首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The smooth muscle of rabbit portal vein was studied by electron microscopy with particular emphasis on the mechanical linkage between the muscle cells and on the distribution of connective tissue.The media of this vein is composed of inner circular and outer longitudinal muscle layers which are orientated almost perpendicularly to each other. The muscle of the inner circular layer shows very irregular contours with much branching and anastomosing of the cytoplasmic processes, which often make membrane contacts with neighbouring cells to form an extensive network of cytoplasmic processes. The muscle cells of the outer longitudinal layer are arranged in densely packed bundles and are spindle-shaped, with no branching processes. Opposing dense areas from neighbouring cells, with variable gap distances (30–100 nm) and close membrane contacts (intermediate junctions) with a gap of 11 nm were observed in both circular and longitudinal muscle layers.In the terminal regions of muscle cells in both circular and longitudinal layers a specialized anchoring structure was present which was closely related to extracellular elastic tissue. Muscle cells in the longitudinal layer showed the most elaborate structure, the tapering end of the muscle cell showing a honeycomb-like structure penetrated by columns of connective tissue compounds. The functional implications of these structures are discussed.  相似文献   

2.
We have carried out a detailed ultrastructural study of the interstitial cells near the myenteric plexus of the canine colon and defined the structural characteristics which distinguish them from other resident non-neural cells. We have also examined the interconnections of these interstitial cells with nerves, the longitudinal muscle, and the circular muscle. In addition, we sought connections between interstitial cells of the myenteric plexus and those described earlier at the inner border of the circular muscle in proximal and distal colon. The interstitial cells of the myenteric plexus were structurally distinctive, and made gap junctions with one another and occasionally with smooth muscle. There seemed to be two subsets of these interstitial cells, one associated with the longitudinal muscle and the other with the circular muscle. Cells of both subsets were often close (less than or equal to 20 nm) to nerve profiles. The interstitial cells near the longitudinal muscle layer penetrated slightly into the muscle layer, but those near the circular muscle did not and neither set contacted the other. Moreover, interstitial cells of Cajal located near the myenteric plexus were never observed to contact those at the inner border of circular muscle. The interstitial cells of Cajal at the canine colon myenteric plexus are structurally organized to provide independent pacemaking activities for the longitudinal and adjacent circular muscle. Their dense innervation suggests that they mediate neural modulation of intestinal pacemaker activities. Moreover, they lack direct contacts with the interstitial cell network at the inner border of circular muscle, which is essential for the primary pacemaking activity of circular muscle. The structural organization of interstitial cells in canine colon is consistent with their proposed role in pacemaking activity of the two muscle layers.  相似文献   

3.
The network of interstitial cells of Cajal associated with Auerbach’s (myenteric) plexus in the canine colon was investigated to determine its role in facilitating communication between circular and longitudinal muscle layers. Electrical coupling between the muscle layers was demonstrated by propagating extracellularly evoked electrotonic pulses from circular muscle cells to nearby longitudinal muscle cells. The likelihood of cytoplasmic continuity across Auerbach’s plexus was further demonstrated by the ability of neurobiotin to spread between the interstitial cells and the circular and longitudinal muscle cells. Importantly, direct neurobiotin spread between circular and longitudinal muscle cells was not observed even when they were in close proximity as determined by confocal microscopy. When neurobiotin did spread across the two muscle layers, the intervening interstitial cells were always neurobiotin-positive. In regions where circular and longitudinal muscle cells approach each other closely, electron microscopy revealed the presence of close appositions between interstitial cells and smooth muscle cells. Gap junctions between interstitial cells and smooth muscle cells of both layers, as judged by electron microscopy, were extremely rare. Neither gap junctions nor close appositions were observed between longitudinal and circular muscle cells. The special arrangement for electrotonic coupling across Auerbach’s plexus through interstitial cells of Cajal suggests controlled coupling between the two muscle layers, explaining the preservation of their distinct electrical activities. Received: 21 July 1995 / Accepted: 22 April 1998  相似文献   

4.
Interstitial cells of Cajal (ICC) associated with the submucosal (submucous) plexus (ICC-SP) in the proximal colon of the guinea pig were studied by immunohistochemistry and electron microscopy. Whole-mount stretch preparations with c-Kit immunohistochemistry revealed that a number of ICC-SP constituted a dense cellular network around the submucosal plexus. Some of these ICC-SP were observed in the vicinity of the muscularis mucosae in sections immunostained for c-Kit and α-smooth muscle actin. Ultrastructural observation demonstrated, for the first time, that ICC-SP of the proximal colon of the guinea pig retained typical ultrastructural characteristics of ICC repeatedly reported in association with the tunica muscularis of the gastrointestinal tract: a basal lamina, caveolae, many mitochondria, abundant intermediate filaments and the formation of gap junctions with the same type of cells. The most remarkable ultrastructural finding was the presence of thick bundles composed of the processes of ICC-SP connected to each other via large gap junctions. These ICC-SP might be involved in the main mucosal functions of the proximal colon of the guinea pig, namely the transportation of water and electrolytes, possibly via their involvement in the spontaneous contractions of the muscularis mucosae.  相似文献   

5.
Santiago Ramón y Cajal discovered a new type of cell related to the myenteric plexus and also to the smooth muscle cells of the circular muscle layer of the intestine. Based on their morphology, relationships and staining characteristics, he considered these cells as primitive neurons. One century later, despite major improvements in cell biology, the interstitial cells of Cajal (ICCs) are still controversial for many researchers. The aim of study was to perform an immunohistochemical and ultrastructural characterization of the ICCs in the rabbit duodenum. We have found interstitial cells that are positive for c-Kit, CD34 and nestin and are also positive for Ki67 protein, tightly associated with somatic cell proliferation. By means of electron microscopy, we describe ICCs around enteric ganglia. They present triangular or spindle forms and a very voluminous nucleus with scarce perinuclear chromatin surrounded by a thin perinuclear cytoplasm that expands with long cytoplasmic processes. ICC processes penetrate among the smooth muscle cells and couple with the processes of other ICCs located in the connective tissue of the circular muscle layer and establish a three-dimensional network. Intercellular contacts by means of gap-like junctions are frequent. ICCs also establish gap-like junctions with smooth muscle cells. We also observe a population of interstitial cells of stellate morphology in the connective tissue that sur-rounds the muscle bundles in the circular muscle layer, usually close to nervous trunks. These cells establish different types of contacts with the muscle cells around them. In addition, the presence of a single cilium showing a structure 9 + 0 in an ICC is demonstrated for the first time. In conclusion, we report positive staining c-Kit, CD34, nestin and Ki 67. ICCs fulfilled the usual transmission electron microscopy (TEM) criteria. A new ultrastructural characteristic of at least some ICCs is demonstrated: the presence of a single cilium. Some populations of ICCs in the rabbit duodenum present certain immunohistochemical and ultrastructural characteristics that often are present in progenitor cells.  相似文献   

6.
The plane between longitudinal and circular muscle of human colon, as revealed on examination with light and electron microscopes, has no clear-cut border. Some groups of smooth muscle cells, obliquely oriented and with features similar to both circular and longitudinal ones--the connecting muscle bundles--run from one muscle layer to another. Other groups of smooth muscle cells, possessing their own specific ultrastructural features--the myenteric muscle sheaths--, make up envelopes of variable thickness around some myenteric ganglia and nerve strands, partially or completely embedding them in one or other muscle layer. Non-neuronal, non-muscular cells (interstitial cells of Cajal, covering cells, fibroblast-like and macrophage-like cells) complicate the texture of the myenteric muscle sheaths, creating an intricate, interconnected cellular network inside them, widespread among nerve bundles and smooth muscle cells; however, only interstitial cells have cell-to-cell junctions also with the smooth muscle cells and nerve endings. These data document the existence in this colonic area of two different types of muscle cell arrangements, one of which, the myenteric muscle sheath, only contains putative pacemaker cells.  相似文献   

7.
Morphological studies have shown synaptic-like structures between enteric nerve terminals and interstitial cells of Cajal (ICC) in mouse and guinea pig gastrointestinal tracts. Functional studies of mice lacking certain classes of ICC have also suggested that ICC mediate enteric motor neurotransmission. We have performed morphological experiments to determine the relationship between enteric nerves and ICC in the canine gastric antrum with the hypothesis that conservation of morphological features may indicate similar functional roles for ICC in mice and thicker-walled gastrointestinal organs of larger mammals. Four classes of ICC were identified based on anatomical location within the tunica muscularis. ICC in the myenteric plexus region (IC-MY) formed a network of cells that were interconnected to each other and to smooth muscle cells by gap junctions. Intramuscular interstitial cells (IC-IM) were found in muscle bundles of the circular and longitudinal layers. ICC were located along septa (IC-SEP) that separated the circular muscle into bundles and were also located along the submucosal surface of the circular muscle layer (IC-SM). Immunohistochemistry revealed close physical associations between excitatory and inhibitory nerve fibers and ICC. These contacts were synaptic-like with pre- and postjunctional electron-dense regions. Synaptic-like contacts between enteric neurons and smooth muscle cells were never observed. Innervated ICC formed gap junctions with neighboring smooth muscle cells. These data show that ICC in the canine stomach are innervated by enteric neurons and express similar structural features to innervated ICC in the murine GI tract. This morphology implies similar functional roles for ICC in this species.  相似文献   

8.
Antiperistalses occur from the flexure region of the guinea pig colon. We previously demonstrated that the circular muscle at the mesenteric border of the flexure region produced spontaneous regular contractions and found special smooth muscle cells believed to be pacemakers along the submucosal surface of the circular muscle layer. In this study, we revealed bipolar- and multipolar-type special smooth muscle cells along the submucosal surface of the muscle layer. Their slender cell processes contacted each other and formed a cellular network. Caveolae, filament structures expressing smooth muscle actin, vimentin, some desmin, and basal lamina were prominent features. The special smooth muscle cells corresponded to c-Kit-immunopositive cells and so-called interstitial cells or interstitial cells of Cajal in other reports. Their population was larger in the flexure region and the proximal colon than in the distal colon. The circular muscle layer at the flexure region was thicker than in other regions. The contraction in the flexure region showed the highest frequency and regularity. The dense population of special smooth muscle cells at the flexure region and thicker muscle layer may make the mechanical contraction more regular. The antiperistalsis from the flexure region could be explained in relation to the highest frequency of the pulsating contraction.  相似文献   

9.
Electron-microscopic studies have revealed a heterogeneous distribution of gap junctions in the muscularis externa of mammalian intestines. This heterogeneity is observed at four different levels: among species; between small and large intestines; between longitudinal and circular muscle layers; and between subdivisions of the circular muscle layer. We correlated results obtained with two immunomethods, using an antibody to the known gap-junctional protein (connexin43) with ultrastructural findings, and further evaluated the respective sensitivity of these two approaches. For comparative reasons we also included the vascular smooth muscle of coronary arteries into our study. Two versions of the immunotechnique (peroxidase-antiperoxidase and fluorescence methods) were applied to frozen sections of murine, canine, and human small and large intestines, as well as to pig coronary artery. In the small intestine of all three species a very strong reactivity marked the outer main division of the circular muscle layer, while the longitudinal muscle layer as well as the inner thin division of the circular muscle layer were negative. In murine and human colon both muscle layers were negative, while in canine colon the border layer between the circular muscle and the submucosa reacted strongly, and scattered activity was found in the portion of the circular muscle layer (one tenth of its thickness) closest to the submucosa. The remainder of the circular muscle layer and the entire longitudinal muscle layer were negative in the canine colon. In the coronary artery we could not confirm the positive, specific labeling reported by other investigators (l.c.). In conclusion, we found close correlations at all four above-mentioned levels in the distribution of gap junctions in the gut musculature, as determined by binding of anticonnexin43 in comparison to conventional ultrastructural studies. Since no significant immunostaining was found in (i) the outer border of the circular muscle layer of the canine colon and (ii) the border layer between the submucosa and the circular muscle layer of human colon, where rare gap junctions have been identified at the ultrastructural level, we conclude that the electron-microscopic analysis is the more sensitive of the two methods.  相似文献   

10.
The enteric neural network in the proximal murine colon shows a regularly occurring hypoganglionic region, which is here characterized by using anatomical and electrophysiological techniques. Staining with NADPH diaphorase, methylene blue, and cuprolinic blue in standard whole mounts and three-dimensional gut preparations of the murine proximal colon consistently revealed two hypoganglionic areas surrounded by a dense clustering of enteric neurons. This irregularity in the ganglionic plexus was found to be present in mice of three different genetic backgrounds, as well as in rats. The lack of myenteric ganglia in these regions was associated with an absence of the longitudinal muscle layer, as shown in cross sections. Histochemical identification of interstitial cells of Cajal in Kit(W-lacZ/+) transgenic mice showed Kit-positive cells oriented parallel to both muscle layers of the colon. Kit-positive cells oriented parallel to the longitudinal muscle layers were absent in the hypoganglionic area described. Electrical field stimulation elicited TTX-sensitive inhibitory junction potentials (IJPs), which showed region-specific characteristics. The initial partly apamin-sensitive hyperpolarization was present in all parts of the murine colon, whereas a second sustained NG-nitro-L-arginine-sensitive hyperpolarization was absent in the cecum and decreased from the proximal to the distal colon. Dissecting the hypoganglionic area from the surrounding tissue abolished the otherwise normal inhibitory neurotransmission to the circular muscle (1.6 +/- 1.4 and 2.6 +/- 1.7 mV for the fast and slow component of IJP amplitude in the hypoganglionic area vs. 16.5 +/- 1.9 and 23.7 +/- 2.7 mV for the fast and slow component of IJP amplitude in the neuron-rich area, respectively, P < 0.01, n = 6), whereas dissection of an area of identical size with an intact myenteric network showed normal inhibitory neurotransmission, indicating that the hypoganglionic area receives essential functional neural input from the neuron-rich surrounding tissue. In summary, in the murine and rat proximal colon, a constant and distinct hypoganglionic region is described with important concomitant changes in local electrophysiology.  相似文献   

11.
Ultrastructure of Cajal-like interstitial cells in the human detrusor   总被引:4,自引:0,他引:4  
The aim of this ultrastructural study was to examine the human detrusor for interstitial cells of Cajal (ICC)-like cells (ICC-L) by conventional transmission electron microscopy (TEM) and immuno-transmission electron microscopy (I-TEM) with antibodies directed towards CD117 and CD34. Two main types of interstitial cells were identified by TEM: ICC-L and fibroblast-like cells (FLC). ICC-L were bipolar with slender (0.04 μm) flattened dendritic-like processes, frequently forming a branching labyrinth network. Caveolae and short membrane-associated dense bands were present. Mitochondria, rough endoplasmic reticulum and Golgi apparatus were observed in the cell somata and cytoplasmic processes. Intermediate filaments were abundant but no thick filaments were found. ICC-L were interconnected by close appositions, gap junctions and peg-and-socket junctions (PSJ) but no specialised contacts to smooth muscle or nerves were apparent. FLC were characterised by abundant rough endoplasmic reticulum but no caveolae or membrane-associated dense bands were observed; gap junctions and PSJ were absent and intermediate filaments were rare. By I-TEM, CD34 gold immunolabelling was present in long cytoplasmic processes corresponding to ICC-L between muscle fascicles but CD117 gold immunolabelling was negative. Thus, ICC-like cells are present in the human detrusor. They are CD34-immunoreactive and have a myoid ultrastructure clearly distinguishable from fibroblast-like cells. ICC-L may be analogous to interstitial cells of Cajal in the gut.  相似文献   

12.
Interstitial cells of Cajal (ICC) are interposed between enteric neurons and smooth muscle cells in gastrointestinal (GI) muscles. The specific relationships between these cells in the murine proximal colon were studied with conventional and immunoelectron microscopy and immunohistochemistry. Intramuscular interstitial cells (IC-IM) formed discrete networks within the circular muscle layer of the murine proximal colon. Nerve trunks ran in close association with IC-IM and individual nerve trunks came into close contact with multiple IC-IM. Conventional electron microscopy revealed very close (< or = 20 nm) associations between nerve fibers and IC-IM. Processes of IC-IM also formed close contacts with neighboring smooth muscle cells. At the points of close association between neurons and IC-IM, areas of membrane densification in both pre- and postjunctional cells were present, suggesting specialized contacts or synaptic-like structures. Similar points of contact between neurons and smooth muscle cells were extremely rare. Immunoelectron microscopy demonstrated that IC-IM formed close associations with neurons containing nitric oxide synthase-like immunoreactivity (NOS-LI) or vesicular acetylcholine transporter-like immunoreactivity (vAChT-LI), suggesting innervation by both inhibitory and excitatory motor neurons. IC-IM were also labeled with anti-NOS antibodies. These observations suggest that IC-IM are an integral part of the neuromuscular junction in the colon. These cells may be the primary site of innervation, and neural regulation of the musculature may occur via IC-IM.  相似文献   

13.
The role of the interstitial cells of Cajal (ICC) associated with the myenteric plexus (ICC-MP) as regulators of the motility of the colonic external muscle remains unclear. Ultrastructural studies of myenteric interstitial cells are lacking in human colon. We therefore characterized the distinctive ultrastructure of these cells in the myenteric region of the colon by transmission electron microscopy of the region between the main muscle layers in all parts of the colon in unaffected areas of resected specimens from nine adult human patients. ICC-MP were similar in various colonic regions and had myoid features such as scattered caveolae, prominent intermediate filaments, and cytoplasmic dense bodies. We found characteristic dense membrane-associated bands with a patchy basal lamina, invaginating cellular protrusions (peg and socket junctions) between ICC and between ICC and muscle cells, and close contacts (<100 nm) between ICC and nerves. No gap junctions were observed. Fibroblast-like cells (FLC) were abundant showing well-developed secretory organelles, including coated vesicles, but lacked prominent intermediate filaments and caveolae. FLC had a patchy basal lamina, and peg and socket junctions were observed between them. Macrophage-like cells frequently occurred in close apposition with FLC and, more seldomly, with ICC-MP. The ultrastructure of ICC and FLC in the myenteric region of the human colon thus differs characteristically, but significant overlaps in the ultrastructure between ICC and FLC might complicate any interpretation in pathological ultrastructural studies of the human colonic muscle layer. An erratum to this article can be found at  相似文献   

14.
Interstitial cells of Cajal in the circular (ICC-CM) and longitudinal (ICC-LM) muscle layer of the rat gastric antrum and their innervation were studied ultrastructurally. Both ICC-CM and ICC-LM are characterized by many mitochondria, rough and smooth endoplasmic reticulum, caveolae, and formation of gap junctions with each other and with muscle cells, though ICC-LM tend to show more variable cytoplasmic features depending on section profiles. Close contacts between nerve terminals and both ICC-CM and ICC-LM are observed. These possible synaptic structures are characterized by: (1) accumulation of synaptic vesicles in nerve varicosities, (2) a narrow gap (about 20 nm) between pre- and postjunctional membranes, (3) lack of a basal lamina between pre- and postjunctional membranes, and (4) the presence of an electron-dense lining on the inner aspect of prejunctional membranes. Almost the same characteristics are observed between the nerve terminals and the muscle cells of both circular and longitudinal muscle layers of the same specimens. Therefore, we conclude that the smooth muscle cells of both circular and longitudinal layers of the rat antrum are directly and indirectly innervated via ICC. Their functional significance is discussed.  相似文献   

15.
16.
Lymph nodes in pigs are unique in their inverted structure, with the medulla in the periphery and the cortex in central areas. Furthermore, in this species most migrating lymphocytes do not use the classical route via efferent lymphatics to leave the lymph node. High-endothelial venules (HEV) are the entry sites for lymphocytes and in pigs probably also the exit site for recirculating lymphocytes. Therefore, the blood vessels and especially the HEV of the pig superficial inguinal lymph node were investigated as to whether morphological peculiarities could be found in the vascular system, using vascular casting, transmission- and scanning electron microscopy. A thin layer of capillary network surrounded the periphery of the lymph node and HEV branched acutely. The endothelial cells of HEV possessed well developed cytoplasmic organelles, interdigitated with each other, and demonstrated local cell-cell contacts. There were unusual cells bridging the adluminal wall of HEV. These cells were called intravascular bridging cells. They were characterized by an often invaginated nucleus, few pinocytotic vesicles, many microvilli on the surface, wide, flat, cytoplasmic processes like a pseudopod, Weibel-Palade bodies and local cell-cell contacts with endothelial cells. The pseudopod-like processes ramified over the endothelial junctions and covered lymphocytes. Lymphocytes were seen in different phases of migration between endothelial cells and in the intercellular junctions. The previous functional studies on the peculiar route of lymphocyte recirculation in pig lymph nodes are extended by these morphological data, showing a unique structure of HEV in pigs.  相似文献   

17.
Xenoturbella bocki is the only species of the high-ranked taxon Xenoturbellida. The species lives on marine mud bottoms at a depth of 20–120 m and moves extremely slowly by ciliary gliding. Nevertheless it possesses a well-developed body wall musculature with outer circular muscles, a prominent layer of inner longitudinal muscles and radial muscles that extend from the outer circular myocytes to the musculature surrounding the gastrodermis. The longitudinal myocytes are not compact cells, but form fascicles of fibrils running parallel to each other. Fine cytoplasmic cords connect the fibres of a cell to each other and with its nuclear region. The muscles are embedded within a sometimes expansive extracellular matrix (ECM) that lacks any fibrillar components. All muscle cells display conspicuous and numerous cytoplasmic extensions that are intermingled with each other. Tight coupling between adjacent cell membranes is not found, but zonula adhaerens-like junctions exist. Fibrils belonging to different myocytes, but also fibrils of the same cell, are coupled by such cytoplasmic extensions. Circular, radial and at least the peripheral longitudinal myocytes display cell-matrix connections with the internal lamina, a component of the subepidermal ECM. This internal lamina projects down into the centres of the fascicles with longitudinal muscle fibrils and forms extensive attachment zones with the muscle cells, reminiscent of focal contacts. For the ingestion of food, X. bocki opens the simple mouth pore and protrudes the aciliated gastrodermis. The body wall musculature is responsible for this protrusion and also for the withdrawal of the gastrodermis. In the past, possible phylogenetic kinships with the Acoelomorpha (Plathelminthes) or the Enteropneusta and Holothuroidea were discussed, but, on the basis of all information available, X. bocki is hypothesized to be the sister taxon of the Bilateria. Accepted: 2 April 1997  相似文献   

18.
The histology and ultrastructure of the body wall in Phoronopsis harmeriwere studied using light microscopy and TEM. The ectoderm epithelium of tentacles, anterior body region, and ampulla consists of monociliary cells. Gram-negative bacteria were found between microvilli, in the protocuticle of the anterior region, and in the ampulla. The epithelium of the posterior body region lacks both monociliary cells and bacteria. The bundles of nerve fibers run between the layer of epithelial cells and basal membrane. The musculature of the body wall comprises circular and longitudinal muscles. The circular muscle fibers are applied to the basal membrane and constitute a solid layer extending almost throughout the length of the body. This pattern is broken in the posterior body region, where there is no solid layer of circular musculature, and the latter is arranged in isolated muscle bands. In the ampullar (terminal) body region, the inversion of circular and longitudinal muscle layers takes place, so that the latter appears to be pressed against the basal membrane. The apical surfaces of longitudinal muscle cells bear cytoplasmic processes; some of the cells have a flagellum. The basal portion of the longitudinal muscle cells forms a cytoplasmic process containing bundles of tonofilaments. The processes of all cells making up the muscle bands are interwoven and anchored to the basal membrane.  相似文献   

19.
Summary An extensive cellular network becomes visible over the myenteric plexus of the rat after removal of the overlying tissues under the scanning electron microscope. The cells are mainly stellate and have many slender processes via which they interconnect. They form a three-dimensional network and are closely associated with the ganglia and nerve bundles, and also extend over the smooth muscle cells. They are considered to correspond to the interstitial cells of Cajal because of their peculiar arrangement and their topography. Transmission electron-microscopic evidence demonstrates that the majority of those cells have features of fibroblasts. Gap junctions and intermediate junctions are observed between these fibroblast-like cells, and also between them and smooth muscle cells. Examination of serial thin sections reveals that single fibroblast-like interstitial cells connect to both circular and longitudinal muscle cells via gap junctions. It is suggested that the network of interstitial cells conducts electrical signals.  相似文献   

20.
Summary The three-dimensional cytoarchitecture and ultrastructure of the smooth muscle cells in the wall of the rat thoracic duct were investigated by scanning and transmission electron microscopy. The muscle layer basically consists of a single layer of circularly arranged cells. The smooth muscle cell is fusiform or ribbon-like in shape, as in veins or venules with a similar or smaller diameter. Connections by spinous processes are observed between adjacent muscle cells along their length. Spot-like membrane contacts frequently occur in areas where facing membranes are closely apposed. These are thought to be gap junctions and may be responsible for electrical coupling and mechanical attachment. Large invaginations arranged regularly in rows on the surface of the smooth muscle cells can be observed. These invaginations are closely associated with a flattened sarcoplasmic reticulum, and caveolae tend to open into the invaginations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号