首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeat hexapeptides of elastin have been synthesized and studied with nuclear magnetic resonance methods. The deuterium substituted hexapeptide HCO-Ala1-Pro2-(2H2) Gly3-Val4-Gly5-Val6-OMe allowed completion of the proton assignments and specifically the definitive assignments of the Gly3 and Gly5 resonances. Solvent titrations followed by carbon-13 magnetic resonances are reported which delineate the Ala1 C-O and Gly5 C-O as intramolecularly hydrogen bonded. This coupled with the proton magnetic resonance data which delineated the Gly3 NH and VAL4 NH as candidates for intramolecular hydrogen bonding lead to the proposal of two hydrogen bonds, one between the Ala1 C-O and the Val4NH and the second between the Gly5C-O and the Gly3NH. The probability, or mol fraction, of occurrence of these secondary structural features is demonstrated to be high.  相似文献   

2.
Synthesis, proton magnetic resonance and carbon-13 magnetic resonance characterizations, including complete assignments, are reported for the polyhexapeptide of elastin, HCO-Val(Ala1-Pro2-Gly3-Val4-Gly5-Val6)18-OMe. Temperature dependence of peptide NH chemical shifts and solvent dependence of peptide C-O chemical shifts have been determined in several solvents and have been interpreted in terms of four hydrogen bonded rings for each repeat of the polyhexapeptide. The more stable hydrogen bonded ring is a beta-turn involving Ala1C-O--HN-Val4. More dynamic hydrogen bonds are an 11-atom hydrogen bonded ring Gly3NH--O-C Gly5, a 7-atom hydrogen bonded ring (a gamma-turn) Gly3 C-O--NH-Gly5, and a 23-atom hydrogen bonded ring Val6inH--O-C Val6(i+1). This set of hydrogen bonds results in a right-handed beta-spiral structure with slightly more than two repeats (approximately 2.2) per turn of spiral. The beta-spiral structure is briefly discussed relative to data on the elastic fiber.  相似文献   

3.
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

4.
The interaction of the following human fibrinogen-like peptides with bovine thrombin was studied by one- and two-dimensional NMR techniques in aqueous solution: acetyl-Phe(8)-Leu(9)-Ala(10)-Glu-(11)-Gly(12)-Gly(13)-Gly(14)-Val(15)-Ar g(16)- Gly(17)-Pro(18)-NHMe (F6), acetyl-Phe-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16) (tF6), acetyl-Asp(7)-Phe-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16)-Gly(17)-Pro- Arg(19)-Val(20)-NHMe (F8), and acetyl-Asp-Phe-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16) (tF8). At pH 5.3 and 25 degrees C, the Arg(16)-Gly(17) peptide bonds in both F6 and F8 were cleaved instantaneously in the presence of 0.5 mM thrombin, producing truncated peptides tF6 and tF8 and other peptide fragments. On the basis of observations of line broadening, thrombin was found to bind to the cleavage products, tF6 and tF8, of peptides F6 and F8. Peptide tF8 may have a higher affinity for thrombin than peptide tF6, as suggested by the more pronounced thrombin-induced line broadening on the proton resonances in peptide tF8. Transferred NOE (TRNOE) measurements were made of the complexes between thrombin and peptides tF6 and tF8. Medium- and long-range NOE interactions were found between the NH proton of Asp(7) and the C beta H protons of Ala(10), between the C alpha H proton of Glu(11) and the NH proton of Gly(13), and between the ring protons of Phe(8) and the C alpha H protons of Gly(14) and the C gamma H protons of Val(15). Sets of structures of the decapeptide tF8 were deduced by use of distance geometry calculations based on sequential and medium- and long-range TRNOEs from the thrombin-bound peptide. A predominant feature of these structures is the nonpolar cluster formed by the side chains of residues Phe(8), Leu(9), and Val(15) that are directly involved in binding to thrombin. This structural feature is brought about by an alpha-helical segment involving residues Phe(8)-Ala(10), followed by a multiple-turn structure involving residues Glu(11)-Val(15). These results provide an explanation for the observations that Asp(7), Phe(8), and Gly(12) are strongly conserved in mammalian fibrinogens and that the mutations of Asp(7) to Asn(7) and of Gly(12) to Val(12), result in delayed release of fibrinopeptide A, producing human bleeding disorders.  相似文献   

5.
F Ni  H A Scheraga  S T Lord 《Biochemistry》1988,27(12):4481-4491
The proton resonances of the following synthetic linear human fibrinogen-like peptides were completely assigned with two-dimensional NMR techniques in solution: Ala(1)-Asp-Ser-Gly-Glu-Gly-Asp(7)-Phe-Leu-Ala-Glu-Gly(12)-Gly(13)-Gly(14)- Val(15)-Arg(16)-Gly-Pro-Arg-Val-Val-Glu-Arg (F10), Ala-Asp-Ser-Gly-Glu-Gly-Asp-Phe-Leu-Ala-Glu-Gly-Gly(13)-Gly(14)-Val-Arg (F11), and Gly-Pro-Arg-Val-Val-Glu-Arg (F12). No predominant structure was found in the chain segment from Ala(1) to Gly(6) for F10 in both H2O and dimethyl sulfoxide. The previous suggestion that there is a hairpin loop involving residues Gly(12) to Val(15) in the A alpha chain of human fibrinogen is supported by the slow backbone NH exchange rates of Gly(14) and Val(15), by an unusually small NH chemical shift of Val(15), and by strong sequential NOE's involving this region in F10. This local chain fold within residues Asp(7) to Val(20) may place the distant Phe residue near the Arg(16)-Gly(17) peptide bond which is cleaved by thrombin.  相似文献   

6.
In human fibrinogen Rouen, which is the origin of a bleedin disorder, a single amino acid is mutated from Gly(12) to Val(12) in the A alpha chain. In the previous paper of this series, this mutation was predicted to disrupt the structure of fibrinogen-like peptides bound to bovine thrombin. The structural basis of this bleeding disorder has been further assessed by studying the interaction of the following Val(12)-substituted human fibrinogen-like peptides with bovine thrombin in aqueous solution by use of two-dimensional NMR spectroscopy (including TRNOE): Ala-Asp-Ser-Gly-Glu-Gly-Asp(7)-Phe-Leu-Ala- Glu-Val(12)-Gly-Gly-Val-Arg(16)-Gly(17)-Pro-Arg-Val-NH2 (F16), Ala-Asp-Ser-Gly-Glu-Gly-Asp(7)-Phe-Leu-Ala-Glu-Val(12)-Gly-Gly-Val- Arg(16) (tF16), Ala-Asp-Ser-Gly-Glu-Cys(Acm)-Asp(7)-Phe-Leu-Ala-Glu-Val(12)-Gly-Gly-Val- Arg(16)-Gly(17)-Pro-Arg-Val-Cys(Acm)-NH2 (F17), and Ala-Asp-Ser-Gly-Glu-Cys(Acm)-Asp(7)-Phe-Leu-Ala-Glu-Val(12)-Gly-Gly- Val-Arg(16) (tF17). Binding of thrombin to peptides F16 and F17, and hence to tF16 and tF17 as a result of the cleavage of the Arg(16)-Gly(17) peptide bond, broadens the proton resonances of residues Asp(7) to Arg(16), suggesting that thrombin interacts specifically with this sequence of residues. Medium- and long-range TRNOE's were observed between the NH proton of Asp(7) and the C beta H protons of Ala(10) and between the ring protons of Phe(8) and the C gamma H protons of Val(12) and Val(15) in complexes of thrombin with both tF16 and tF17. A strong TRNOE, in peptides tF16 and tF17, between the C beta H protons of Glu(11) and the backbone NH proton of Val(12) was also observed. However, TRNOE's between the ring protons of Phe(8) and the C alpha H protons of Gly(14) and between the C alpha H proton of Glu(11) and the NH proton of Gly(13), previously observed in the complex of thrombin with FpA, were absent in both peptides tF16 and tF17. From incorporation of TRNOE information into distance geometry calculations, Val(12) was found to disrupt the type II beta-turn involving Glu(11) and Gly(12) that is present in complexes of thrombin with normal fibrinogen-like peptides. The positions of Gly(13) and Gly(14) in the complex are also displaced, relative to the aromatic ring of Phe(8), by the Val(12) substitution. This altered geometry presumably affects the positioning of the Arg(16)-Gly(17) bond in the active site of thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The conformation of cyclolinopeptide A [cyclo(Pro-Pro-Phe-Phe-Leu-Ile-Ile-Leu-Val)], a naturally occurring cyclic nonapeptide has been investigated in dimethylsulfoxide solution by 270 MHz 1H-nmr. A complete assignment of all C alpha H and NH resonances has been accomplished using two-dimensional correlated spectroscopy and nuclear Overhauser effects (NOEs). Analysis of interresidue NOEs and JHNC alpha H values permit construction of a molecular model for the cyclic peptide backbone. The crude model derived from nmr has been used as a starting point for energy minimization, which yields a refined structure largely compatible with nmr observations. The major features of the conformation of cyclolinopeptide A are a Type VI beta-turn centered at Pro(1)-Pro(2), with a cis peptide bond between these residues and a gamma-turn (C7 structure) centered at Ile(6). Two intramolecular hydrogen bonds Val(9) CO--Phe(3)NH (4----1) and Leu(5) CO--Ile(7)NH (3----1) are observed in the low-energy conformation. The limited solvent accessibility observed for the Val(9) and Leu(5) NH groups in the nmr studies are rationalized in terms of steric shielding.  相似文献   

8.
The interaction of the following human fibrinogen-like peptides with bovine thrombin was studied by use of one- and two-dimensional NMR techniques in aqueous solution: Ala(1)-Asp-Ser-Gly-Glu-Gly-Asp-Phe(8)-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16 )- Gly(17)-Pro-Arg(19)-Val(20)-Val-Glu-Arg (F10), residues 1-16 of F10 (fibrinopeptide A), residues 17-23 of F10 (F12), residues 1-20 of F10 (F13), residues 6-20 of F10 with Arg(16) replaced by a Gly residue (F14), and residues 6-19 of F10 with Arg(16) replaced by a Leu residue (F15). At pH 5.3 and 25 degrees C, the Arg(16)-Gly(17) peptide bonds of both peptides F10 and F13 were cleaved instantaneously in the presence of 0.6 mM thrombin, whereas the cleavage of the Arg(19)-Val(20) peptide bonds in peptides F12, F13, and F14 took over 1 h for completion. On the basis of observations of line broadening, fibrinopeptide A was found to bind to thrombin. While resonances from residues Ala(1)-Glu(5) were little affected, binding of fibrinopeptide A to thrombin caused significant line broadening of NH and side-chain proton resonances within residues Asp(7)-Arg(16). There is a chain reversal within residues Asp(7)-Arg(16) such that Phe(8) is brought close to the Arg(16)-Gly(17) peptide bond in the thrombin-peptide complex, as indicated by transferred NOEs between the aromatic ring protons of Phe(8) and the C alpha H protons of Gly(14) and the C gamma H protons of Val(15). A similar chain reversal was obtained in the isolated peptide F10 at a subzero temperature of -8 degrees C. The titration behavior of Asp(7) in peptide F13 does not deviate from that of the reference peptide, N-acetyl-Asp-NHMe at both 25 and -8 degrees C, indicating that no strong interaction exists between Asp(7) and Arg(16) or Arg(19). Peptides with Arg(16) replaced by Gly and Leu, respectively, i.e., F14 and F15, were also found to bind to thrombin but with a different conformation, as indicated by the absence of the long-range NOEs observed with fibrinopeptide A. Residues Asp(7)-Arg(16) constitute an essential structural element in the interaction of thrombin with fibrinogen.  相似文献   

9.
Transfer of an aqueous-soluble peptide hormone or neurotransmitter such as [Met]- or [Leu]enkephalin (Tyr1-Gly2-Gly3-Phe4-Met5(Leu5)), to the lipid-rich environment of its membrane-embedded receptor protein may convert the peptide into a ("bioactive") conformation required for eliciting biological activity. We have examined by high-resolution nuclear magnetic resonance (NMR) spectroscopy the conformational parameters of free enkephalin in aqueous solution versus those of enkephalin bound to lysophosphatidylcholine micelles using two approaches: 1) exchange rates, line broadening, coupling constants, and chemical shift changes of enkephalin backbone peptide N-H protons were measured for free and membrane-bound peptide in H2O (360 MHz, pH 5.6, 20 degrees C). A selective upfield shift observed for the Met5(Leu5) N-H proton upon lipid binding was interpreted in terms of its incorporation into an intramolecular H-bond. 2) 13C chemical shift changes induced by the shift reagent praseodymium nitrate (Pr(NO3)3) were compared in the presence and absence of lipid micelles. Significant changes occurring in Gly2 carbon atoms in membrane-bound enkephalin suggested the relative proximity of this residue to the Pr3+ atom (bound to the Met5(Leu5) COOH-terminal carboxylate 4 residues away). These combined results, in conjunction with studies on the specific interactions of enkephalin substituents with the micelles (Deber, C. M., and Behnam, B. A., (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 61-65) suggest that enkephalin folds into an intramolecularly H-bonded beta-turn structure (with an H-bond between Gly2 C = O and Met5 NH) in the lipid environment. Such folding could facilitate the positioning of strategic residues in vivo as the hormone diffuses toward its receptor.  相似文献   

10.
A new synthetic route to (E)-beta-phenyl-alpha,beta-dehydroalanine (delta(E)Phe)-containing peptide was presented via photochemical isomerization of the corresponding (Z)-beta-phenyl-alpha,beta-dehydroalanine (delta(Z)Phe)-containing peptide. By applying this method to Boc-Ala-delta(Z)Phe-Val-OMe (Z-I: Boc, t-butoxycarbonyl; OMe, methoxy), Boc-Ala-delta(E)Phe-Val-OMe (E-I) was obtained. The identification of peptide E-I was evidenced by 1H-nmr, 13C-nmr, and uv absorption spectroscopy, elemental analysis, and hydrogenation. The conformation of peptide E-I in CDCl3 was investigated by 1H-nmr spectroscopy (solvent dependence of NH chemical shift and difference nuclear Overhauser effect). Interestingly, peptide E-I differed from peptide Z-I in the hydrogen-bonding mode. Namely, for peptide Z-I, only Val NH participates in intramolecular hydrogen bonding, which leads to a type II beta-turn conformation supported by hydrogen bonding between CO(Boc) and NH(Val). On the other hand, for peptide E-I, two NHs, delta(E)Phe NH and Val NH, participate in intramolecular hydrogen bonding. In both peptides, a remarkable NOE (approximately 11-13%) was observed for Ala C(alpha) H-deltaPhe NH pair. Based on the nmr data and conformational energy calculation, it should be concluded that peptide E-I takes two consecutive gamma-turn conformations supported by hydrogen bonding between CO(Boc) and NH(delta(E)Phe), and between CO(Ala) and NH(Val) as its plausible conformation.  相似文献   

11.
The third component of complement, C3, plays a central role in activation of the classical, alternative, and lectin pathways of complement activation. Recently, we have identified a 13-residue cyclic peptide (named Compstatin) that specifically binds to C3 and inhibits complement activation. To investigate the topology and the contribution of each critical residue to the binding of Compstatin to C3, we have now determined the solution structure using 2D NMR techniques; we have also synthesized substitution analogues and used these to study the structure-function relationships involved. Finally, we have generated an ensemble of a family of solution structures of the peptide with a hybrid distance geometry-restrained simulated-annealing methodology, using distance, dihedral angle, and 3J(NH-Halpha)-coupling constant restraints. The Compstatin structure contained a type I beta-turn comprising the segment Gln5-Asp6-Trp7-Gly8. Preference for packing of the hydrophobic side chains of Val3, Val4, and Trp7 was observed. The generated structure was also analyzed for consistency using NMR parameters such as NOE connectivity patterns, 3J(NH-Halpha)-coupling constants, and chemical shifts. Analysis of Ala substitution analogues suggested that Val3, Gln5, Asp6, Trp7, and Gly8 contribute significantly to the inhibitory activity of the peptide. Substitution of Gly8 caused a 100-fold decrease in inhibitory potency. In contrast, substitution of Val4, His9, His10, and Arg11 resulted in minimal change in the activity. These findings indicate that specific side-chain interactions and the beta-turn are critical for preservation of the conformational stability of Compstatin and they might be significant for maintaining the functional activity of Compstatin.  相似文献   

12.
One carbonyl oxygen of the cyclic hexapeptide cyclo(-Gly1-Pro2-Phe3-Val4-Phe5-Phe6-) (A) can be selectively exchanged with sulphur using Yokoyama's reagent. Surprisingly it was not the C=] of Gly1 but that of Phe5 which was substituted and cyclo(-Gly1-Pro2-Phe3-Val4-Phe5 psi [CS-NH]Phe6-) (B) was obtained. Thionation results in a conformational change of the peptide backbone although the C=O of Phe5 and the corresponding C=S are not involved in internal hydrogen bonds. Two isomers in slow exchange, containing a cis Gly1-Pro2 bond in a beta VIa-turn (minor) and a trans Gly-Pro bond in a beta II'-turn (major), were analyzed by restrained molecular dynamics in vacuo and in DMSO as well as using time dependent distance constraints. It is impossible to fit all experimental data to a static structure of each isomer. Interpreting the conflicting NOEs, local segment flexibility is found. MD simulations lead to a dynamic model for each structure with evidence of an equilibrium between a beta I- and beta II-turn about the Val4-Phe5 amide bond in both the cis and trans isomers. Additionally proton relaxation rates in the rotating frame (R1 rho) were measured to verify the assumption of this fast beta I/beta II equilibrium within each isomer. Significant contributions to R1 rho-rates from intramolecular motions were found for both isomers. Therefore it is possible to distinguish between at least four conformers interconverting on different time scales based on NMR data and MD refinement. This work shows that thionation is a useful modification of peptides for conformation-activity investigations.  相似文献   

13.
Ascidiacyclamide (ASC), cyclo(-Ile1-Oxz2-d-Val3-Thz4-)2 (Oxz=oxazoline and Thz=thiazole) has a C2-symmetric sequence, and the relationships between its conformation and symmetry have been studied. In a previous study, we performed asymmetric modifications in which an Ile residue was replaced by Gly, Leu or Phe to disturb the symmetry [Doi et al. (1999) Biopolymers49, 459-469]. In this study, the modifications were extended. The Ile1 residue was replaced by Gly, Ala, aminoisobutyric acid (Aib), Val, Leu, Phe or d-Ile, and the d-Val3 residue was replaced by Val. The structures of these analogs were analyzed by X-ray diffraction, 1H NMR and CD techniques. X-Ray diffraction analyses revealed that the [Ala1], [Aib1] and [Phe1]ASC analogs are folded, whereas [Val1]ASC has a square form. These structures are the first examples of folded structures for ASC analogs in the crystal state and are similar to the previously reported structures of [Gly1] and [Phe1]ASC in solution. The resonances of amide NH and Thz CH protons linearly shift with temperature changes; in particular, those of [Aib1], [d-Ile1] and [Val3]ASCs exhibited a large temperature dependence. DMSO titration caused nonlinear shifts of proton resonances for all analogs and largely affected [d-Ile1] and [Val3]ASCs. A similar tendency was observed upon the addition of acetone to peptide solutions. Regarding peptide concentration changes, amide NH and Thz CH protons of [Gly1]ASC showed a relatively large dependence. CD spectra of these analogs indicated approximately two patterns in MeCN solution, which were related to the crystal structures. However, all spectra showed a similar positive Cotton effect in TFE solution, except that of [Val3]ASC. In the cytotoxicity test using P388 cells, [Val1]ASC exhibited the strongest activity, whereas the epimers of ASC ([d-Ile1] and [Val3]ASCs), showed fairly moderate activities.  相似文献   

14.
Diethylglycine (Deg) residues incorporated into peptides can stabilize fully extended (C5) or helical conformations. The conformations of three tetrapeptides Boc-Xxx-Deg-Xxx-Deg-OMe (Xxx=Gly, GD4; Leu, LD4 and Pro, PD4) have been investigated by NMR. In the Gly and Leu peptides, NOE data suggest that the local conformations at the Deg residues are fully extended. Low temperature coefficients for the Deg(2) and Deg(4) NH groups are consistent with their inaccessibility to solvent, in a C5 conformation. NMR evidence supports a folded beta-turn conformation involving Deg(2)-Gly(3), stabilized by a 4-->1 intramolecular hydrogen bond between Pro(1) CO and Deg(4) NH in the proline containing peptide (PD4). The crystal structure of GD4 reveals a hydrated multiple turn conformation with Gly(1)-Deg(2) adopting a distorted type II/II' conformation, while the Deg(2)-Pro(3) segment adopts a type III/III' structure. A lone water molecule is inserted into the potential 4-->1 hydrogen bond of the Gly(1)-Deg(2) beta-turn.  相似文献   

15.
Dai J  Wang X  Feng Y  Fan G  Wang J 《Biopolymers》2004,75(3):229-241
The N-terminal short fragments of staphylococcal nuclease (SNase), SNase20, SNase28, and SNase36, corresponding to the sequence regions, Ala1-Gly20, Ala1-Lys28, and Ala1-Leu36, respectively, as well as an 8-residue peptide (Ala17-Ile18-Asp19-Gly20-Asp21-Thr22-Val23-Lys24) have been synthesized. The conformational states of these fragments were investigated using CD and NMR spectroscopy in aqueous solution and in trifluoroethanol (TFE)-H(2)O mixture. SNase20 containing a sequence corresponding to a bent peptide in native SNase shows a transient population of bend-like conformation around Ala12-Thr13-Leu14 in TFE-H(2)O mixture. The sequence region of Ala17-Thr22 of SNase28 displays a localized propensity for turn-like conformation in both aqueous solution and TFE-H(2)O mixture. The conformational ensemble of SNase36 in aqueous solution includes populated turn-like conformations localized in sequence regions Ala17-Thr22 and Tyr27-Gln30. The analysis suggests that these sequence regions, which form the regular secondary structures in native protein, may serve as the folding nucleation sites of SNase fragments of different chain lengths starting from the N-terminal end. Thus, the formation of bend- and turn-like conformations of these sequence regions may be involved in the early folding events of the SNase polypeptide chain in vitro.  相似文献   

16.
Proton nuclear magnetic resonance parameters are reported for DMSO-d6 solutions of the eosinophil chemotactic tetrapeptides, Val1-Gly2-Ser3-Glu4 and Ala1-Gly2-Ser3-Glu4, as well as three analogues of the Val1 tetrapeptide, D-Val1, Ala2 and Ala3. The synthesis of Val-(S)-[alpha-2 H1] Gly-Ala-Glu, in which the glycine has been stereospecifically deuterated in the H alpha 3 position, has allowed the assignment of the 1H resonances belonging to individual H alpha 2 and H alpha 3 glycine methylene protons. Simulation of the glycine ABX spin system yields two vicinal coupling constants which are consistent with a highly preferred conformation about the glycine HN-C alpha bond. The chemical shifts, coupling constants, temperature coefficients of amide proton chemical shifts and calculated side chain rotamer populations are reported for all peptides. The coupling constant analysis and temperature coefficients of amide proton chemical shifts together suggest that a type I beta-turn conformation is preferred by the Ala3 analogue. The 1H n.m.r. parameters of the other peptides suggest that these can also adopt a beta-turn conformation in DMSO. There are, however, considerable differences in the extent of conformational averaging undergone by the various peptides.  相似文献   

17.
A conserved proline-rich motif (PRM) in the cytoplasmic domain of cytokine receptors has been suggested to be a signaling switch regulated by the action of the FK506 binding protein (FKBP) family of peptidylprolyl isomerases (O'Neal KD, Yu-Lee LY, Shearer WT, 1995, Ann NY Acad Sci 766:282-284). We have docked the prolactin receptor PRM (Ile1-Phe2-Pro3-Pro4-Val5-Pro6-Gly7-Pro8) to the ligand binding site of FKBP12. The procedure involved conformational search restricted by NMR restraints (O'Neal KD et al., 1996, Biochem J 315:833-844), energy minimization of the octapeptide conformers so obtained, template-based docking of a selected conformer to FKBP12, and energy refinement of the resulting complex. The template used was the crystal structure of a cyclic FK506-peptide hybrid bound to FKBP12. Val5-Pro6 of the PRM was taken to be the biologically relevant Xaa-Pro bond. The docked conformer is stabilized by two intramolecular hydrogen bonds, N7H7-->O4 and N2H2-->O8, and two intermolecular ones, Ile56; N-H-->O = C:Pro6 and Tyr82:O-H-->O = C:Gly7. This conformer features a Type I beta-turn and has extensive hydrophobic contacts with the FKBP12 binding surface. The observed interactions support the hypothesis that FKBP12 catalyzes cis-trans isomerization in the PRM when it is part of the longer cytoplasmic domain of a cytokine receptor, and suggest a significant role for the PRM in signal transduction.  相似文献   

18.
The aminoxy acids NH2-O-C(alpha)HR-CO2H are much more easily obtained in the enantiomerically pure form than the analogous hydrazino acids NH2-NH-C(alpha)HR-CO2H, and it has been shown that the isosteric amidoxy psi[CO-NH-O] and hydrazide psi[CO-NH-NH] amide surrogates Induce two quite similar gamma-like folded structures. An aminoxy acid can also be N-coupled to a peptide aldehyde to give the aldoxime psi[CH = N-O] link or to a peptide ketone to form the ketoxime psi[CR= N-O] link. The former can be further reduced into the hydroxylamine psi[CH2-NH-O] link which gives rise to reduced amidoxy peptides. The structural properties Induced by these amide surrogates were studied, using IR and NMR spectroscopy, paying particular attention to the Z/E-isomerism of the oxime link. In order to investigate their inhibitory potency, the three amide surrogates were introduced in the Pro3-Val4 and Val4-Ala5 position of Z-Ala1-Ala2-Pro3-Val4-Ala5-Ala6-NHiPr, a substrate which is cleaved in the Val4-Ala5 position by human leukocyte elastase (HLE). The [Val4psi[CO-NH-O]Ala5] analogue was still a substrate, while the [Pro3psi[CO-NH-O]Val4] and [Val4psi[CH = N-O]Ala5] pseudopeptides acted as HLE competitive inhibitors.  相似文献   

19.
O Arad  M Goodman 《Biopolymers》1990,29(12-13):1652-1668
In this work the effect of elimination of a specific hydrogen bond on the conformation of the repeating peptides of elastin was studied. These repeating sequences are the pentapeptide Val-Pro-Gly-Val-Gly and the hexapeptide Val-Ala-Pro-Gly-Val-Gly. These sequences have been proposed to occur in a beta-turn conformation with a hydrogen bond involving the amide NH of the internal valine residue and the carbonyl oxygen of the residue preceding proline. In the depsipeptide analogues studied in this work, this 4-1 beta-turn hydrogen bond cannot occur. We studied the depsipeptide sequences Val-Pro-Gly-Hiv-Gly and Val-Ala-Pro-Gly-Hiv-Gly (Hiv denotes S-alpha-hydroxyisovaleric acid, the hydroxy acid analogue of valine), as well as the peptide sequences Val-Pro-Gly-Val-Gly and Val-Ala-Pro-Gly-Val-Gly. Compounds studied included sequences with the Boc and benzyl ester protecting groups, derivatives with the acetyl and N-methylamide end groups and polymers of the above sequences. Our conclusions are based on a comparison of depsipeptides with analogous peptides. Conformational analysis was carried out by nmr, CD, and ir spectroscopy. We propose that in the repeating sequences of elastin an equilibrium exists between a gamma-turn structure and a beta-turn structure in the Pro-Gly segment resulting in a structure that combines flexibility with strong conformational preferences. The C7 involves the amide NH of the internal glycine and the carbonyl oxygen of the residue preceding proline. In the N-methylamide derivatives a similar equilibrium exists in the Gly-Val-Gly segment. In the depsipeptides the beta-turn cannot occur and only the gamma-turn is seen. In the polydepsipeptides the major conformational feature is a type I beta-turn involving Gly5 NH and Pro CO.  相似文献   

20.
G Saviano  P A Temussi  A Motta  C A Maggi  P Rovero 《Biochemistry》1991,30(42):10175-10181
NKA (4-10), the C-terminal heptapeptide fragment (Asp-Ser-Phe-Val-Gly-Leu-Met-NH2) of tachykinin NKA, is more active than the parent native compound in the interaction with the NK-2 receptor. Substitution of Gly8 with the more flexible residue beta-Ala8 increases its selectivity with respect to other two known receptors (NK-1 and NK-3), whereas substitution with either D-Ala8 or GABA8 deprives the peptide of its biological activity. These findings can be interpreted by a conformational analysis based on NMR studies in DMSO-d6 and in a DMSO-d6/H2O cryoprotective mixture combined with internal energy calculations. NKA(4-10) is characterized by a structure containing a type I beta-turn extending from Ser5 to Gly8, followed by a gamma-turn centered on Gly8, whereas for [beta-Ala8]NKA(4-10) is possible to suggest a type I beta-turn extending from Ser5 to beta-Ala8, followed by a C8 turn comprising beta-Ala8 and Leu9 and by another beta-turn extending from beta-Ala8 to the terminal NH2. The preferred conformation of [beta-Ala8]NKA(4-10) is not compatible with models for NK-1 and NK-3 agonists proposed on the basis of rigid peptide agonists [Levian-Teitelbaum et al. (1989) Biopolymers 28, 51-64; Sumner & Ferretti (1989) FEBS Lett. 253, 117-120]. The preferred solution conformation of [beta-Ala8]NKA(4-10) may thus be considered as a likely bioactive conformation for NK-2 selective peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号