首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Schachat  R L Garcea  H F Epstein 《Cell》1978,15(2):405-411
The body-walls of Caenorhabditis elegans contain two different myosin heavy chains (Epstein, Waterston and Brenner, 1974) that associate to form at least two species of myosin (Schachat, Harris and Epstein, 1977a). To better define the distribution of these heavy chains in myosin molecules, we have characterized the myosin of C. elegans by immunochemical methods. Specific, precipitating anti-myosin antibody has been prepared in rabbits using highly purified nematode myosin as the immunogen. The difference in reactivity of the anti-myosin antibody with wild-type myosin containing both kinds of heavy chains (designated unc-54 and non-unc-54 heavy chains on the basis of genetic specification) and myosin from the mutant E190 that lacks unc-54 heavy chains Indicates that there are antigenic differences between myosin molecules containing unc-54 heavy chains and myosin molecules containing only non-unc-54 heavy chains. Antibody specific for the unc-54 myosin determinants has been prepared by the immunoadsorption of anti-myosin antibody with E190 myosin. This specific anti-unc-54 myosin antibody precipitates myosin that contains only unc-54 heavy chains. At the limits of resolution of our immunoprecipitation techniques, we could detect no heterodimeric myosin molecules containing both unc-54 and non-unc-54 heavy chains. The body-wall myosins of C. elegans therefore exist only as homodimers of either class of heavy chain.This specific anti-unc-54 myosin antibody promises to be a valuable tool in elucidating the role of two myosins in body-wall muscle and in molecular characterizations of mutant myosins in C. elegans. We report here the use of this antibody to detect antigenic differences between unc-54 myosin from the wild-type and the muscle mutant E675. In conjunction with the original anti-myosin antibody, other studies show that both unc-54 and non-unc-54 myosins exist within the same body-wall muscle cells (Mackenzie, Schachat and Epstein, 1978) and that both myosins are coordinately synthesized during muscle development in C. elegans (Garcea, Schachat and Epstein, 1978). We discuss the implications of the self-association of unc-54 and non-unc-54 myosin heavy chains into homodimeric myosins within the same body-wall muscles with respect to the assembly of thick filaments and their organization into a regular lattice.  相似文献   

2.
In this paper we examine the role of two myosins in body-wall muscle cells of the nematode Caenorhabditis elegans. Large populations of nematodes are synchronized, and the synthesis and accumulation of myosin heavy chains and total protein are followed through postmitotic larval development. Growth is exponential with time for both the wild-type N2 and the body-wall muscledefective mutant E675, with a longer doubling time for the mutant. Utilizing the electrophoretic polymorphism of the E675 myosin heavy chains, we show that distinguishable classes of heavy chains accumulate differentially throughout development. Immunochemical measurements confirm a similar result in N2. Total myosin heavy chain accumulation is also quantitatively similar for the two strains. Myosin heavy chain relative synthetic rates as determined by pulse-labeling are constant throughout development and are equivalent for the two strains. The final fraction of accumulated unc-54 to total heavy chains of approximately 0.63 equals the constant synthetic fraction of approximately 0.62.Since myosin heavy chain accumulation and relative synthesis are equivalent, we conclude that the turnover of heavy chains is also similar in N2 and E675 despite the extensive structural and functional disruption within body-wall muscle cells of the latter strain. Since the accumulated fraction of unc-54 myosin heavy chains reaches a plateau at the constant synthetic fraction, myosin accumulation In the body-wall muscle cells may be attributed to a constant ratio of synthetic rates of the two body-wall myosin species. The coordinate synthesis of two myosins in the same body-wall muscle cells is discussed.  相似文献   

3.
We have studied the structural changes within the body-wall muscle cells of Caenorhabditis elegans during postmitotic development. In wild-type, the number of sarcomeres progressively increases, and each sarcomere appears to grow in length and depth continuously during this period. In mature wild-type cells, the anterior-most body-wall muscle cells have 6–7 sarcomeres; the rest have 9–10 sarcomeres per cell. Twelve mutants in the unc-52 II gene exhibit markedly retarded sarcomere construction and progressive paralysis. Several unc-52 mutants, such as the severely paralyzed SU200, produce only 2–3 sarcomeres per body-wall muscle cell, while the other midly paralyzed unc-52 mutants, such as SU250, build 3–4 sarcomeres per muscle cell. Other structures such as the pharynx and even the noncontractile organelles of the body-wall muscle cells do not appear to be structurally or functionally altered. The unc-52 body-wall sarcomeres become moderately disorganized as they are outstripped by cell growth; sufficient order is preserved, however, so that the majority of thick and thin filaments still interdigitate.The myosin heavy chains of SU200 body-wall muscle fail to accumulate normally, while the pharyngeal myosin heavy chains do not appear to be specifically affected. This biochemical result correlates well with the specificity of morphological changes in the mutant. A model is discussed in which the biochemical and morphological deficits are explained by a simple regulatory mechanism.  相似文献   

4.
Mutants affecting paramyosin in Caenorhabditis elegans   总被引:17,自引:0,他引:17  
Four mutants of Caenorhabditis elegans with abnormal muscle structure are described which are alleles of a single locus unc-15. In one of the mutants, E1214, paramyosin is completely absent from both body-wall and pharyngeal musculature. In the other three mutants paramyosin is present but does not assemble into thick filaments. Instead paramyosin paracrystals are formed in the body-wall muscle cells. Myosin filaments lacking paramyosin cores are present in all four mutants, but these filaments fail to integrate stably into the myofilament lattice. One mutant is temperature-sensitive; all four are semi-dominant in their effect on muscle structure. The hypothesis that unc-15 is the structural gene for paramyosin is discussed.  相似文献   

5.
Despite the prevalence of developmental myopathies resulting from muscle fiber defects, the earliest stages of myogenesis remain poorly understood. Unc45b is a molecular chaperone that mediates the folding of thick-filament myosin during sarcomere formation; however, Unc45b may also mediate specific functions of non-muscle myosins (NMMs). unc45b Mutants have specific defects in striated muscle development, which include myocyte detachment indicative of dysfunctional adhesion complex formation. Given the necessity for non-muscle myosin function in the formation of adhesion complexes and premyofibril templates, we tested the hypothesis that the unc45b mutant phenotype is not mediated solely by interaction with muscle myosin heavy chain (mMHC). We used the advantages of a transparent zebrafish embryo to determine the temporal and spatial patterns of expression for unc45b, non-muscle myosins and mMHC in developing somites. We also examined the formation of myocyte attachment complexes (costameres) in wild-type and unc45b mutant embryos. Our results demonstrate co-expression and co-regulation of Unc45b and NMM in myogenic tissue several hours before any muscle myosin heavy chain is expressed. We also note deficiencies in the localization of costamere components and NMM in unc45b mutants that is consistent with an NMM-mediated role for Unc45b during early myogenesis. This represents a novel role for Unc45b in the earliest stages of muscle development that is independent of muscle mMHC folding.  相似文献   

6.
The thick filaments of the nematode, Caenorhabditis elegans, arising predominantly from the body-wall muscles, contain two myosin isoforms and paramyosin as their major proteins. The two myosins are located in distinct regions of the surfaces, while paramyosin is located within the backbones of the filaments. Tubular structures constitute the cores of the polar regions, and electron-dense material is present in the cores of the central regions (Epstein, H.F., D.M. Miller, I. Ortiz, and G.C. Berliner. 1985. J. Cell Biol. 100:904-915). Biochemical, genetic, and immunological experiments indicate that the two myosins and paramyosin are not necessary core components (Epstein, H.F., I. Ortiz, and L.A. Traeger Mackinnon. 1986. J. Cell Biol. 103:985-993). The existence of the core structures suggests, therefore, that additional proteins may be associated with thick filaments in C. elegans. To biochemically detect minor associated proteins, a new procedure for the isolation of thick filaments of high purity and structural preservation has been developed. The final step, glycerol gradient centrifugation, yielded fractions that are contaminated by, at most, 1-2% with actin, tropomyosin, or ribosome-associated proteins on the basis of Coomassie Blue staining and electron microscopy. Silver staining and radioautography of gel electrophoretograms of unlabeled and 35S-labeled proteins, respectively, revealed at least 10 additional bands that cosedimented with thick filaments in glycerol gradients. Core structures prepared from wild-type thick filaments contained at least six of these thick filament-associated protein bands. The six proteins also cosedimented with thick filaments purified by gradient centrifugation from CB190 mutants lacking myosin heavy chain B and from CB1214 mutants lacking paramyosin. For these reasons, we propose that the six associated proteins are potential candidates for putative components of core structures in the thick filaments of body-wall muscles of C. elegans.  相似文献   

7.
The established observations and unresolved questions in the assembly of myosin are outlined in this article. Much of the background information has been obtained in classical experiments using the myosin and thick filaments from vertebrate skeletal muscle. Current research is concerned with problems of myosin assembly and structure in smooth muscle, a broad spectrum of invertebrate muscles, and eukaryotic cells in general. Many of the general questions concerning myosin assembly have been addressed by a combination of genetic, molecular, and structural approaches in the nematode Caenorhabditis elegans. Detailed analysis of multiple myosin isoforms has been a prominent aspect of the nematode work. The molecular cloning and determination of the complete sequences of the genes encoding the four isoforms of myosin heavy chain and of the myosin-associated protein paramyosin have been a major landmark. The sequences have permitted a theoretical analysis of myosin rod structure and the interactions of myosin in thick filaments. The development of specific monoclonal antibodies to the individual myosins has led to the delineation of the different locations of the myosins and to their special roles in thick filament structure and assembly. In nematode body-wall muscles, two isoforms, myosins A and B, are located in different regions of each thick filament. Myosin A is located in the central biopolar zones, whereas myosin B is restricted to the flanking polar regions. This specific localization directly implies differential behavior of the two myosins during assembly. Genetic and structural experiments demonstrate that paramyosin and the levels of expression of the two forms are required for the differential assembly. Additional genetic experiments indicate that several other gene products are involved in the assembly of myosin. Structural studies of mutants have uncovered two new structures. A core structure separate from myosin and paramyosin appears to be an integral part of thick filaments. Multifilament assemblages exhibit multiple nascent thick filament-like structures extending from central paramyosin regions. Dominant mutants of myosin that disrupt thick filament assembly are located in the ATP and actin binding sites of the heavy chain. A model for a cycle of reactions in the assembly of myosin into thick filaments is presented. Specific reactions of the two myosin isoforms, paramyosin, and core proteins with multifilament assemblages as possible intermediates in assembly are proposed.  相似文献   

8.
Reddy AS  Day IS 《Genome biology》2001,2(7):research0024.1-research002417

Background

Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants.

Results

Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication.

Conclusions

Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.  相似文献   

9.
Conventional myosin II plays a fundamental role in the process of cytokinesis where, in the form of bipolar thick filaments, it is thought to be the molecular motor that generates the force necessary to divide the cell. In Dictyostelium, the formation of thick filaments is regulated by the phosphorylation of three threonine residues in the tail region of the myosin heavy chain. We report here on the effects of this regulation on the localization of myosin in live cells undergoing cytokinesis. We imaged fusion proteins of the green-fluorescent protein with wild-type myosin and with myosins where the three critical threonines had been changed to either alanine or aspartic acid. We provide evidence that thick filament formation is required for the accumulation of myosin in the cleavage furrow and that if thick filaments are overproduced, this accumulation is markedly enhanced. This suggests that myosin localization in dividing cells is regulated by myosin heavy chain phosphorylation.  相似文献   

10.

Background

Nitric oxide (NO) has long been recognized to affect muscle contraction [1], both through activation of guanylyl cyclase and through modification of cysteines in proteins to yield S-nitrosothiols. While NO affects the contractile apparatus directly, the identities of the target myofibrillar proteins remain unknown. Here we report that nitrogen oxides directly regulate striated muscle myosins.

Principal Findings

Exposure of skeletal and cardiac myosins to physiological concentrations of nitrogen oxides, including the endogenous nitrosothiol S-nitroso-L-cysteine, reduced the velocity of actin filaments over myosin in a dose-dependent and oxygen-dependent manner, caused a doubling of force as measured in a laser trap transducer, and caused S-nitrosylation of cysteines in the myosin heavy chain. These biomechanical effects were not observed in response to S-nitroso-D-cysteine, demonstrating specificity for the naturally occurring isomer. Both myosin heavy chain isoforms in rats and cardiac myosin heavy chain from human were S-nitrosylated in vivo.

Significance

These data show that nitrosylation signaling acts as a molecular “gear shift” for myosin—an altogether novel mechanism by which striated muscle and cellular biomechanics may be regulated.  相似文献   

11.
12.
J. Ahnn  A. Fire 《Genetics》1994,137(2):483-498
We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.  相似文献   

13.
14.
There are two classes of myosin, XI and VIII, in higher plants. Myosin XI moves actin filaments at high speed and its enzyme activity is also very high. In contrast, myosin VIII moves actin filaments very slowly with very low enzyme activity. Because most of these enzymatic and motile activities were measured using animal skeletal muscle α-actin, but not plant actin, they would not accurately reflect the actual activities in plant cells. We thus measured enzymatic and motile activities of the motor domains of two Arabidopsis myosin XI isoforms (MYA2, XI-B), and one Arabidopsis myosin VIII isoform (ATM1), by using three Arabidopsis actin isoforms (ACT1, ACT2, and ACT7). The measured activities were different from those measured by using muscle actin. Moreover, Arabidopsis myosins showed different enzymatic and motile activities when using different Arabidopsis actin isoforms. Our results suggest that plant actin should be used for measuring enzymatic and motile activities of plant myosins and that different actin isoforms in plant cells might function as different tracks along which affinities and velocities of each myosin isoform are modulated.  相似文献   

15.
Myosin purified from the body-wall muscle-defective mutant E675 of the nematode. Caenorhabditis elegans, has heavy chain polypeptides which can be distinguished on the basis of molecular weight. On SDS-polyacrylamide gels, bands are found at 210,000 and 203,000 daltons. This is in contrast to myosin from the wild-type, N2, which has a single heavy chain band at 210,000 daltons. Both heavy chains of E675 are found in body-wall muscle (Epstein, Waterston and Brenner, 1974).When native myosin from E675 is fractionated on hydroxyapatite, it is separated into myosin containing predominantly one or the other molecular weight heavy chain and myosin containing a mixture of the heavy chains. Comparison of the CNBr fragments of myosin that contains predominantly 210,000 dalton heavy chains with those of myosin that contains predominantly 203,000 dalton heavy chains reveals multiple differences. These differences are not explained by the difference in molecular weight of the heavy chains, but may be explained if each type of heavy chain is the product of a different structural gene. Furthermore, because there are fractions which exhibit >80% 210,000 or >80% 203,000 dalton heavy chain, there is myosin which is homogeneous for each of the heavy chains.Although N2 myosin has only a single molecular weight heavy chain, it too is fractionated by hydroxyapatite. By comparing the CNBr fragments of different myosin fractions, we show that N2, like E675, has two kinds of heavy chains.E190, a body-wall muscle-defective mutant in the same complementation group as E675, is lacking the myosin heavy chain affected by the e675 mutation. This property has allowed us to determine by co-purification of labeled E190 myosin in the presence of excess, unlabeled E675 myosin that most, if not all, of the myosin that contains two different molecular weight heavy chains is due to the formation of complexes between homogeneous myosins and not to a heterogeneous myosin.  相似文献   

16.
The interaction between myosin and actin in striated muscle tissue is regulated by Ca2+ via thin filament regulatory proteins. Skeletal muscle possesses a whole pattern of myosin and tropomyosin isoforms. The regulatory effect of tropomyosin on actin-myosin interaction was investigated by measuring the sliding velocity of both actin and actin-tropomyosin filaments over fast and slow skeletal myosins using the in vitro motility assay. The actin-tropomyosin filaments were reconstructed with tropomyosin isoforms from striated muscle tissue. It was found that tropomyosins with different content of α-, β-, and γ-chains added to actin filaments affect the sliding velocity of filaments in different ways. On the other hand, the sliding velocity of filaments with the same content of α-, β-, and Γ-chains depends on myosin isoforms of striated muscle. The reciprocal effects of myosin and tropomyosin on actin-myosin interaction in striated muscle may play a significant role in maintenance of effective work of striated muscle both during ontogenesis and under pathological conditions.  相似文献   

17.

Background

There is evidence that the actin-activated ATP kinetics and the mechanical work produced by muscle myosin molecules are regulated by two surface loops, located near the ATP binding pocket (loop 1), and in a region that interfaces with actin (loop 2). These loops regulate force and velocity of contraction, and have been investigated mostly in single molecules. There is a lack of information of the work produced by myosin molecules ordered in filaments and working cooperatively, which is the actual muscle environment.

Methods

We use micro-fabricated cantilevers to measure forces produced by myosin filaments isolated from mollusk muscles, skeletal muscles, and smooth muscles containing variations in the structure of loop 1 (tonic and phasic myosins). We complemented the experiments with in-vitro assays to measure the velocity of actin motility.

Results

Smooth muscle myosin filaments produced more force than skeletal and mollusk myosin filaments when normalized per filament overlap. Skeletal muscle myosin propelled actin filaments in a higher sliding velocity than smooth muscle myosin. The values for force and velocity were consistent with previous studies using myosin molecules, and suggest a close correlation with the myosin isoform and structure of surface loop 1.

General significance

The technique using micro-fabricated cantilevers to measure force of filaments allows for the investigation of the relation between myosin structure and contractility, allowing experiments to be conducted with an array of different myosin isoforms. Using the technique we observed that the work produced by myosin molecules is regulated by amino-acid sequences aligned in specific loops.  相似文献   

18.
Myosin isoforms A and B are located at the surface of the central and polar regions, respectively, of thick filaments in body muscle cells of Caenorhabditis elegans, whereas paramyosin and a distinct core structure comprise the backbones of these filaments. Thick filaments and related structures were isolated from nematode mutants that have altered thick filament protein compositions. These mutant filaments and their complexes with specific antibodies were studied by electron microscopy to determine the distribution of the two myosins. The compartmentation of the two myosin isoforms in body wall muscle thick filaments depends not only upon the intrinsic properties of the myosins but their interactions with other components such as paramyosin and their relative quantities determined by synthesis.  相似文献   

19.
To investigate characteristics of ATP-dependent sliding of a non-muscle cell myosin, obtained from a cellular slime mold Dictyostelium discoideum, on actin filament, we prepared hybrid thick filaments, in which Dictyostelium myosin was regularly arranged around paramyosin filaments obtained from a molluscan smooth muscle. A single to a few hybrid filaments were attached to a polystyrene bead (diameter, 4.5 μm; specific gravity, 1.5), and the filaments were made to slide on actin filament arrays (actin cables) in the internodal cell of an alga Chara corallina, mounted on the rotor of a centrifuge microscope. The filament-attached bead was observed to move with a constant velocity under a constant external load for many seconds. The steady-state force–velocity relation of Dictyostelium myosin sliding on actin cables was hyperbolic in shape except for large loads ≤0.7–0.8 P0, being qualitatively similar to that of skeletal muscle fibres, despite a considerable variation in the number of myosin molecules interacting with actin cables. Comparison of the P–V curves between Dictyostelium myosin and muscle myosins sliding on actin cables suggests that the time of attachment to actin in a single attachment–detachment cycle is much longer in Dictyostelium myosin than in muscle myosins.  相似文献   

20.
The body wall muscle cells of the nematode, Caenorhabditis elegans, contain two unique types of myosin heavy chain, A and B. We have utilized an immunochemical approach to define the structural location of these two myosins within body wall muscle thick filaments. By immunofluorescence microscopy, myosin B antibodies label the thick filament-containing A-bands of body wall muscle with the exception of a thin gap at the center of each A-band, and myosin A antibodies react to form a medial fluorescent stripe within each A-band. The complexes of these monoclonal antibodies with isolated thick filaments were negatively stained and studied by electron microscopy. The myosin B antibody reacts with the polar regions of all filaments but does not react with a central 0.9 μm zone. The myosin A antibody reacts with a central 1.8 μm zone in all filaments but does not react with the polar regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号