque, MMG and EMG amplitude and MPF values were calculated for each of the 50 repetitions. All values were normalized to the value recorded during the first repetition and then averaged across all subjects. The cubic decreases in torque at 60 degrees s(-1) (R2 = 0.972) and 300 degrees s(-1) (R2 = 0.931) was associated with a decline in torque of 59+/-24% and 53+/-11%, respectively. The muscle and velocity specific responses for the MMG amplitude and MPF demonstrated that each of the superficial muscles of the quadriceps femoris uniquely contributed to the control of force output across the 50 repetitions. These results suggested that the MMG responses for the VL, RF, VM during a fatiguing task may be influenced by a number of factors such as fiber type differences, alterations in activation strategy including motor unit recruitment and firing rate and possibly muscle wisdom.  相似文献   

4.
The purpose of this study was to examine the responses of peak torque (PT), mean power output (MP), mechanomyographic (MMG) and electromyographic (EMG) amplitudes, and mean power frequencies (MPFs) of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) in men and women during dynamic muscle actions. Twelve women (mean +/- SD age = 22 +/- 3 years) and 11 men (22 +/- 3 years) performed maximal, concentric, isokinetic leg extensions at velocities of 60, 120, 180, 240, and 300 degrees x s(-1) on a Cybex 6000 dynamometer. Piezoelectric MMG-recording sensors and bipolar surface EMG electrodes were placed over the VL, RF, and VM muscles. No sex-related differences were found among the velocity-related patterns for PT, MP, MMG amplitude, MMG MPF, or EMG MPF. There were, however, sex-related differences in the patterns of EMG amplitude across velocity. The results indicated similar velocity-related patterns of increase of MP and MMG amplitude for all 3 muscles and of EMG amplitude for the VL and VM in the women. Velocity-related decreases (p 0.05) across velocity. MMG MPF increased (p < or = 0.05) only between 240 and 300 degrees x s(-1). Overall, these findings suggested that there were sex- and muscle-specific, velocity-related differences in the associations among motor unit activation strategies (EMG amplitude and MPF) and the mechanical aspects of muscular activity (MMG amplitude and MPF). With additional examination and validation, however, MMG may prove useful to practitioners for monitoring training-induced changes in muscle power output.  相似文献   

5.
The purpose of this study was to examine the effects of skinfold (SF) thicknesses at four locations on the vastus lateralis (VL) muscle and the placement of accelerometers relative to the innervation zone (IZ) on the mechanomyographic (MMG) amplitude and mean power frequency (MPF) responses during incremental cycle ergometry. Twenty adults (age ± SD = 23.8 ± 3.0 years) participated in the investigation. The MMG signals were detected during incremental cycle ergometry using four accelerometers placed on the right VL. Prior to the cycle ergometer test, SF thicknesses were measured. Simple linear regression analyses and one-way repeated measures analyses of variance (ANOVAs) were performed. The present study found that only 10% of the regression analyses and mean comparisons were significant (p < 0.05). Furthermore, the accelerometer placed at the most proximal site (Prox 2) had significantly greater MMG amplitude and MMG MPF than accelerometers placed at more distal sites (Prox 1, Over IZ, and Dist). There were no significant differences, however, in SF thickness between accelerometer placement sites. In addition, the IZ had no effect on MMG amplitude and little effect on MMG MPF values. The results of the present study indicated that the SF thickness values and IZ did not affect the MMG signal.  相似文献   

6.
The purpose of this study was to determine the effect of gender on changes in electromyographic (EMG) signal characteristics of the quadriceps muscles with increasing force and with fatigue. A total of fourteen healthy adults (seven men, seven women) participated in the study. Subjects had to perform isometric ramp contractions in knee extension with the force gradually increasing from 0 to 100% of the maximal voluntary contraction (MVC) in a 6-s period. Subjects then performed a fatigue task, consisting of a sustained maximum isometric knee extension contraction held until force decreased below 50% of the pre-fatigue MVC. Subjects also performed a single ramp contraction immediately after the fatigue task. The Root Mean Square (RMS) amplitude, mean power frequency (MPF) and median frequency (MF) of EMG signals obtained from the vastus lateralis, vastus medialis and rectus femoris were calculated at nine different force levels from the ramp contractions (10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC), as well as every 5 s during the fatigue task. The main results were a more pronounced increase in EMG RMS amplitude for the three muscles and in MPF for the VL muscle with force in men compared with women. No significant effect of gender was found with regards to fatigue. These observations most likely reflect a moderately greater type II fiber content and/or area in the VL muscle of men compared to that of women.  相似文献   

7.
The purpose of this study was to determine test-retest reliability for median frequency (MDF) and amplitude of surface EMG during sustained fatiguing contractions of the quadriceps. Twenty-two healthy subjects (11 males and 11 females) were tested on two days held one week apart. Surface EMG was recorded from rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM) during sustained isometric contractions at 80% and 20% of maximal voluntary contraction (MVC) held to exhaustion. Quadriceps fatigue was described using four measures for both MDF and amplitude of EMG: initial, final, normalized final and slope. For both MDF and amplitude, the initial, final and normalized EMG showed moderate to high reliability for all three muscle groups at both contraction levels (ICC=0.59-0.88 for MDF; ICC=0.58-0.99 for amplitude). Slope of MDF and amplitude was associated with a large degree of variability and low ICCs for the 80% but not the 20% MVC. MDF and amplitude of EMG during sustained contractions of the quadriceps are reproducible; normalized final values of MDF and amplitude show better reliability than slope.  相似文献   

8.
The purposes of this study were to examine the mechanomyographic (MMG) and electromyographic (EMG) time and frequency domain responses of the vastus lateralis (VL) and rectus femoris (RF) muscles during isometric ramp contractions and compare the time-frequency of the MMG and EMG signals generated by the short-time Fourier transform (STFT) and continuous wavelet transform (CWT). Nineteen healthy subjects (mean+/-SD age=24+/-4 years) performed two isometric maximal voluntary contractions (MVCs) before and after completing 2-3, 6-s isometric ramp contractions from 5% to 100% MVC with the right leg extensors. MMG and surface EMG signals were recorded from the VL and RF muscles. Time domains were represented as root mean squared amplitude values, and time-frequency representations were generated using the STFT and CWT. Polynomial regression analyses indicated cubic increases in MMG amplitude, MMG frequency, and EMG frequency, whereas EMG amplitude increased quadratically. From 5% to 24-28% MVC, MMG amplitude remained stable while MMG frequency increased. From 24-28% to 76-78% MVC, MMG amplitude increased rapidly while MMG frequency plateaued. From 76-78% to 100% MVC, MMG amplitude plateaued (VL) or decreased (RF) while MMG frequency increased. EMG amplitude increased while EMG frequency changed only marginally across the force spectrum with no clear deflection points. Overall, these findings suggested that MMG may offer more unique information regarding the interactions between motor unit recruitment and firing rate that control muscle force production during ramp contractions than traditional surface EMG. In addition, although the STFT frequency patterns were more pronounced than the CWT, both algorithms produced similar time-frequency representations for tracking changes in MMG or EMG frequency.  相似文献   

9.
The purpose of this study was to examine the patterns for the mechanomyographic (MMG) and electromyographic (EMG) amplitude and mean power frequency (MPF) vs. torque relationships during submaximal to maximal isometric and isokinetic muscle actions. Seven men (mean +/- SD age, 22.4 +/- 1.3 years) volunteered to perform isometric and concentric isokinetic leg extension muscle actions at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC) and peak torque (PT) on a Cybex II dynamometer. A piezoelectric MMG recording sensor was placed between bipolar surface EMG electrodes on the vastus medialis. Polynomial regression and separate 1-way repeated-measures analysis of variance were used to analyze the EMG amplitude, MMG amplitude, EMG MPF, and MMG MPF data for the isometric and isokinetic muscle actions. For the isometric muscle actions, EMG amplitude (R(2) = 0.999) and MMG MPF (R(2) = 0.946) increased to MVC, mean MMG amplitude increased to 60% MVC and then plateaued, and mean EMG MPF did not change (p > 0.05) across torque levels. For the isokinetic muscle actions, EMG amplitude (R(2) = 0.988) and MMG amplitude (R(2) = 0.933) increased to PT, but there were no significant mean changes with torque for EMG MPF or MMG MPF. The different torque-related responses for EMG and MMG amplitude and MPF may reflect differences in the motor control strategies that modulate torque production for isometric vs. dynamic muscle actions. These results support the findings of others and suggest that isometric torque production was modulated by a combination of recruitment and firing rate, whereas dynamic torque production was modulated primarily through recruitment.  相似文献   

10.
The purpose of this study was to use a wavelet-based signal processing technique to examine the influence of electrode placement over the innervation zone (IZ) on the shape of the electromyographic (EMG) frequency spectrum. Ten healthy males (mean ± SD age = 23.6 ± 3.0 years) performed isometric muscle actions of the dominant leg extensors at 10%, 40%, 70%, and 100% of the maximum voluntary contraction (MVC). Surface EMG signals were detected simultaneously from the vastus lateralis with two bipolar electrode arrangements. One of the electrode arrangements had its center point located directly over the IZ, while the other arrangement had its center point distal to the IZ (i.e., 20 mm away). All EMG signals were processed with a wavelet-based procedure. The results showed that for all isometric torque levels, the EMG signals from the distal electrode arrangement demonstrated greater total intensity values than those for the IZ arrangement for frequencies ranging from approximately 2 to 110 Hz. There were no consistent differences, however, between the IZ and distal electrode arrangements for total EMG intensity values above 110 Hz. Thus, these findings indicated that electrode placement over the IZ affected primarily the low-, rather than the high-frequency portion of the EMG frequency spectrum.  相似文献   

11.
The purpose of this study was to evaluate gender and muscle differences in electromyographic (EMG) amplitude and median frequency mean and standard deviation during maximal voluntary contractions of the quadriceps femoris. Thirty recreationally active volunteers were assessed for isometric EMG activity of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles during three 5-s maximal isometric voluntary contractions (MVCs). Median frequency of the three muscles was assessed through a power spectral analysis (fast Fourier transformation, Hanning window processing, 512 points). The power spectral analysis was performed during the middle 3 s of each contraction over 11 consecutive, 512 ms epochs overlapping each other by half their length (256 ms). The median frequency (F(med)) for each of the 11 windows was determined for each muscle. The mean and standard deviation of the F(med) across the 11 overlapping windows were then calculated for each contraction and muscle. EMG amplitude was determined by calculating the root mean square (RMS-50 ms time constant) over the same contraction period for each muscle. The mean amplitude and standard deviation about the mean value were then determined. A three-factor ANOVA with repeated measures was performed on the calculated F(med) mean and standard deviation values, and RMS standard deviations, to assess any gender, muscle, or trial differences, or interactions. A two-factor (gender by muscle) ANOVA with repeated measures was performed on the RMS mean amplitude for each muscle. Intraclass correlation coefficients (ICCs-2,1), standard errors of measurement (SEMs), and associated 95% confidence intervals were then calculated for maximal quadriceps torque and F(med) for each muscle. The results from this study demonstrated that the VL muscle displayed significantly higher F(med) values than the RF and VM muscles. The RF muscle showed significantly higher F(med) values (mean of 11 overlapping windows) than the VM muscle. Intrasession reliability was found to be high for the calculated mean values (ICC=0.85-0.96), but was shown to be low for variability (ICC=0.13-0.45). The major findings of this study support the notion that the EMG signal is "quasi-random" in nature, as demonstrated by the reproducible F(med) means and unreliable variability.  相似文献   

12.
The purpose of this investigation was to determine the relationships for mechanomyographic (MMG) amplitude, MMG mean power frequency (MPF), electromyographic (EMG) amplitude, and EMG MPF versus power output during incremental cycle ergometry. Seventeen adults volunteered to perform an incremental test to exhaustion on a cycle ergometer. The test began at 50 W and the power output was increased by 30 W every 2 min until the subject could no longer maintain 70 rev min(-1). The MMG and EMG signals were recorded simultaneously from the vastus lateralis during the final 10 s of each power output and analyzed. MMG amplitude, MMG MPF, EMG amplitude, EMG MPF, and power output were normalized as a percentage of the maximal value from the cycle ergometer test. Polynomial regression analyses indicated that MMG amplitude increased (P<0.05) linearly across power output, but there was no change (P>0.05) in MMG MPF. EMG amplitude and MPF were fit best (P<0.05) with quadratic models. These results demonstrated dissociations among the time and frequency domains of MMG and EMG signals, which may provide information about motor control strategies during incremental cycle ergometry. The patterns for amplitude and frequency of the MMG signal may be useful for examining the relationship between motor-unit recruitment and firing rate during dynamic tasks.  相似文献   

13.
The purposes of this study were threefold: (1) to compare the power output related patterns of absolute and normalized MMG amplitude and MPF responses for proximal and distal accelerometer placements on the vastus lateralis (VL) muscle during incremental cycle ergometry; (2) to examine the influence of accelerometer placements on mean absolute MMG amplitude and MPF values; and (3) to determine the effects of normalization on mean MMG amplitude and MPF values from proximal and distal accelerometer placements. Fifteen adults (10 men and 5 women; mean ± SD age = 23.9 ± 3.1 years) performed incremental cycle ergometry tests to exhaustion. Two accelerometers were placed proximal and distal on the VL muscle. Paired t-tests indicated that absolute MMG amplitude values for the proximal accelerometer were greater (p < 0.05) than the distal accelerometer at all power outputs. The normalized MMG amplitude also had greater values for the proximal accelerometer at all power outputs, except 50 W. There were no differences, however, between proximal and distal accelerometers for absolute MMG MPF, except at 75 W, and normalization eliminated this difference. Twenty-seven percent of the subjects exhibited different power output related patterns of responses between accelerometer placements for MMG amplitude and 47% exhibited different patterns for MPF. These findings indicated that normalization did not eliminate the influence of accelerometer placement on MMG amplitude and highlighted the importance of standardizing accelerometer placements to compare MMG values during cycle ergometry.  相似文献   

14.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

15.
This paper describes the relationship between knee extension force and EMG signals detected by multiple bipolar wire electrodes inserted into the human vastus lateralis muscle under isometric conditions. Six healthy male volunteers participated in this study. Eight pairs of bipolar wire electrodes were inserted into the right vastus lateralis muscle and the EMG data were simultaneously detected and analyzed. The EMG raw data and individual force-IEMG relations were influenced by the location of the electrode inserted into the muscle. The force and IEMG relationship averaged across subjects detected from the eight electrodes, however, showed almost the same linear correlation in spite of different electrode locations. No linear correlation was observed between MdF and the knee extension force. This result suggests that, if all of the muscle fibers participate in the same action at the same time, the averaged normalized IEMG from any places using wire electrodes could reflect the total activities of that muscle even if the muscle is large.  相似文献   

16.
The objective of this study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during fatiguing knee extensions. Thirty young adults were evaluated for their one-repetition maximum (1RM) during a seated, right-leg, inertial knee extension. All subjects then completed a single set of repeated knee extensions at 50% 1RM, to failure. Subjects performed a knee extension (concentric phase), held the weight with the knee extended for 2s (isometric phase), and lowered the weight in a controlled manner (eccentric phase). Raw EMG of the vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscles were full-wave rectified, integrated and normalized to the 1RM EMG, for each respective phase and repetition. The EMG median frequency (f(med)) was computed during the isometric phase. An increase in QF muscle EMG was observed during the concentric phase across the exercise duration. VL EMG was greater than the VM and RF muscles during the isometric phase, in which no significant changes occurred in any of the muscles across the exercise duration. A significant decrease in EMG across the exercise duration was observed during the eccentric phase, with the VL EMG greater than the VM and RF muscles. A greater decrease in VL and RF muscle f(med) during the isometric phase, than the VM muscle, was observed with no gender differences. The findings demonstrated differential recruitment of the superficial QF muscle, depending on the contraction mode during dynamic knee extension exercise, where VL muscle dominance appears to manifest across the concentric-isometric-eccentric transition.  相似文献   

17.
The origin of the slow component (SC) of oxygen uptake kinetics, presenting during exercise above the ventilatory threshold (VT), remains unclear. Possible physiologic mechanisms include a progressive recruitment of type II muscle fibers. The purpose of this study was to examine alterations in muscle activity through electromyography (EMG) and mean power frequency (MPF) analysis during heavy cycling exercise. Eight trained cyclists (mean +/- S.E.; age = 30 +/- 3 years, height = 1771 +/- 4 cm, weight = 73.8 +/- 6.5 kg, VO2max = 4.33 +/- 0.28 l min(-1)) completed transitions from 20W to a workload equaling 50% of the difference between V(T) and VO2max. VO2 was monitored using a breath-by-breath measurement system, and EMG data were gathered from surface electrodes placed on the gastrocnemius lateralis and vastus lateralis oblique. Breath-by-breath data were time aligned, averaged, interpolated to 1-s intervals, and modeled with non-linear regression. Mean power frequency (MPF) and RMS EMG values were calculated for each minute during the exercise bout. Additionally, MPF was determined using both isolated EMG bursts and complete pedal revolutions. All subjects exhibited a VO2 SC (mean amplitude = 0.98 +/- 0.16 l min(-1)), yet no significant differences were observed during the exercise bout in MPF or RMS EMG data (p > 0.05) using either analysis technique. While it is possible that the sensitivity of EMG may be insufficient to identify changes in muscle activity theorized to affect the VO2 SC, the data indicated no relationship between MPF/EMG and the SC during heavy cycling.  相似文献   

18.
The objective of the present study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during dynamic sub-maximal knee extension exercise between young adult men and women. Thirty subjects completed, in a random order, 2 sub-maximal repetitions of single-leg knee extensions at 20-90% of their one-repetition maximum (1RM). Vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscle integrated EMG (IEMG) during each sub-maximal lift was normalized to the respective 1RM for concentric, isometric and eccentric modes. The EMG median frequency (f(med)) was determined over the isometric mode. Men attained a significantly (p<0.05) greater knee angular velocity than the women during the concentric mode (83.6+/-19.1 degrees /s and 67.4+/-19.8 degrees /s, respectively). RF IEMG was significantly lesser than the VM (p=0.014) and VL (p<0.001) muscles, when collapsed across all contraction modes, loads, and sex. Overall IEMG was significantly greater during the concentric (p<0.001) and isometric (p<0.001) modes, than the eccentric mode. Men generated significantly (p=0.03) greater VL muscle IEMG than the women, while the opposite pattern emerged for the RF muscle. VM f(med) (105.1+/-11.1Hz) was significantly lesser than the VL (180.3+/-19.5Hz) and RF (127.7+/-13.9Hz) muscles across all lifting intensities, while the men (137.7+/-10.7Hz) generated greater values than the women (129.0+/-11.4Hz). The findings demonstrate a reduction in QF muscle activation across the concentric to eccentric transition, which may be related to the mode-specific velocity pattern.  相似文献   

19.
Surface EMG signals detected in dynamic conditions are affected by a number of artefacts. Among them geometrical factors play an important role. During movement the muscle slides with respect to the skin because of the variation of its length. Such a shift can considerably modify sEMG amplitude. The purpose of this work is to assess geometrical artefacts on sEMG during isometric contractions at different muscle lengths.The average rectified value (ARV) of 15 single differential signals was obtained by means of a linear array of 16 bar electrodes from the vastus medialis and lateralis muscles. The knee angle was changed from 75 degrees to 165 degrees in steps of 30 degrees and voluntary isometric contractions at a low, medium and high force level were performed for each angle. The ARV pattern was normalized with respect to the mean activity to compare signals from different joint angles. From the data collected it was possible to separate the geometrical changes from the changes due to different intensities of activation.In three out of five subjects, we found (within the resolution of our measures) a 1 cm shift for the vastus medialis muscle while no shift was observed for the other two subjects. For the vastus lateralis muscle a 1 cm shift was found in two out of four subjects. Such a shift produces the main contribution to geometrical artefacts. To avoid such artefacts the innervation zones should be located and the EMG electrodes should not be placed near them.  相似文献   

20.
This study investigated the effect of prolonged load carriage on lower limb muscle activity displayed by female recreational hikers. Electromyography (EMG) signals from vastus lateralis (VL), biceps femoris (BF), semitendinosus (ST), tibialis anterior (TA) and gastrocnemius (GM) were recorded for fifteen female hikers carrying four loads (0%, 20%, 30% and 40% body weight (BW)) over 8 km. Muscle burst duration, muscle burst onset relative to initial contact and integrated EMG signals (iEMG) were calculated to evaluate muscle activity, whereas the shift in mean power frequency (MPF) was used to evaluate muscle fatigue. Increased walking distance significantly decreased the MPF of TA; decreased the iEMG for VL, ST and GM; and shortened VL muscle burst duration. Furthermore, carrying 20–40% BW loads significantly increased VL and GM iEMG and increased BF muscle burst duration, whereas a 40% BW load caused a later VL muscle burst onset. The differences observed in muscle activity with increased load mass seem to be adjustments aimed at maintaining balance and attenuating the increased loads placed on the lower limbs during gait. Based on the changes in muscle activity, a backpack load limit of 30% BW may reduce the risk of lower limb injury for female hikers during prolonged walking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号