首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Yagi  T M Dinh 《Biochemistry》1990,29(23):5515-5520
The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides and contains noncovalently bound FMN, non-heme iron, and acid-labile sulfide [Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311]. When the Paracoccus NADH dehydrogenase complex was irradiated by UV light in the presence of [adenylate-32P]NAD, radioactivity was incorporated exclusively into one of three polypeptides of Mr approximately 50,000. Similar results were obtained when [adenylate-32P]NADH was used. The labeling of the Mr 50,000 polypeptide was diminished when UV irradiation of the enzyme with [adenylate-32P]NAD was performed in the presence of NADH, but not in the presence of NADP(H). The labeled polypeptide was isolated by preparative sodium dodecyl sulfate gel electrophoresis and was shown to cross-react with antiserum to the NADH-binding subunit (Mr = 51,000) of bovine NADH-ubiquinone oxidoreductase. Its amino acid composition was also very similar to that of the bovine NADH-binding subunit. These chemical and immunological results indicate that the Mr 50,000 polypeptide is an NADH-binding subunit of the Paracoccus NADH dehydrogenase complex.  相似文献   

2.
The NADH-quinone oxidoreductases of the bacterial respiratory chain could be divided in two groups depending on whether they bear an energy-coupling site. Those enzymes that bear the coupling site are designated as NADH dehydrogenase 1 (NDH-1) and those that do not as NADH dehydrogenase 2 (NDH-2). All members of the NDH-1 group analyzed to date are multiple polypeptide enzymes and contain noncovalently bound FMN and iron-sulfur clusters as prosthetic groups. The NADH-ubiquinone-1 reductase activities of NDH-1 are inhibited by rotenone, capsaicin, and dicyclohexylcarbodiimide. The NDH-2 enzymes are generally single polypeptides and contain non-covalently bound FAD and no iron-sulfur clusters. The enzymatic activities of the NDH-2 are not affected by the above inhibitors for NDH-1. Recently, it has been found that both of these types of the NADH-quinone oxidoreductase are present in a single strain of bacteria. The significance of the occurrence of these two types of enzymes in a single organism has been discussed in this review.  相似文献   

3.
Fang J  Beattie DS 《Biochemistry》2002,41(9):3065-3072
A rotenone-insensitive NADH dehydrogenase has been isolated from the mitochondria of the procyclic form of African parasite, Trypanosoma brucei. The active form of the purified enzyme appears to be a dimer consisting of two 33-kDa subunits with noncovalently bound FMN as a cofactor. Hypotonic treatment of intact mitochondria revealed that the NADH dehydrogenase is located in the inner membrane/matrix fraction facing the matrix. The treatment of mitochondria with increasing concentrations of digitonin suggested that the NADH dehydrogenase is loosely bound to the inner mitochondrial membrane. The NADH:ubiquinone reductase activity is insensitive to rotenone, flavone, or dicumarol; however, it was inhibited by diphenyl iodonium in a time- and concentration-dependent manner. Maximum inhibition by diphenyl iodonium required preincubation with NADH to reduce the flavin. More complete inhibition was obtained with the more hydrophobic electron acceptors, such as Q(1) or Q(2), as compared to the more hydrophilic ones, such as Q(0) or dichloroindophenol. Kinetic analysis of the enzyme indicated that the enzyme followed a ping-pong mechanism. The enzyme conducts a one-electron transfer and can reduce molecular oxygen forming superoxide radical.  相似文献   

4.
1. An NADH-ferricyanide reductase activity has been isolated from the respiratory chain of Torulopsis utilis by using detergents. The isolated enzyme contains non-haem iron, acid-labile sulphide and FMN in the molar proportions 27.5:28.4:1. The preparation is free of FAD and largely free of cytochrome. 2. The enzyme catalyses ferricyanide reduction by NADPH at about 1% of the rate with NADH, and reacts poorly with acceptors other than ferricyanide. The rates of reduction of some acceptors are, as percentages of the rate with ferricyanide: menadione, 0.35%; lipoate, 0.01%; cytochrome c, 0.065%; dichlorophenolindophenol, 0.35%; ubiquinone-1, 0.08%. 3. Several properties of submitochondrial particles of T. utilis (non-haem iron, acid-labile sulphide, FMN and an NADH-reducible electron-paramagnetic-resonance signal) were found to co-purify with the NADH-ferricyanide reductase activity. Thus about 70% of the FMN and, within the limits of accuracy of the experiments, 100% of the non-haem iron and acid-labile sulphide of submitochondrial particles derived from T. utilis cells grown under conditions of glycerol limitation (but relatively low iron availability) can be attributed to the NADH-ferricyanide reductase. 4. It was also shown that the component of submitochondrial particles specifically bleached at 460nm by NADH [species 1 of Ragan & Garland (1971)] co-purifies with the NADH-ferricyanide reductase. 5. This successful purification of an NADH dehydrogenase from T. utilis forms a starting point for investigating the molecular properties of phenotypically modified mitochondrial NADH oxidation pathways that lack energy conservation between NADH and the cytochromes.  相似文献   

5.
X M Xu  A Matsuno-Yagi  T Yagi 《Biochemistry》1991,30(26):6422-6428
The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides and contains noncovalently bound FMN, non-heme iron, and acid-labile sulfide [Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311]. The NADH-binding subunit (Mr = 50,000) of this enzyme complex was identified by direct photoaffinity labeling with [32P]NADH [Yagi, T., & Dinh, T.M. (1990) Biochemistry 29, 5515-5520]. Primers were synthesized on the basis of the N-terminal amino acid sequence of this polypeptide, and these primers were used to synthesize an oligonucleotide probe by the polymerase chain reaction. This probe was utilized to isolate the gene encoding the NADH-binding subunit from a genomic library of P. denitrificans. The nucleotide sequence of the gene and the deduced amino acid sequence of the entire NADH-binding subunit were determined. The NADH-binding subunit has 431 amino acid residues and a calculated molecular weight of 47,191. The encoded protein contains a putative NAD(H)-binding and an iron-sulfur cluster-binding consensus sequence. The deduced amino acid sequence of the Paracoccus NADH-binding subunit shows remarkable similarity to the alpha subunit of the NAD-linked hydrogenase of Alcaligenes eutrophus H16. When partial DNA sequencing of the regions surrounding the gene encoding the NADH-binding subunit was carried out, sequences homologous to the 24-, 49-, and 75-kDa polypeptides of bovine complex I were detected, suggesting that the structural genes of the Paracoccus NADH dehydrogenase complex constitute a gene cluster.  相似文献   

6.
Summary A series of investigations were conducted with the objective of elucidating natural pathways of electron transport from respiratory processes to the site of N2 fixation in nodule bacteroids. A survey of dehydrogenase activities in a crude extract of soybean nodule bacteroids revealed relatively high activities of NAD-specific β-hydroxybutyrate and glyceraldehyde-3-phosphate dehydrogenases. Moderate activities of NADP-specific isocitrate and glucose-6-phosphate dehydrogenases were observed. By use of the ATP-dependent acetylene reduction reaction catalyzed by soybean bacteroid nitrogenase, and enzymes and cofactors from bacteroids and other sources, the following sequences of electron transport to bacteroid nitrogenase were demonstrated: (1) H2 to bacteroid nitrogenase in presence of a nitrogenase-free extract ofC. pasteurianum; (2) β-hydroxybutyrate to bacteroid nitrogenase in a reaction containing β-hydroxybutyrate dehydrogenase, NADH dehydrogenase, NAD and benzyl viologen; (3) β-hydroxybutyrate dehydrogenase, to nitrogenase in reaction containing NADH dehydrogenase, NAD and either FMN or FAD; (4) light-dependent transfer of electrons from ascorbate to bacteroid nitrogenase in a reaction containing photosystem I from spinach chloroplasts, 2,6-dichlorophenolindophenol, and either azotoflavin from Azotobacter or non-heme iron protein from bacteroids; (5) glucose-6-phosphate to bacteroid nitrogenase in a system that included glucose-6-phosphate dehydrogenase, NADP, NADP-ferredoxin reductase from spinach, azotoflavin from Azotobacter and bacteroid non-heme iron protein. The electron transport factors, azotoflavin and bacteroid non-heme iron protein, failed to function in the transfer of electrons from an NADH-generating system to bacteroid nitrogenase. When FMN or FAD were added to systems containing azotoflavin and bacteroid non-heme iron protein, electrons apparently were transferred to the flavin-nucleotides and then nitrogenase without involvement of azotoflavin and bacteroid non-heme iron protein. Evidence is available indicating that nodule bacteroids contain flavoproteins analogous to Azotobacter, azotoflavin, and spinach ferredoxin-NADP reductase. It is concluded that physiologically important systems involved in transport of electrons from dehydrogenases to nitrogenase in bacteroids very likely will include relatively specific electron transport proteins such as bacteroid non-heme iron protein and a flavoprotein from bacteroids that is analogous to azotoflavin.  相似文献   

7.
Ferric iron reductase was purified from magnetotactic bacterium Magnetospirillum (formerly Aquaspirillum) magnetotacticum (ATCC 31632) to an electrophoretically homogeneous state. The enzyme was loosely bound on the cytoplasmic face of the cytoplasmic membrane and was found more frequently in magnetic cells than in nonmagnetic cells. The molecular mass of the purified enzyme was calculated upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be about 36 kDa, almost the same as that calibrated by gel filtration analysis. The enzyme required NADH and flavin mononucleotide (FMN) as optimal electron donor and cofactor, respectively, and the activity was strongly inhibited by Zn2+ acting as a partial mixed-type inhibitor. The Km values for NADH and FMN were 4.3 and 0. 035 microM, respectively, and the Ki values for Zn2+ were 19.2 and 23.9 microM for NADH and FMN, respectively. When the bacterium was grown in the presence of ZnSO4, the magnetosome number in the cells and the ferric iron reductase activity declined in parallel with an increase in the ZnSO4 concentration of the medium, suggesting that the ferric iron reductase purified in the present study may participate in magnetite synthesis.  相似文献   

8.
The low molecular weight NADH dehydrogenase which can be solubilized from the mitochondrial NADH-ubiquinone oxidoreductase complex with chaotropic agents consists of three subunits in equimolar ratio [Galante, Y. M., & Hatefi, Y. (1979) Arch. Biochem. Biophys. 192, 559]. The largest subunit (subunit I) can be completely separated from the other two (subunits II + III) by treatment with sodium trichloroacetate and ammonium sulfate fractionation. Both the subunit I and subunit II + III fractions contain iron and acid-labile sulfur. From visible and EPR spectroscopy and the iron and acid-labile sulfide content, we propose that the subunit II + III fraction contains a binuclear cluster. The cluster structure present in subunit I is as yet unclear. On separation of the subunits of NADH dehydrogenase, the FMN is lost.  相似文献   

9.
NAD-dependent formate dehydrogenase (FDH1) was isolated from the alpha-proteobacterium Methylobacterium extorquens AM1 under oxic conditions. The enzyme was found to be a heterodimer of two subunits (alpha1beta1) of 107 and 61 kDa, respectively. The purified enzyme contained per mol enzyme approximately 5 mol nonheme iron and acid-labile sulfur, 0.6 mol noncovalently bound FMN, and approximately 1.8 mol tungsten. The genes encoding the two subunits of FDH1 were identified on the M. extorquens AM1 chromosome next to each other in the order fdh1B, fdh1A. Sequence comparisons revealed that the alpha-subunit harbours putative binding motifs for the molybdopterin cofactor and at least one iron-sulfur cluster. Sequence identity was highest to the catalytic subunits of the tungsten- and selenocysteine-containing formate dehydrogenases characterized from Eubacterium acidaminophilum and Moorella thermoacetica (Clostridium thermoaceticum). The beta-subunit of FDH1 contains putative motifs for binding FMN and NAD, as well as an iron-sulfur cluster binding motif. The beta-subunit appears to be a fusion protein with its N-terminal domain related to NuoE-like subunits and its C-terminal domain related to NuoF-like subunits of known NADH-ubiquinone oxidoreductases.  相似文献   

10.
Formate dehydrogenase from Pseudomonas oxalaticus   总被引:6,自引:0,他引:6  
Formate dehydrogenase (EC 1.2.1.2) from Pseudomonas oxalaticus has been isolated and characterized. The enzyme (molecular weight 315000) is a complex flavoprotein containing 2 FMN, 18--25 non-heme iron atoms and 15--20 acid-labile sulphides. In the last step of the purification, a sucrose gradient centrifugation, a second catalytically active species has been found apparently originating from a dissociation of the enzyme into two equal subunits. The enzyme is specific toward its natural substrate formate. It transfers electrons to NAD+, oxygen, ferricyanide, and a lot of nonphysiological acceptors (dyes). In addition electrons are transferred from NADH to these acceptors. The (reversible) removal of FMN requires a reduction step. Reincorporation has been followed by the reappearance of the reactivity against formate and by fluorescence titration. The deflavo enzyme also binds FAD and riboflavin. The resulting enzyme species show characteristic catalytic abilities. Activity against formate is peculiar to the FMN species.  相似文献   

11.
The membranes of the thermoacidophilic archaeon Sulfolobus metallicus exhibit an oxygen consumption activity of 0.5 nmol O(2) min(-1) mg(-1), which is insensitive to rotenone, suggesting the presence of a type-II NADH dehydrogenase. Following this observation, the enzyme was purified from solubilised membranes and characterised. The pure protein is a monomer with an apparent molecular mass of 49 kDa, having a high N-terminal amino acid sequence similarity towards other prokaryotic enzymes of the same type. It contains a covalently attached flavin, which was identified as being FMN by 31P-NMR spectroscopy, a novelty among type-II NADH dehydrogenases. Metal analysis showed the absence of iron, indicating that no FeS clusters are present in the protein. The average reduction potential of the FMN group was determined to be +160 mV, at 25 degrees C and pH 6.5, by redox titrations monitored by visible spectroscopy. Catalytically, the enzyme is a NADH:quinone oxidoreductase, as it is capable of transferring electrons from NADH to several quinones, including ubiquinone-1, ubiquinone-2 and caldariella quinone. Maximal turnover rates of 195 micromol NADH oxidized min(-1) mg(-1) at 60 degrees C were obtained using ubiquinone-2 as electron acceptor, after enzyme dilution and incubation with phospholipids.  相似文献   

12.
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio harveyi was purified and studied by EPR and visible spectroscopy. Two EPR signals in the NADH-reduced enzyme were detected: one, a radical signal, and the other a line around g = 1.94, which is typical for a [2Fe-2S] cluster. An E(m) of -267 mV was found for the Fe-S cluster (n = 1), independent of sodium concentration. The spin concentration of the radical in the enzyme was approximately the same under a variety of redox conditions. The time course of Na+-NQR reduction by NADH indicated the presence of at least two different flavin species. Reduction of the first species (most likely, a FAD near the NADH dehydrogenase site) was very rapid in both the presence and absence of sodium. Reduction of the second flavin species (presumably, covalently bound FMN) was slower and strongly dependent on sodium concentration, with an apparent activation constant for Na+ of approximately 3.4 mM. This is very similar to the Km for Na+ in the steady-state quinone reductase reaction catalyzed by this enzyme. These data led us to conclude that the sodium-dependent step within the Na+-NQR is located between the noncovalently bound FAD and the covalently bound FMN.  相似文献   

13.
Alkene monooxygenase, a multicomponent enzyme system which catalyzes the epoxidation of short-chain alkenes, is induced in Mycobacterium strain E3 when it is grown on ethene. We purified the NADH reductase component of this enzyme system to homogeneity. Recovery of the enzyme was 19%, with a purification factor of 920-fold. The enzyme is a monomer with a molecular mass of 56 kDa as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is yellow-red with absorption maxima at 384, 410, and 460 nm. Flavin adenine dinucleotide (FAD) was identified as a prosthetic group at a FAD-protein ratio of 1:1. Tween 80 prevented irreversible dissociation of FAD from the enzyme during chromatographic purification steps. Colorimetric analysis revealed 2 mol each of iron and acid-labile sulfide, indicating the presence of a [2Fe-2S] cluster. The presence of this cluster was confirmed by electron paramagnetic resonance spectroscopy (g values at 2.011, 1.921, and 1.876). Anaerobic reduction of the reductase by NADH resulted in formation of a flavin semiquinone.  相似文献   

14.
Two N-1 type iron-sulfur clusters in NADH-ubiquinone oxidoreductase (Complex I, EC 1.6.5.3) were potentiometrically resolved: one was titrated as a component with a midpoint oxidation-reduction potential of -335 mV at pH 8.0, and with an n-value equal to one; the other as an extremely low midpoint potential component (Em 8.0 less than -500 mV). These two clusters are tentatively assigned to N-1b and N-1a, respectively. Cluster N-1b is completely reducible with NADH and has a spin concentration of about 0.8/FMN. Its EPR spectrum can be simulated as a single rhombic component with principal g values of 2.019, 1.937, and 1.922, which correspond to the Center 1 reported earlier by Orme-Johnson, N. R., Hansen, R. E., and Beinert, H. (1974) J. Biol. Chem. 249, 1922-1927. At extremely low oxidation-reduction potentials (less than -450 mV), additional EPR signals emerge with apparent g values of gz = 2.03, gy = 1.95, and gx = 1.91, which we assign to cluster N-1a. It is difficult, however, to simulate the detailed spectral line shape of this component as a single rhombic component, suggesting some degree of protein modification or interaction with a neighboring oxidation-reduction component. EPR spectra of soluble NADH dehydrogenase, containing 5-6 g atoms of non-heme iron and 5-6 mol of acid-labile sulfide/mol of FMN, were examined. Signals from at least two iron-sulfur species could be distinguished in the NADH-reduced form: one of an N-1b type spectrum; the other of a spectrum with g values of 2.045, 1.95, and 1.87 (total of about 0.5 spin equivalents/FMN). This is the first example of an N-1 type signal detected in isolated soluble NADH dehydrogenase.  相似文献   

15.
Mitochondrial NADH dehydrogenase has been purified to homogeneity by resolution of Complex I from beef heart mitochondria with the chaotrope NaClO4 and precipitation of the enzyme with ammonium sulfate. The enzyme is water-soluble, has a molecular weight of 69,000 ± 1000 as determined by gel filtration on Sephadex G-100 and agarose 1.5 M. It is an iron-sulfur flavoprotein, with the ratio of flavin (FMN) to nonheme iron to labile sulfide being 1:5–6:5–6. The FMN content suggests a minimum molecular weight of 74,000 ± 3000 for the enzyme. NADH dehydrogenase is composed of three subunits with apparent Mr values, as determined by acrylamide gel electrophoresis as well as by gel filtration on agarose 5 M both in the presence of sodium dodecyl sulfate, of about 51,000, 24,000, and 9–10,000. Coomassie blue stain intensities of the subunits on acrylamide gels suggest that they are present in NADH dehydrogenase in equimolar amounts. However, summation of the apparent Mr values of the dodecyl sulfate-treated subunits appears to overestimate the molecular weight of the native enzyme. The amino acid compositions of NADH dehydrogenase and of each of the isolated and purified subunits have been determined. NADH dehydrogenase catalyzes the oxidation of NADH and NADPH by quinones, ferric compounds, and NAD (3-acetylpyridine adenine dinucleotide was used). All the activities of NADH dehydrogenase are greatly stimulated by addition of guanidine (up to 150 mm), alkylguanidines, arginine, and arginine methyl ester to the assay medium. Phosphoarginine had no effect. These results pointed to the importance of the positively charged guanido group, which appears to interact with and neutralize the negative charges on NAD(P)H and thereby allow for better enzyme-substrate interaction. In the absence of guanidine, NADPH is essentially unoxidized by the enzyme at pH values above 6.0. However, both NADPH dehydrogenase and NADPH → NAD transhydrogenase activities increase dramatically as the assay pH is lowered below pH = 6. Since the pK of the 2′-phosphate of NADPH is 6.1, it appears that the above pH effect is related to protonation of the 2′-phosphate, thus rendering NADPH a closer electronic analog of NADH, which is the primary substrate of the enzyme.  相似文献   

16.
Formate dehydrogenase (NAD+ dependent) was isolated from the obligate methanotroph Methylosinus trichosporium OB3b. When the enzyme was isolated anaerobically, two forms of the enzyme were seen on native polyacrylamide gels, DE-52 cellulose and Sephacryl S-300 columns; they were approximately 315,000 and 155,000 daltons. The enzyme showed two subunits on sodium dodecyl sulfate-polyacrylamide gels. The Mr of the alpha-subunit was 53,800 +/- 2,800, and that of the beta-subunit was 102,600 +/- 3,900. The enzyme (Mr 315,000) was composed of these subunits in an apparent alpha 2 beta 2 arrangement. Nonheme iron was present at a concentration ranging from 11 to 18 g-atoms per mol of enzyme (Mr 315,000). Similar levels of acid-labile sulfide were detected. No other metals were found in stoichiometric amounts. When the enzyme was isolated aerobically, there was no cofactor requirement for NAD reduction; however, when isolated anaerobically, activity was 80 to 90% dependent on the addition of flavin mononucleotide (FMN) to the reaction mixture. Furthermore, the addition of formate to an active, anoxic solution of formate dehydrogenase rapidly inactivated it in the absence of an electron acceptor; this activity could be reconstituted approximately 85% by 50 nM FMN. Flavin adenine dinucleotide could not replace FMN in reconstituting enzyme activity. The Kms of formate dehydrogenase for formate, NAD, and FMN were 146, 200, and 0.02 microM, respectively. "Pseudomonas oxalaticus" formate dehydrogenase, which has physical characteristics nearly identical to those of the M. trichosporium enzyme, was also shown to be inactivated under anoxic conditions by formate and reactivated by FMN. The evolutionary significance of this similarity is discussed.  相似文献   

17.
M. Gutman  A. Schejter  Y. Avi-Dor 《BBA》1968,162(4):506-517
1. The membrane bound DPNH oxidase of Escherichia coli can reduce the artificial electron acceptors: ferricyanide, dichlorophenolindophenol (DCIP) and menadione. All three are reduced by the flavoprotein of DPNH oxidase, but at different sites of the enzyme.

2. Freeze-drying of the bacterial membranes causes a selective detachment of DPNH dehydrogenase (DPNH: (acceptor) oxidoreductase, EC 1.6.99.3) from the membranes. This solubilization is accompanied by a decrease of Km(K3Fe(CN)6) from 2.0 to 0.25 mM, while no change is detected in Km(DPNH). This enzyme is not the DPNH diaphorase found in the bacteria.

3. DPNH dehydrogenase of E. coli is a metalloflavoprotein, containing non-heme iron, labile sulfide, FMN and FAD.

4. Reduction of the enzyme with DPNH in the absence of electron acceptor (ferricyanide or DCIP) causes a rapid and irreversible change to a less active state, Form II. Form II is characterized by a higher Km(DPNH) and slower vmax., while the Km(K3Fe(CN)6) remains unchanged.

5. The transformation of the enzyme to Form II is accompanied by the reduction of the non-heme iron component. The role of non-heme iron in the enzymic reaction is discussed.  相似文献   


18.
NADPH oxidase activity, in addition to NADH oxidase activity, has been shown to be present in the respiratory chain of Corynebacterium glutamicum. In this study, we tried to purify NADPH oxidase and NADH dehydrogenase activities from the membranes of C. glutamicum. Both the enzyme activities were simultaneously purified in the same fraction, and the purified enzyme was shown to be a single polypeptide of 55 kDa. The N-terminal sequence of the enzyme was consistent with the sequence deduced from the NADH dehydrogenase gene of C. glutamicum, which has been sequenced and shown to be a homolog of NADH dehydrogenase II. In addition to high NADH-ubiquinone-1 oxidoreductase activity at neutral pH, the purified enzyme showed relatively high NADPH oxidase and NADPH-ubiquinone-1 oxidoreductase activities at acidic pH. Thus, NADH dehydrogenase of C. glutamicum was shown to be rather unique in having a relatively high reactivity toward NADPH.  相似文献   

19.
Germination and growth of barley (Hordeum vulgare L.) in the presence of 59Fe2+ or 35SO4(2-) allows heavy incorporation of both isotopes into the thylakoid membranes and into isolated photosystem I particles. Analysis of 59Fe-labeled preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under mild conditions demonstrates that a minimum of four iron atoms/P700 is carried on P700-chlorophyll a-protein 1. When isolated from 35S-labeled preparations, P700-chlorophyll a-protein 1 binds zero valence 35S, which is converted into acid-labile [35S]sulfide by dithiothreitol reduction. Isolated photosystem I particles contain 14 acid-labile sulfide atoms and 10 iron atoms for each molecule of P700 and are composed of polypeptides of 110, 18, 15, 10, and 8 kDa of which the 10-kDa component is loosely bound. Under the electrophoretic conditions used, none of the low molecular weight polypeptides could be shown to be specifically associated with iron or acid-labile sulfide. Carboxymethylation of cysteine residues shows a high cysteine content in the 8-kDa polypeptide and an intermediate content in the 110- and 18-kDa polypeptides, whereas the 15-kDa polypeptide is devoid of sulfur amino acids. The experiments with the 59Fe-labeled thylakoids reveal other labeled polypeptides not associated with photosystem I, namely cytochrome f and possibly cytochromes b6 and b559.  相似文献   

20.
Interaction of rhodanese with mitochondrial NADH dehydrogenase   总被引:2,自引:0,他引:2  
NADH dehydrogenase is an iron-sulfur flavoprotein which is isolated and purified from Complex I (mitochondrial NADH: ubiquinone oxidoreductase) by resolution with NaClO4. The activity of the enzyme (followed as NADH: 2-methylnaphthoquinone oxidoreductase) increases linearly with protein concentration (in the range between 0.2 and 1.0 mg/ml) and decreases with aging upon incubation on ice. In the present work a good correlation was found between enzymic activity and labile sulfide content, at least within the limits of sensitivity of the assays employed. Rhodanese (thiosulfate: cyanide sulfurtransferase (EC 2.8.1.1) purified from bovine liver mitochondria was shown to restore, in the presence of thiosulfate, the activity of the partly inactivated NADH dehydrogenase. Concomitantly, sulfur was transferred from thiosulfate to the flavoprotein and incorporated as acid-labile sulfide. Rhodanese-mediated sulfide transfer was directly demonstrated when the reactivation of NADH dehydrogenase was performed in the presence of radioactive thiosulfate (labeled in the outer sulfur) and the 35S-loaded flavoprotein was re-isolated by gel filtration chromatography. The results indicated that the [35S]sulfide was inserted in NADH dehydrogenase and appeared to constitute the structural basis for the increase in enzymic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号