首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ribonuclease Activities and Distribution in Alzheimer''s and Control Brains   总被引:4,自引:2,他引:2  
Levels of free and total alkaline ribonuclease, and levels of acidic ribonuclease, were measured postmortem in control brains and in the brains of patients with Alzheimer's disease. In each brain region assayed, whether control or Alzheimer's, there was a statistically significant difference between the levels of free and total alkaline ribonuclease. Between 59 and 90% of the enzyme activity was associated with alkaline ribonuclease inhibitor in an inactive complex. Levels of free and total alkaline ribonuclease varied widely among different brains and brain regions, and were always lower in cerebellum than in temporal cortex and occipital pole. There was no significant difference in the levels of total alkaline ribonuclease, free alkaline ribonuclease, or acidic ribonucleases between corresponding regions of Alzheimer's and control brains. There was also no qualitative difference in the subcellular distribution of the alkaline and acidic ribonucleases between Alzheimer's and control brain. No significant relationships were found between ribonuclease levels and age, neuritic plaque density, postmortem interval, or storage time.  相似文献   

2.
The activities of the hexose monophosphate pathway enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were measured at autopsy in control and Alzheimer's disease brains. Enzyme activities did not vary between different areas of brain and were unaltered by age. In Alzheimer's disease, the activities of both enzymes were increased, the glucose-6-phosphate dehydrogenase activity being almost double the activity of normal controls. We propose that this increased enzyme activity is a response to elevated brain peroxide metabolism.  相似文献   

3.
Mounting evidence suggests that human pancreatic ribonuclease (RNase 1) plays important roles in vivo, ranging from regulating blood clotting and inflammation to directly counteracting tumorigenic cells. Understanding these putative roles has been pursued with continual comparisons of human RNase 1 to bovine RNase A, an enzyme that appears to function primarily in the ruminant gut. Our results imply a different physiology for human RNase 1. We demonstrate distinct functional differences between human RNase 1 and bovine RNase A. Moreover, we characterize another RNase 1 homolog, bovine brain ribonuclease, and find pronounced similarities between that enzyme and human RNase 1. We report that human RNase 1 and bovine brain ribonuclease share high catalytic activity against double-stranded RNA substrates, a rare quality among ribonucleases. Both human RNase 1 and bovine brain RNase are readily endocytosed by mammalian cells, aided by tight interactions with cell surface glycans. Finally, we show that both human RNase 1 and bovine brain RNase are secreted from endothelial cells in a regulated manner, implying a potential role in vascular homeostasis. Our results suggest that brain ribonuclease, not RNase A, is the true bovine homolog of human RNase 1, and provide fundamental insight into the ancestral roles and functional adaptations of RNase 1 in mammals.  相似文献   

4.
The lipid compositions of 10 different brain regions from patients affected by Alzheimer's disease/senile dementia of Alzheimer's type were analyzed. The total phospholipid amount decreased somewhat in nucleus caudatus and in white matter. The cortical areas that are morphologically affected by Alzheimer's disease, i.e., frontal and temporal cortex and the hippocampus, showed elevated contents of lipid solvent-extractable phosphatidylinositol. Sphingomyelin content was decreased in regions rich in myelin. There was a 20-50% decrease in dolichol amount in all investigated parts of the brain, but no change was seen in the polyisoprenoid pattern. Levels of alpha-unsaturated polyprenes were decreased in Alzheimer brains. Dolichyl-phosphate content increased in most regions, up to 100%. In both control and Alzheimer tissue almost all of the dolichyl-phosphate was covalently bound, apparently through glycosylation. Cholesterol amounts were highly variable but mostly unchanged, whereas ubiquinone concentrations increased by 30-100% in most regions in brains affected by Alzheimer's disease. These results demonstrate that both phospholipids and neutral lipids are modified in brains affected by Alzheimer's disease/senile dementia of Alzheimer's type.  相似文献   

5.
The effects of agonal status, postmortem delay, and age on human brain adenylyl cyclase activity were determined in membrane preparations of frontal cortex from a series of 18 nondemented subjects who had died with no history of neurological or psychiatric disease. Basal and guanosine 5'-O-(3-thiotriphosphate)-, aluminum fluoride-, and forskolin-stimulated enzyme activities were not significantly reduced over an interval from death to postmortem of between 3 and 37 h and were also not significantly different between individuals dying with a long terminal phase of an illness and those dying suddenly. Basal and aluminum fluoride-stimulated enzyme activities showed a negative correlation with increasing age of the individual. In subsequent experiments, basal and guanosine 5'-O-(3-thiotriphosphate)-, aluminum fluoride-, and forskolin-stimulated enzyme activities were compared in five brain regions from a series of eight Alzheimer's disease and seven matched nondemented control subjects. No significant differences were observed between the groups for either basal activity or activities in response to forskolin stimulation of the catalytic subunit of the enzyme. In contrast, enzyme activities in response to stimulation with guanosine 5'-O-(3-thiotriphosphate) and aluminum fluoride were significantly reduced in preparations of neocortex and cerebellum from the Alzheimer's disease cases compared with the nondemented controls. Lower guanosine 5'-O-(3-thiotriphosphate)-, but not aluminum fluoride-, stimulated activity was also observed in preparations of frontal cortex from a group of four disease controls compared with nondemented control values. The disease control group, which contained Parkinson's disease and progressive supranuclear palsy patients, showed increased forskolin-stimulated activity compared with both the nondemented control and the Alzheimer's disease groups. These findings indicate a widespread impairment of G protein-stimulated adenylyl cyclase activity in Alzheimer's disease brain, which occurs in the absence of altered enzyme catalytic activity and which is unlikely to be the result of non-disease-related factors associated with the nature of terminal illness of individuals.  相似文献   

6.
Cortical Cytochrome Oxidase Activity Is Reduced in Alzheimer's Disease   总被引:21,自引:5,他引:16  
Abstract: A defect in energy metabolism may play a role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease. In the present study, we examined the activities of the enzymes that catalyze oxidative phosphorylation in frontal, temporal, parietal, and occipital cortex from Alzheimer's disease patients and age-matched controls. Complex I and complex II–III activities showed a small decrease in occipital cortex, but were unaffected in the other cortical areas. The most consistent change was a significant decrease of cytochrome oxidase (complex IV) activity of 25–30% in the four cortical regions examined. These results provide further evidence of a cytochrome oxidase defect in Alzheimer's disease postmortem brain tissue. A deficiency in this key energy-metabolizing enzyme could lead to a reduction in energy stores and thereby contribute to the neurodegenerative process.  相似文献   

7.
A newly developed enzyme-linked immunosorbent assay for acetylcholinesterase (AChE) protein was combined with conventional measures of enzyme activity in a study of 15 brain regions from six control cases (non-neurological deaths), six cases of Alzheimer's disease, and six cases of Huntington's disease. In the control brains, the mean AChE activity varied 100-fold from region to region (cortex lowest, striatum highest). The variation in enzyme activity was exactly paralleled by a variation in protein immunoreactivity. Overall, the homospecific activity of AChE averaged 0.26 +/- 0.007 mU/pg, close to the value for electrophoretically homogeneous enzyme isolated from red blood cells. Similar homospecific activities were observed in samples from Huntington's and Alzheimer's brains. Evidently, AChE that is immunoreactive but enzymatically inactive does not accumulate in any of the three conditions examined. Huntington's brain samples showed normal total contents of AChE, but Alzheimer's brains showed significant decreases of both enzyme activity and immunoreactivity in all seven cortical regions and in two out of the eight subcortical structures examined, hippocampus and nucleus accumbens.  相似文献   

8.
Abstract: Damage to brain membrane phospholipids may play an important role in the pathogenesis of Alzheimer's disease (AD); however, the critical metabolic processes responsible for the generation and repair of membrane phospholipids affected by the disease are unknown. We measured the activity of key phospholipid catabolic and anabolic enzymes in morphologically affected and spared areas of autopsied brain of patients with AD and in matched control subjects. The activity of the major catabolic enzyme phospholipase A2 (PLA2), measured in both the presence and absence of Ca2+, was significantly decreased (−35 to −53%) in parietal and temporal cortices of patients with AD. In contrast, the activities of lysophospholipid acyltransferase, which recycles lysophospholipids into intact phospholipids, and glycerophosphocholine phosphodiesterase, which returns phospholipid catabolites to be used in phospholipid resynthesis, were increased by ∼50–70% in the same brain areas. Brain activities of enzymes involved in de novo phospholipid synthesis (ethanolamine kinase, choline kinase, choline phosphotransferase, phosphoethanolamine cytidylyltransferase, and phosphocholine cytidylyltransferase) were either normal or only slightly altered. The activities of PLA2 and acyltransferase were normal in the degenerating cerebellum of patients with spinocerebellar atrophy type 1, whereas the activity of glycerophosphocholine phosphodiesterase was reduced, suggesting that the alterations in AD brain were not nonspecific consequences of neurodegeneration. Our data suggest that compensatory phospholipid metabolic changes are present in AD brain that reduce the rate of phospholipid loss via both decreased catabolism (PLA2) and increased phospholipid resynthesis (acyltransferase and glycerophosphocholine phosphodiesterase).  相似文献   

9.
The pharmacology of the N -methyl-d-aspartate (NMDA) receptor site was examined in pathologically affected and relatively spared regions of cerebral cortex tissue obtained at autopsy from Alzheimer's disease cases and matched controls. The affinity and density of the [(3)H]MK-801 binding site were delineated along with the enhancement of [(3)H]MK-801 binding by glutamate and spermine. Maximal enhancement induced by either ligand was regionally variable; glutamate-mediated maximal enhancement was higher in controls than in Alzheimer's cases in pathologically spared regions, whereas spermine-mediated maximal enhancement was higher in controls in areas susceptible to pathological damage. These and other data suggest that the subunit composition of NMDA receptors may be locally variable. Studies with modified conantokin-G (con-G) peptides showed that Ala(7)-con-G had higher affinity than Lys(7)-con-G, and also defined two distinct binding sites in controls. Nevertheless, the affinity for Lys(7)-con-G was higher overall in Alzheimer's brain than in control brain, whereas the reverse was true for Ala(7)-con-G. Over-excitation mediated by specific NMDA receptors might contribute to localized brain damage in Alzheimer's disease. Modified conantokins are useful for identifying the NMDA receptors involved, and may have potential as protective agents.  相似文献   

10.
Alzheimer's disease may arise from or produce oxidative damage in the brain. To assess the responses of the Alzheimer's brain to possible oxidative challenges, we assayed for glutathione, glucose-6-phosphate dehydrogenase, catalase and superoxide dismutase in twelve regions of Alzheimer's disease and aged control brains. In addition, we determined levels of malondialdehyde to evaluate lipid peroxidation in these brain regions. Most brain regions showed evidence of a response to an oxidative challenge, but the cellular response to this challenge differed among brain regions. These data suggest that the entire Alzheimer's brain may be subject to an oxidative challenge, but that some brain areas may be more vulnerable than others to the consequent neural damage that characterizes the disease.  相似文献   

11.
12.
To determine whether phospholipid abnormality in Alzheimer's disease is associated with modification of phosphatidylethanolamine-N-methyltransferase, the activity of the enzyme was analysed in the frontal and occipital cortex of the brain from patients with Alzheimer's disease and from aged-matched control. The optimum pH for phosphatidylethanolamine-N-methyltransferase in human brain was 9.0. The enzyme activity was stimulated by detergent TWEEN 20 but inhibited by Triton X-100. Neither magnesium dependence nor chemical methylation was found. A decrease in activity of phosphatidylethanolamine-N-methyltransferase was observed in the frontal cortex of brain affected with Alzheimer's disease. The addition of exogenous phosphatidylethanolamine resulted in no modification in the methylation rate as compared with that of endogenous PE. The addition of phosphatidyl-N-monomethylethanolamine and phosphatidyl-N,N-dimethylethanolamine resulted in significantly increased rates of methylation in brain tissues. However, the increased rate of phosphatidylethanolamine-N-methyltransferase activity stimulated by exogenous phospholipids was lower in the frontal cortex of brains with Alzheimer's disease when compared to the normals and there was no difference in the occipital cortex between Alzheimer's disease and the control. It is plausible that the decreased activity of phosphatidylethanolamine-N-methyltransferase and its low compensating ability could relate to the modification of phosphatidylcholine in brain tissues from Alzheimer's disease patients.  相似文献   

13.
Previous studies have demonstrated elevated brain levels of phosphomonoesters in early stages of Alzheimer's disease and elevations of phosphodiesters later in the disease. In addition, preliminary quantitative analyses of the phospholipids of Alzheimer's brain reveals either decreases in some phospholipids or elevations followed by decreases in others. This study quantitated the activities of selected enzymes involved in phospholipid and choline metabolism and demonstrated elevated glycerol-3-phosphorylcholine phosphodiesterase and decreased choline kinase activities in Alzheimer's disease brain. The former could provide an enzymatic mechanism for the increased phosphorylcholine found in Alzheimer's disease brain.  相似文献   

14.
The activity of the dipeptidyl carboxypeptidase, angiotensin converting enzyme, was assayed in several brain regions of patients dying with Alzheimer's disease and compared to that of appropriately age-matched controls. Enzyme activity was found to be elevated by 44% and 41% in the medial hippocampus and parahippocampal gyrus, respectively, and by 27% and 29% in the frontal cortex (area 10 of Brodman) and caudate nucleus, respectively, in Alzheimer's disease patients. Converting enzyme activity did not differ from controls in the nucleus accumbens, substantia nigra, temporal cortex, anterior or posterior hippocampus, amydgala, and septal nuclei.  相似文献   

15.
16.
Abstract: A severe reduction of the in vivo cerebral glucose consumption rate is generally found in patients with Alzheimer's disease. In postmortem studies changes in the activities of key regulatory glycolytic enzymes, including 6-phosphofructokinase (PFK), have been reported in Alzheimer's disease brains, but the results obtained so far are inconsistent and controversial. We reevaluated the activity of PFK in brain tissue from clinically and neuropathologically confirmed cases of Alzheimer's disease using optimized tissue disintegration and assay methods and determined the PFK isozyme pattern. PFK activity in brains from patients with Alzheimer's disease was significantly increased in frontal and temporal cortex and unchanged in the other brain areas studied when compared with control brains. All three PFK isozymes were detected in each of the brain areas studied. In brains of Alzheimer's disease patients the level of the C-type PFK was slightly reduced at the expense of the M- and L-type subunits. The data presented do not support the results of other groups, which reported up to a 90% reduction of PFK activity in Alzheimer's disease. In contrast, the data presented clearly rule out the suggestion that changes of PFK activity might be one of the causes for the reduced glucose consumption in Alzheimer's disease brains.  相似文献   

17.
The microtubule-associated protein tau has risk alleles for both Alzheimer's disease and Parkinson's disease and mutations that cause brain degenerative diseases termed tauopathies. Aggregated tau forms neurofibrillary tangles in these pathologies, but little is certain about the function of tau or its mode of involvement in pathogenesis. Neuronal iron accumulation has been observed pathologically in the cortex in Alzheimer's disease, the substantia nigra (SN) in Parkinson's disease and various brain regions in the tauopathies. Here we report that tau-knockout mice develop age-dependent brain atrophy, iron accumulation and SN neuronal loss, with concomitant cognitive deficits and parkinsonism. These changes are prevented by oral treatment with a moderate iron chelator, clioquinol. Amyloid precursor protein (APP) ferroxidase activity couples with surface ferroportin to export iron, but its activity is inhibited in Alzheimer's disease, thereby causing neuronal iron accumulation. In primary neuronal culture, we found loss of tau also causes iron retention, by decreasing surface trafficking of APP. Soluble tau levels fall in affected brain regions in Alzheimer's disease and tauopathies, and we found a similar decrease of soluble tau in the SN in both Parkinson's disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. These data suggest that the loss of soluble tau could contribute to toxic neuronal iron accumulation in Alzheimer's disease, Parkinson's disease and tauopathies, and that it can be rescued pharmacologically.  相似文献   

18.
Over the past fifteen years, evidence has been accumulating that there is a chronic inflammatory reaction in areas of the brain affected by Alzheimer's disease. Chronic inflammation, which arises in reaction to an underlying pathology, represents a threat in its own right, wherever it may occur, and can in fact surpass primary affronts upon tissues. The brain, however, is particularly vulnerable because neurons are generally irreplaceable. In the case of Alzheimer's disease, inflammatory processes thus have the potential for turning a relatively slowly progressing condition into one characterized by rapid neurodegeneration.  相似文献   

19.
Iron, brain ageing and neurodegenerative disorders   总被引:1,自引:0,他引:1  
There is increasing evidence that iron is involved in the mechanisms that underlie many neurodegenerative diseases. Conditions such as neuroferritinopathy and Friedreich ataxia are associated with mutations in genes that encode proteins that are involved in iron metabolism, and as the brain ages, iron accumulates in regions that are affected by Alzheimer's disease and Parkinson's disease. High concentrations of reactive iron can increase oxidative-stress induced neuronal vulnerability, and iron accumulation might increase the toxicity of environmental or endogenous toxins. By studying the accumulation and cellular distribution of iron during ageing, we should be able to increase our understanding of these neurodegenerative disorders and develop new therapeutic strategies.  相似文献   

20.
Acid (pH 5.5), free, and latent alkaline (pH 7.4) RNases were assayed in homogenates of temporal cortex, hypothalamus, hippocampus, and cervicothoracic segments of spinal cord of rats at three different ages (5, 14, and 25 months old). Free alkaline RNase activity was lower (two- to fivefold) than the acid activity. Both free and inhibitor-bound alkaline RNases remained unchanged with age in all CNS regions examined. This result also indirectly indicates no change of RNase-inhibitor complex throughout aging. In contrast, the acid RNase activity showed a significant increase during aging in all tissues, with exception of the hypothalamus. Because this enzyme is localized mainly in the lysosomes, this result might be due to an increased lysosomal activity and/or to the release of hydrolases into the cytoplasm from these organelles, undergoing shrinkage and degeneration in aged animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号