首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
7,12-Dimethylbenz(a)anthracene (DMBA) and 7-methoxymethyl-12-methylbenz(a)anthracene (MeO-DMBA) are converted to a number of products during short exposures in aqueous suspension to laboratory illumination. The mixture of products binds to glyceraldehyde-3-phosphate dehydrogenase (GPDH) while inhibiting its activity but there is no apparent relationship between the binding and inhibition of enzyme activity. There is little, or no, binding or enzyme inhibition when the compounds are protected from light. 7-Bromomethyl-12-methylbenz(a)anthracene (Br-DMBA) binds to GPDH whether photoactivated or not but enzyme inhibition depends upon light exposure. The binding of light-exposed DMBA by surviving rat mammary tissue was five-times greater than with the unchanged hydrocarbon. Binding of MeO-DMBA products also occurred after light exposure but not in the dark.  相似文献   

2.
Abstract Glyceraldehyde-3-P dehydrogenase (GAPDH) in heterocysts and vegetative cells of 3 N2-fixing cyanobacteria was found to utilize both NAD+ and NADP+. The enzyme activity was enhanced by thiols (glutathione, reduced lipoic acid and dithiothreitol). GAPDH of the 3 cyanobacterial species was not activated by thioredoxin. Heterocysts have now been shown to possess all the enzymes of glycolysis and the tricarboxylic acid cycle to convert glyceraldehyde-3-phosphate (GAP) to oxoglutarate and glutamate. The GAPDH reaction is a major source for the generation of NADH, which is oxidized by a thylakoid-bound NADH:plastoquinone oxidoreductase in heterocysts.  相似文献   

3.
Nitroxyl (HNO) has received recent and significant interest due to its novel and potentially important pharmacology. However, the chemical/biochemical mechanism(s) responsible for its biological activity remain to be established. Some of the most important biological targets for HNO are thiols and thiol proteins. Consistent with this, it was recently reported that HNO inhibits the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein with a catalytically important cysteine thiol at its active site. Interestingly, it was reported that intracellular GAPDH inhibition occurred without significantly altering the cellular thiol redox status of glutathione. Herein, the nature of this reaction specificity was examined. HNO is found to irreversibly inhibit GAPDH in a manner that can be protected against by one of its substrates, glyceraldehyde-3-phosphate (G-3-P). These results are consistent with the idea that HNO has the ability to react with and oxidize a variety of intracellular thiols and the ease or facility of cellular re-reduction of the thiol targets can determine the target specificity.  相似文献   

4.
Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile, TCIN, CAS 1897-45-6) is a broad range spectrum fungicide whose fungitoxic action has been associated with the rapid formation of conjugated chlorothalonil–cellular thiol derivatives, specifically with thiol-rich enzymes such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and with glutathione (GSH). The biotransformation reaction sequence between enzyme-activated glutathione (GSH) and chlorothalonil depletes cellular glutathione reserves. The conjugation of glutathione with chlorothalonil via nucleophilic aromatic substitution was modeled for an isolated reacting species using semiempirical self-consistent field molecular orbital (SCF-MO) theory at the PM3 level. The potential energy hypersurface at each of the three possible chlorinated attack sites on chlorothalonil was elaborated using a thiolate (CH3S) anion as a model for an enzyme-activated glutathione molecule. Calculated free energies of activation for formation of mono-RSH conjugates suggest that the order of nucleophilic attack on chlorine positions in TCIN is 2>4, 6>5 although energy differences are small (on the order of 1–2 kcal mol–1). Meisenheimer or -complexes have been isolated as true intermediates on the hypersurface for each reaction, suggesting that the mechanism follows a two-step pathway.Electronic Supplementary Material available.  相似文献   

5.
The stereospecificity of the reaction catalysed by the spinach chloroplast enzyme NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NADP+ oxidoreductase (phosphorylating), EC 1.2.1.13) with respect to the C4 nicotinamide hydrogen transfer was investigated. NADPH deuterated at the C4 HA position was synthesized using aldehyde dehydrogenase. 1H-NMR spectroscopy was used to examine the NADP+ product of the GPDH reaction for the presence or absence of the C4 deuterium atom. Chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase retains the deuterium at the C4 HA position (removing the hydrogen atom), and is therefore a B (pro-S) specific dehydrogenase.  相似文献   

6.
NADP-dependent nonphosphorylating D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9) from spinach leaves has been purified to apparent electrophoretic homogeneity by ammonium sulfate fractionation, molecular sieving on Sephadex G-200, DEAE-cellulose, and 2',5'-ADP-Sepharose affinity chromatography. The purified enzyme exhibited a specific activity of 15 mumol (mg protein)-1 min-1 and was characterized as a homotetramer with a native molecular weight of 195,000. Preincubation of the purified enzyme with NADP+ resulted in an almost twofold increase in enzymatic activity. The rate of activation was slower than the rate of catalysis, indicating that the enzyme has hysteretic properties. This behavior results in a lag phase during activity measurement of the enzyme preincubated without NADP+. Substrate interaction and product inhibition studies suggest a rapid equilibrium random BiBi mechanism for the reaction. Thiol modifying reagents, iodoacetamide and diamide, completely inactivated the purified enzyme. Inactivation by iodoacetamide exhibited pseudo-first-order kinetics with a rate constant of 0.17 min-1. D-Glyceraldehyde 3-phosphate effectively protected the enzyme against inactivation by thiol reagents, suggesting that modification occurred at or near the substrate-binding site. Complete inactivation of the dehydrogenase was correlated with incorporation of 8 mol [1-14C]iodoacetamide/mol enzyme. Total protection afforded by D-glyceraldehyde 3-phosphate against enzyme inactivation by iodoacetamide was correlated with a protection of 4 mol reactive residues/mol enzyme. On the basis of these results it is suggested that one sulfhydryl group per enzyme subunit is essential for catalysis in spinach leaf nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase. A kinetic and molecular mechanism for the reaction is proposed.  相似文献   

7.
Yeast glyceraldehyde-3-phosphate dehydrogenase (GPDH) covalently attached to CNBr-activated Sepharose 4B was shown to be capable of binding soluble yeast phosphoglycerate kinase (PGK) in the course of incubation in the presence of an excess of 1,3-diphosphoglycerate. The association of the matrix-bound and soluble enzymes also occurred if the kinase was added to a reaction mixture in which the immobilized glyceraldehyde-3-phosphate dehydrogenase, NAD, glyceraldehyde-3-phosphate and Pi had been preincubated. Three kinase molecules were bound per a tetramer of the immobilized dehydrogenase and one molecule per a dimer. An immobilized monomer of glyceraldehyde-3-phosphate dehydrogenase was incapable of binding phosphoglycerate kinase. The matrix-bound bienzyme complexes were stable enough to survive extensive washings with a buffer and could be used repeatedly for activity determinations. Experimental evidence is presented to support the conclusion that 1,3-diphosphoglycerate produced by the kinase bound in a complex can dissociate into solution and be utilized by the dehydrogenase free of phosphoglycerate kinase.  相似文献   

8.
Erythrocyte glyceraldehyde-3-phosphate dehydrogenase (G3PD) is a glycolytic enzyme containing critical thiol groups and whose activity is reversibly inhibited by binding to the cell membrane. Here, we demonstrate that the insertion of ferriprotoporphyrin IX (FP) into the red cell membranes exerts two opposite effects on membrane bound G3PD. First, the enzyme is partially inactivated through oxidation of critical thiols. Dithiothreitol restores part of the activity, but some critical thiols are irreversibly oxidized or crosslinked to products of FP-induced lipid peroxidation. Second, G3PD binding to the membrane is modified and the enzyme is activated through displacement into the cytosol and/or release from its binding site.  相似文献   

9.
The reaction of ozone with glyceraldehyde-3-phosphate dehydrogenase   总被引:2,自引:0,他引:2  
Inactivation of glyceraldehyde-3-phosphate dehydrogenase (GPDH) by ozone can be correlated with oxidation of the active-site -SH residue. Oxidation of peripheral -SH groups, and tryptophan, methionine, and histidine residues occurs concomitantly, but loss of activity depends solely on active-site oxidation. Inactivation is only slightly reversible by dithiothreitol. Kinetic studies show that inhibition of GPDH by ozone mimics noncompetitive inhibition and is characterized as irreversible enzyme inactivation. Analysis of products resulting from ozone oxidation of glutathione suggests that cysteic acid is the product of protein-SH oxidation. Despite oxidation of the active-site -SH , no significant decrease in the Racker band absorbance occurs. This is explained by the appearance of a new chromophore in this region of the absorbance spectrum. Increased absorbance at 322 nm following ozone treatment indicates that tryptophan is converted quantitatively to N-formylkynurenine. When the active-site -SH is reversibly blocked by tetrathionate, enzyme activity is completely recoverable following reaction of the derivatized enzyme with a 1.3X excess of ozone over enzyme monomer. Activity is fully recovered despite the oxidation of peripheral -SH, tryptophan, and histidine residues. Circular dichroism spectra of ozone-treated enzyme show that reaction of GPDH with up to a threefold excess of ozone over enzyme monomer results in no significant disruption of protein secondary structure. Spectra in the near-uv show distinct changes that reflect tryptophan oxidation.  相似文献   

10.
Abstract: Biochemical evidence suggests that neuroglia are responsive to glucocorticoids, yet previous studies of glucocorticoid localization have typically failed to demonstrate significant uptake by neuroglial cells. To further investigate this problem, we measured glycerol-3-phosphate dehydrogenase (GPDH) activity and glucocorticoid receptor binding capacity in normal rat optic nerves and in those undergoing Wallerian (axonal) degeneration. Binding studies were also performed on hippocampus and anterior pituitary for comparison purposes. Normal optic nerve preparations possessed a high level of GPDH activity that was glucocorticoid-inducible and that increased further following axonal degeneration. Antibody inactivation experiments demonstrated the presence of more enzyme molecules in the degenerating nerve preparations. Correlative immunocytochemical studies found GPDH-positive reaction product only in morphologically identified oligodendrocytes, a result that is consistent with the previously reported localization of this enzyme in rat brain. Optic nerve cytosol fractions displayed substantial high-affinity binding of both dexamethasone (DEX) and corticosterone (CORT) that, like GPDH, was elevated approximately twofold in degenerating nerves. Finally, in vivo accumulation of [3H]DEX and [3H]CORT by optic nerve and other myelinated tracts was examined using nuclear isolation and autoradiographic methods. Although neither steroid was found to be heavily concentrated by these tissues in vivo , a small preference for DEX was observed in the nuclear uptake experiments. These results are discussed in terms of the hypothesis that glial cells are targets for glucocorticoid hormones.  相似文献   

11.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

12.
The archaeal non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN, EC 1.2.1.9) is a highly allosteric enzyme activated by glucose 1-phosphate (Glc1P). Recent kinetic analyses of two GAPN homologs from Sulfolobales show different allosteric behaviors toward the substrate glyceraldehyde-3-phosphate (GAP) and the allosteric effector Glc1P. In GAPN from Sulfolobus tokodaii (Sto-GAPN), Glc1P-induced activation follows an increase in affinity for GAP rather than an increase in maximum velocity, whereas in GAPN from Sulfolobus solfataricus (Sso-GAPN), Glc1P-induced activation follows an increase in maximum velocity rather than in affinity for GAP. To explore the molecular basis of this difference between Sto-GAPN and Sso-GAPN, we generated 14 mutants and 2 chimeras. The analyses of chimeric GAPNs generated from regions of Sto-GAPN and Sso-GAPN indicated that a 57-residue module located in the subunit interface was clearly involved in their allosteric behavior. Among the point mutations in this modular region, the Y139R variant of Sto-GAPN no longer displayed a sigmoidal K-type-like allostery, but instead had apparent V-type allostery similar to that of Sso-GAPN, suggesting that the residue located in the center of the homotetramer critically contributes to the allosteric behavior.  相似文献   

13.
The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of the hyperthermophilic Archaeum Thermoproteus tenax is a member of the superfamily of aldehyde dehydrogenases (ALDH). GAPN catalyses the irreversible oxidation of glyceraldehyde 3-phosphate (GAP) to 3-phosphoglycerate in the modified glycolytic pathway of this organism. In contrast to other members of the ALDH superfamily, GAPN from T.tenax (Tt-GAPN) is regulated by a number of intermediates and metabolites. In the NAD-dependent oxidation of GAP, glucose 1-phosphate, fructose 6-phosphate, AMP and ADP increase the affinity for the cosubstrate, whereas ATP, NADP, NADPH and NADH decrease it leaving, however, the catalytic rate virtually unaltered. As we show here, the enzyme also uses NADP as a cosubstrate, displaying, however, unusual discontinuous saturation kinetics indicating different cosubstrate affinities and/or reactivities of the four active sites of the protein tetramer caused by cooperative effects. Furthermore, in the NADP-dependent reaction the presence of activators decreases the overall S0.5 and increases Vmax by a factor of 3. To explore the structural basis for the different effects of both pyridine nucleotides we solved the crystal structure of Tt-GAPN in complex with NAD at 2.2 A resolution and compared it to the binary Tt-GAPN-NADPH structure. Although both pyridine nucleotides show a similar binding mode, NADPH appears to be more tightly bound to the protein via the 2' phosphate moiety. Moreover, we present four co-crystal structures with the activating molecules glucose 1-phosphate, fructose 6-phosphate, AMP and ADP determined at resolutions ranging from 2.3 A to 2.6 A. These crystal structures reveal a common regulatory site able to accommodate the different activators. A phosphate-binding pocket serves as an anchor point ensuring similar binding geometry. The observed conformational changes upon activator binding are discussed in terms of allosteric regulation. Furthermore, we present a crystal structure of Tt-GAPN in complex with the substrate D-GAP at 2.3 A resolution, which allows us to analyse the structural basis for substrate binding, the mechanism of catalysis as well as the stereoselectivity of the enzymatic reaction.  相似文献   

14.
D C Crans  C M Simone 《Biochemistry》1991,30(27):6734-6741
The inhibitory effects of vanadium(V) were determined on the oxidation of glycerol 3-phosphate (G3P) catalyzed by glycerol-3-phosphate dehydrogenase (G3PDH), an enzyme with a thiol group in the active site. G3PDH from rabbit muscle was inhibited by vanadate, and the active inhibiting species were found to be the vanadate dimer and/or tetramer. The dimer was a sufficiently weak inhibitor at pH 7.4 with respect to G3P; the tetramer could account for all the observed inhibition. The tetramer was a competitive inhibitor with respect to G3P with a Ki of 0.12 mM. Both the dimer and tetramer were noncompetitive inhibitors at pH 7.4 with respect to NAD with Ki's of 0.36 mM and 0.67 mM. G3PDH inhibited by vanadate was reactivated when EDTA complexed the vanadate. The reactivation occurred even after extended periods of incubation of G3PDH and vanadate, suggesting that the inhibition is reversible despite the thiol group in the active site. Analogous reactivation is also observed with glyceraldehyde-3-phosphate dehydrogenase (Gly3PDH). Gly3PDH is an enzyme that previously had been reported to undergo redox chemistry with vanadate. The work described in this paper suggests vanadate will not necessarily undergo redox chemistry with enzymes containing thiol groups exposed on the surface of the protein.  相似文献   

15.
Reaction of certain peptides and proteins with singlet oxygen (generated by visible light in the presence of rose bengal dye) yields long-lived peptide and protein peroxides. Incubation of these peroxides with glyceraldehyde-3-phosphate dehydrogenase, in the absence of added metal ions, results in loss of enzymatic activity. Comparative studies with a range of peroxides have shown that this inhibition is concentration, peroxide, and time dependent, with H2O2 less efficient than some peptide peroxides. Enzyme inhibition correlates with loss of both the peroxide and enzyme thiol residues, with a stoichiometry of two thiols lost per peroxide consumed. Blocking the thiol residues prevents reaction with the peroxide. This stoichiometry, the lack of metal-ion dependence, and the absence of electron paramagnetic resonance (EPR)-detectable species, is consistent with a molecular (nonradical) reaction between the active-site thiol of the enzyme and the peroxide. A number of low-molecular-mass compounds including thiols and ascorbate, but not Trolox C, can prevent inhibition by removing the initial peroxide, or species derived from it. In contrast, glutathione reductase and lactate dehydrogenase are poorly inhibited by these peroxides in the absence of added Fe2+-EDTA. The presence of this metal-ion complex enhanced the inhibition observed with these enzymes consistent with the occurrence of radical-mediated reactions. Overall, these studies demonstrate that singlet oxygen-mediated damage to an initial target protein can result in selective subsequent damage to other proteins, as evidenced by loss of enzymatic activity, via the formation and subsequent reactions of protein peroxides. These reactions may be important in the development of cellular dysfunction as a result of photo-oxidation.  相似文献   

16.
Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) has various beneficial properties including chemopreventive, anticarcinogenic, and antioxidant actions. The interaction with proteins known as EGCG-binding targets may be related to the anticancer effects. However, the binding mechanisms for this activity remain poorly understood. Using mass spectrometry and chemical detection methods, we found that EGCG forms covalent adducts with cysteinyl thiol residues in proteins through autoxidation. To investigate the functional modulation caused by binding of EGCG, we examined the interaction between EGCG and a thiol enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Concentration-dependent covalent binding of EGCG to GAPDH was found to be coupled to the irreversible inhibition of GAPDH activity. Mutation experiments revealed that EGCG is primarily bound to the cysteinyl thiol group of the active center, indicating that the irreversible inhibition of GAPDH is due to the covalent attachment of EGCG to the active-center cysteine. Moreover, using EGCG-treated cancer cells, we identified GAPDH as a target of EGCG covalent binding through specific interactions between catechols and aminophenyl boronate agarose resin. Based on these findings, we propose that the covalent modification of proteins by EGCG may be a novel pathway related to the biological activity of EGCG.  相似文献   

17.
The effects of various fungicides on mycelial growth and spore germination of Ascochyta rabiei were determined by incorporating them into potato dextrose agar and measuring colony diameter and observing colony growth and spore germination at 20 ± 2°C. Eight fungicides prevented spore germination of the pathogen at concentrations of 0.125–2 μg/ml, three hindered mycelial growth at 2–4 μg/ml and seven failed to inhibit mycelial growth even at 128 μg/ml. The reference fungicide for the pathogen, chlorothalonil, stopped conidial germination at low rates but did not prevent mycelial growth at 128 μg/ml. Thirteen fungicides were tested against seed infections of the pathogen, and benomyl + thiram, carbendazim and carbendazim + chlorothalonil seed treatments gave more than 85% inhibition on both vacuum‐infiltrated and naturally infected seeds. Coating the seeds with polymers did not increase the effectiveness of fungicides. Three fungicides; (azoxystrobin, chlorothalonil and mancozeb), gave the highest protection in the field but protection decreased with increased inoculum pressure. Addition of humic acid to fungicide suspensions did not affect their performance.  相似文献   

18.
I examined whether the phorbol ester-mediated inhibition of glycerol 3-phosphate dehydrogenase (GPDH) induction could be mimicked by raising the cellular diacylglycerol levels. Phorbol ester tumor promoters and diacylglycerols activate protein kinase C. An increase in radiolabeled diacylglycerol levels in C6 rat glioma cells was observed when cells were prelabeled overnight with [3H]arachidonic acid and treated with either phospholipase C (Clostridium perfringens) or 2-bromooctanoate. The increase was dose dependent. The diacylglycerols competed with [20-3H]phorbol 12,13-dibutyrate in binding to the phorbol ester receptor. A Scatchard analysis of the binding of cells treated with 0.1 unit/ml of phospholipase C demonstrated that the inhibition was mainly due to a decrease in binding affinity and not in the total number of binding sites. 2-Bromooctanoate and phospholipase C, but not the synthetic diacylglycerol 1-oleoyl 2-acetyl glycerol, inhibited the glucocorticoid induction of GPDH levels. Boiled phospholipase C, phospholipase A2, or phospholipase D was ineffective in inhibiting induction, a result suggesting that the inhibition was not due to nonspecific membrane perturbation. Thus, inhibition of the glucocorticoid-mediated increase in GPDH induction is most likely mediated by protein kinase C, and not by an alternate phorbol ester receptor.  相似文献   

19.
为建立一种快捷和准确的方法用于新型杀真菌剂的筛选,以外源表达的稻瘟菌羊毛甾醇14α-去甲基化酶为靶酶,以市售烯唑醇、戊唑醇、三唑醇、三唑酮为DMIs类杀真菌剂代表,分析了靶酶活性、靶酶纯度和靶酶浓度对二者结合光谱的影响,并与生物测试结果比较分析其可靠性。结果表明靶酶的高活性、无其他P450干扰和合适的靶酶浓度是获得准确结合光谱的必要条件。烯唑醇、戊唑醇、三唑醇、三唑酮与靶酶结合常数(Kd)分别为0.143μmol/L、0.24μmol/L、0.257μmol/L、0.307μmol/L,该结果与其对稻瘟菌生长抑制能力(120h-EC50)显著相关,证明结合光谱法可作为一种简便可靠的DMIs类杀真菌剂筛选方法。  相似文献   

20.
香鱼甘油-3-磷酸脱氢酶基因的克隆与表达   总被引:1,自引:0,他引:1  
GPDH(glycerol-3-phosphate dehydrogenase)是合成脂肪代谢中间产物甘油-3-磷酸的关键酶。通过设计简并引物从香鱼肝cDNA文库中克隆GPDH基因,该基因cDNA序列全长577个核苷酸,单一大的开放阅读框编码一个由351个氨基酸组成的分子量为37.9kD的蛋白。蛋白序列分析表明,香鱼GPDH(aGPDH)与亚洲胡瓜鱼的GPDH序列同源性最高。系统进化树分析表明,GPDH的物种进化关系与目前接受的物种分类关系基本一致。实时荧光定量PCR结果显示,aGPDH基因在香鱼肝、脾、肾、脑、心和肌肉组织均有表达。香鱼咸淡水适应以后,肝、脾、脑、心和肌肉的aGPDH的mRNA表达水平下调。成功构建重组表达质粒pET-32a-GPDH。SDS-PAGE试验表明,目的蛋白可以在大肠杆菌中大量表达;并制备了抗血清,能与目的蛋白起强的特异性反应,但不与细菌自身蛋白起反应。本研究有助于进一步理解鱼类盐度适应过程中的脂肪代谢调控机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号