首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study examined the effect of chronic intermittent hypoxia (CIH: 5 min 11-12% O2/5 min air, 12 h/night, 7 nights) on ventilatory long-term facilitation (LTF) and determined the persistence period of this CIH effect in awake rats. LTF, elicited by 5 or 10 episodes of 5 min 12% O2, was measured four times in the same Sprague-Dawley rats by plethysmography, before and 8 h, 3 days, and 7 days after CIH treatment. Resting ventilation was unchanged after CIH. Five episodes of 12% O2 did not initially elicit LTF but elicited LTF (23.5 +/- 1.4% above baseline) 8 h after CIH, which partially remained at 3 days (11.4 +/- 2.2%, P < 0.05) and disappeared at 7 days. Ten episodes initially elicited LTF (17.7 +/- 1.1%, 45-min duration) and elicited an enhanced LTF (29.1 +/- 1.5%, 75 min) 8 h after CIH. These results demonstrated that CIH enhanced ventilatory LTF in conscious, freely behaving rats in two ways: 1) a previously ineffective protocol induced LTF; and 2) LTF magnitude was increased and LTF duration prolonged, and this CIH effect on LTF persisted for at least 3 days.  相似文献   

2.
Episodic hypoxia induces a persistent augmentation of respiratory activity, termed long-term facilitation (LTF). Phrenic LTF saturates in anesthetized animals such that additional episodes of stimulation cause no further increase in LTF magnitude. The present study tested the hypothesis that 1) ventilatory LTF also saturates in awake rats and 2) more severe hypoxia and hypoxic episodes increase the effectiveness of eliciting ventilatory LTF. Minute ventilation was measured in awake, male Sprague-Dawley rats by plethysmography. LTF was elicited by five episodes of 10% O(2) poikilocapnic hypoxia (magnitude: 17.3 +/- 2.8% above baseline, between 15 and 45 min posthypoxia, duration: 45 min) but not 12 or 8% O(2). LTF was also elicited by 10, 20, and 72 episodes of 12% O(2) (19.1 +/- 2.2, 18.9 +/- 1.8, and 19.8 +/- 1.6%; 45, 60, and 75 min, respectively) but not by three or five episodes. These results show that there is a certain range of hypoxia that induces ventilatory LTF and that additional hypoxic episodes may increase the duration but not the magnitude of this response.  相似文献   

3.
Respiratory long-term facilitation (LTF), a serotonin-dependent, persistent augmentation of respiratory activity after episodic hypoxia, is enhanced by pretreatment of chronic intermittent hypoxia (CIH; 5 min 11-12% O2-5 min air, 12 h/night for 7 nights). The present study examined the effects of methysergide (serotonin 5-HT1,2,5,6,7 receptor antagonist), ketanserin (5-HT2 antagonist), or clozapine (5-HT2,6,7 antagonist) on both ventilatory LTF and the CIH effect on ventilatory LTF in conscious male adult rats to determine which specific receptor subtype(s) is involved. In untreated rats (i.e., animals not exposed to CIH), LTF, induced by five episodes of 5-min poikilocapnic hypoxia (10% O2) separated by 5-min normoxic intervals, was measured twice by plethysmography. Thus the measurement was conducted 1-2 days before (as control) and approximately 1 h after systemic injection of methysergide (1 mg/kg ip), ketanserin (1 mg/kg), or clozapine (1.5 mg/kg). Resting ventilation, metabolic rate, and hypoxic ventilatory response (HVR) were unchanged, but LTF ( approximately 18% above baseline) was eliminated by each drug. In CIH-treated rats, LTF was also measured twice, before and approximately 8 h after CIH. Vehicle, methysergide, ketanserin, or clozapine was injected approximately 1 h before the second measurement. Neither resting ventilation nor metabolic rate was changed after CIH and/or any drug. HVR was unchanged after methysergide and ketanserin but reduced in four of seven clozapine rats. The CIH-enhanced LTF ( approximately 28%) was abolished by methysergide and clozapine but only attenuated by ketanserin (to approximately 10%). Collectively, these data suggest that ventilatory LTF requires 5-HT2 receptors and that the CIH effect on LTF requires non-5-HT2 serotonin receptors, probably 5-HT6 and/or 5-HT7 subtype(s).  相似文献   

4.
A G Zabka  G S Mitchell  E B Olson  M Behan 《Journal of applied physiology》2003,95(6):2614-23; discussion 2604
Age and the estrus cycle affect time-dependent respiratory responses to episodic hypoxia in female rats. Respiratory long-term facilitation (LTF) is enhanced in middle-aged vs. young female rats (72). We tested the hypothesis that phrenic and hypoglossal (XII) LTF are diminished in acyclic geriatric rats when fluctuating sex hormone levels no longer establish conditions that enhance LTF. Chronic intermittent hypoxia (CIH) enhances LTF (41); thus we further predicted that CIH would restore LTF in geriatric female rats. LTF was measured in young (3-4 mo) and geriatric (20-22 mo) female Sasco Sprague-Dawley rats and in a group of geriatric rats exposed to 1 wk of nocturnal CIH (11 vs. 21% O2 at 5-min intervals, 12 h/night). In anesthetized, paralyzed, vagotomized, and ventilated rats, time-dependent hypoxic phrenic and XII responses were assessed. The short-term hypoxic response was measured during the first of three 5-min episodes of isocapnic hypoxia (arterial Po2 35-45 Torr). LTF was assessed 15, 30, and 60 min postepisodic hypoxia. Phrenic and XII short-term hypoxic response was not different among groups, regardless of CIH treatment (P > 0.05). LTF in geriatric female rats was smaller than previously reported for middle-aged rats but comparable to that in young female rats. CIH augmented phrenic and XII LTF to levels similar to those of middle-aged female rats without CIH (P < 0.05). The magnitude of phrenic and XII LTF in all groups was inversely related to the ratio of progesterone to estradiol serum levels (P < 0.05). Thus CIH and sex hormones influence the magnitude of LTF in geriatric female rats.  相似文献   

5.
Acute isocapnic intermittent hypoxia elicits time-dependent, serotonin-dependent enhancement of phrenic motor output in anesthetized rats (phrenic long-term facilitation, pLTF). In adult rats, pLTF is enhanced by chronic intermittent hypoxia (CIH). To test the hypothesis that early postnatal CIH induces persistent modifications of ventilation and pLTF, we exposed male Sprague-Dawley rat pups on their first day of life to a CIH profile consisting of alternating room air and 10% oxygen every 90 s for 30 days during daylight hours (RAIH) or to comparable exposures consisting of room air throughout (RARA). One month after cessation of CIH, respiratory responses were recorded using whole body plethysmography, and integrated phrenic nerve activity was recorded in urethane-anesthetized, vagotomized, paralyzed, and ventilated rats at baseline and after exposures to three 5-min hypoxic episodes [inspired O2 fraction (FiO2)=0.11] separated by 5 min of hyperoxia (FiO2=0.5). RAIH rats displayed greater normoxic ventilation and also increased burst frequency compared with RARA rats (P<0.01). Ventilatory responses to hypoxia and short-term phrenic responses during acute hypoxic challenges were reduced in RAIH rats (P<0.01). Although pLTF was present in both RAIH and RARA rats, it was diminished in RAIH rats (minute activity: 74+/-2% in RARA vs. 55+/-5% in RAIH at 60 min; P<0.01). Thus we conclude that early postnatal CIH modifies normoxic and hypoxic ventilatory and phrenic responses that persist at 1 mo after cessation of CIH (i.e., metaplasticity) and markedly differ from previously reported increased neural plasticity changes induced by CIH in adult rats.  相似文献   

6.
Ventilatory long-term facilitation (LTF; defined as gradual increase of minute ventilation following repeated hypoxic exposures) is well described in adult mammals and is hypothesized to be a protective mechanism against apnea. In newborns, LTF is absent during the first postnatal days, but its precise developmental pattern is unknown. Accordingly, this study describes this pattern of postnatal development. Additionally, we tested the hypothesis that chronic intermittent hypoxia (CIH) from birth alters this development. LTF was estimated in vivo using whole body plethysmography by exposing rat pups at postnatal days 1, 4, and 10 (P1, P4, and P10) to 10 brief hypoxic cycles (nadir 5% O2) and respiratory recordings during the following 2 h (recovery, 21% O2). Under these conditions, ventilatory LTF (gradual increase of minute ventilation during recovery) was clearly expressed in P10 rats but not in P1 and P4. In a second series of experiments, rat pups were exposed to CIH during the first 10 postnatal days (6 brief cyclic exposures at 5% O2 every 6 min followed by 1 h under normoxia, 24 h a day). Compared with P10 control rats, CIH enhanced hypoxic ventilatory response (estimated during the hypoxic cycles) specifically in male rat pups. Ventilatory LTF was drastically reduced in P10 rats exposed to CIH, which was associated with higher apnea frequency during recovery. We conclude that CIH from birth enhances hypoxic chemoreflex and disrupts LTF development, thus likely contributing to increase apnea frequency.  相似文献   

7.
Long-term facilitation (LTF) of breathing elicited by episodic hypoxia (EH) is an extensively studied example of plasticity of respiratory motor behavior. Previous studies employed the paradigm of EH wherein each episode of hypoxia was 5 min. This paradigm is rarely encountered in nature. Brief episodes of hypoxia are encountered frequently with recurrent apneas, wherein hypoxic episodes last a few seconds only. Recent studies suggest that chronic intermittent hypoxia (CIH) represents a form of oxidative stress involving reactive O(2) species. The objectives of the present study were to determine 1) whether acute, repeated, brief EH (15 s) elicit LTF in breathing and 2) whether prior conditioning with CIH modulates acute EH-induced LTF of breathing, and if so whether reactive O(2) species are involved. Experiments were performed on anesthetized, vagotomized, paralyzed, and mechanically ventilated rats, and efferent phrenic nerve activity was monitored as an index of respiratory motor output. In control animals, acute EH (15-s hypoxia; 10 episodes; n = 9) increased minute neural respiration, which persisted during 60 min of the posthypoxic period, suggesting LTF of breathing. EH-induced LTF of respiration was markedly augmented in CIH-conditioned animals (15-s hypoxia, 9 episodes/h, 8 h/day for 10 days; n = 9). By contrast, conditioning with a comparable, cumulative duration of sustained hypoxia (4-h hypoxia; n = 8) did not augment LTF elicited by acute EH. Systemic administration of manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (5 mg. kg(-1). day(-1) for 10 days), a potent scavenger of O(2)(-)*, prevented CIH-induced potentiation of LTF (n = 9). These results demonstrate that 1) acute, brief EH elicits LTF in respiratory motor output; 2) prior conditioning with CIH, but not with comparable, cumulative duration of sustained hypoxia, augments LTF elicited by acute EH; and 3) O(2)(-)* radical scavenger prevents CIH-induced potentiation of LTF of respiration.  相似文献   

8.
Pregnancy increases ventilation and ventilatory sensitivity to hypoxia and hypercapnia. To determine the role of the carotid body in the increased hypoxic ventilatory response, we measured ventilation and carotid body neural output (CBNO) during progressive isocapnic hypoxia in 15 anesthetized near-term pregnant cats and 15 nonpregnant females. The pregnant compared with nonpregnant cats had greater room-air ventilation [1.48 +/- 0.24 vs. 0.45 +/- 0.05 (SE) l/min BTPS, P less than 0.01], O2 consumption (29 +/- 2 vs. 19 +/- 1 ml/min STPD, P less than 0.01), and lower end-tidal PCO2 (30 +/- 1 vs. 35 +/- 1 Torr, P less than 0.01). Lower end-tidal CO2 tensions were also observed in seven awake pregnant compared with seven awake nonpregnant cats (28 +/- 1 vs. 31 +/- 1 Torr, P less than 0.05). The ventilatory response to hypoxia as measured by the shape of parameter A was twofold greater (38 +/- 5 vs. 17 +/- 3, P less than 0.01) in the anesthetized pregnant compared with nonpregnant cats, and the CBNO response to hypoxia was also increased twofold (58 +/- 11 vs. 29 +/- 5, P less than 0.05). The increased CBNO response to hypoxia in the pregnant compared with the nonpregnant cats persisted after cutting the carotid sinus nerve while recording from the distal end, indicating that the increased hypoxic sensitivity was not due to descending central neural influences. We concluded that greater carotid body sensitivity to hypoxia contributed to the increased hypoxic ventilatory responsiveness observed in pregnant cats.  相似文献   

9.
Respiratory long-term facilitation (LTF) is a long-lasting (>1 h) augmentation of respiratory motor output that occurs even after cessation of hypoxic stimuli, is serotonin-dependent, and is thought to prevent sleep-disordered breathing such as sleep apnea. Raphe nuclei, which modulate several physiological functions through serotonin, receive dense projections from orexin-containing neurons in the hypothalamus. We examined possible contributions of orexin to ventilatory LTF by measuring respiration in freely moving prepro-orexin knockout mice (ORX-KO) and wild-type (WT) littermates before, during, and after exposure to intermittent hypoxia (IH; 5 x 5 min at 10% O2), sustained hypoxia (SH; 25 min at 10% O2), or sham stimulation. Respiratory data during quiet wakefulness (QW), slow wave sleep (SWS), and rapid-eye-movement sleep were separately calculated. Baseline ventilation before hypoxic stimulation and acute responses during stimulation did not differ between the ORX-KO and WT mice, although ventilation depended on vigilance state. Whereas the WT showed augmented minute ventilation (by 20.0 +/- 4.5% during QW and 26.5 +/- 5.3% during SWS; n = 8) for 2 h following IH, ORX-KO showed no significant increase (by -3.1 +/- 4.6% during QW and 0.3 +/- 5.2% during SWS; n = 8). Both genotypes showed no LTF after SH or sham stimulation. Sleep apnea indexes did not change following IH, even when LTF appeared in the WT mice. We conclude that LTF occurs during both sleep and wake periods, that orexin is necessary for eliciting LTF, and that LTF cannot prevent sleep apnea, at least in mice.  相似文献   

10.
Previous studies suggest that carotid body responses to long-term changes in environmental oxygen differ between neonates and adults. In the present study we tested the hypothesis that the effects of chronic intermittent hypoxia (CIH) on the carotid body differ between neonates and adult rats. Experiments were performed on neonatal (1-10 days) and adult (6-8 wk) males exposed either to CIH (9 episodes/h; 8 h/day) or to normoxia. Sensory activity was recorded from ex vivo carotid bodies. CIH augmented the hypoxic sensory response (HSR) in both groups. The magnitude of CIH-evoked hypoxic sensitization was significantly greater in neonates than in adults. Seventy-two episodes of CIH were sufficient to evoke hypoxic sensitization in neonates, whereas as many as 720 CIH episodes were required in adults, suggesting that neonatal carotid bodies are more sensitive to CIH than adult carotid bodies. CIH-induced hypoxic sensitization was reversed in adult rats after reexposure to 10 days of normoxia, whereas the effects of neonatal CIH persisted into adult life (2 mo). Acute intermittent hypoxia (IH) evoked sensory long-term facilitation of the carotid body activity (sensory LTF, i.e., increased baseline neural activity following acute IH) in CIH-exposed adults but not in neonates. The effects of CIH were associated with hyperplasia of glomus cells in neonatal but not in adult carotid bodies. These observations demonstrate that responses to CIH differ between neonates and adults with regard to the magnitude of sensitization of HSR, susceptibility to CIH, induction of sensory LTF, reversibility of the responses, and morphological remodeling of the chemoreceptor tissue.  相似文献   

11.
We hypothesized that chronic intermittent hypoxia (CIH) would induce a predisposition to apnea in response to induced hypocapnia. To test this, we used pressure support ventilation to quantify the difference in end-tidal partial pressure of CO(2) (Pet(CO(2))) between eupnea and the apneic threshold ("CO(2) reserve") as an index of the propensity for apnea and unstable breathing during sleep, both before and following up to 3-wk exposure to chronic intermittent hypoxia in dogs. CIH consisted of 25 s of Pet(O(2)) = 35-40 Torr followed by 35 s of normoxia, and this pattern was repeated 60 times/h, 7-8 h/day for 3 wk. The CO(2) reserve was determined during non-rapid eye movement sleep in normoxia 14-16 h after the most recent hypoxic exposure. Contrary to our hypothesis, the slope of the ventilatory response to CO(2) below eupnea progressively decreased during CIH (control, 1.36 +/- 0.18; week 2, 0.94 +/- 0.12; week 3, 0.73 +/- 0.05 l.min(-1).Torr(-1), P < 0.05). This resulted in a significant increase in the CO(2) reserve relative to control (P < 0.05) following both 2 and 3 wk of CIH (control, 2.6 +/- 0.6; week 2, 3.7 +/- 0.8; week 3, 4.5 +/- 0.9 Torr). CIH also 1) caused no change in eupneic, air breathing Pa(CO(2)); 2) increased the slope of the ventilatory response to hypercapnia after 2 wk but not after 3 wk compared with control; and 3) had no effect on the ventilatory response to hypoxia. We conclude that 3-wk CIH reduced the sensitivity of the ventilatory response to transient hypocapnia and thereby increased the CO(2) reserve, i.e., the propensity for apnea was reduced.  相似文献   

12.
Episodic hypoxia elicits a long-lasting augmentation of phrenic inspiratory activity known as long-term facilitation (LTF). We investigated the respective contributions of carotid chemoafferent neuron activation and hypoxia to the expression of LTF in urethane-anesthetized, vagotomized, paralyzed, and ventilated Sprague-Dawley rats. One hour after three 5-min isocapnic hypoxic episodes [arterial Po(2) (Pa(O(2))) = 40 +/- 5 Torr], integrated phrenic burst amplitude was greater than baseline in both carotid-denervated (n = 8) and sham-operated (n = 7) rats (P < 0.05), indicating LTF. LTF was reduced in carotid-denervated rats relative to sham (P < 0.05). In this and previous studies, rats were ventilated with hyperoxic gas mixtures (inspired oxygen fraction = 0.5) under baseline conditions. To determine whether episodic hyperoxia induces LTF, phrenic activity was recorded under normoxic (Pa(O(2)) = 90-100 Torr) conditions before and after three 5-min episodes of isocapnic hypoxia (Pa(O(2)) = 40 +/- 5 Torr; n = 6) or hyperoxia (Pa(O(2)) > 470 Torr; n = 6). Phrenic burst amplitude was greater than baseline 1 h after episodic hypoxia (P < 0.05), but episodic hyperoxia had no detectable effect. These data suggest that hypoxia per se initiates LTF independently from carotid chemoafferent neuron activation, perhaps through direct central nervous system effects.  相似文献   

13.
Long-term facilitation (LTF) is a prolonged increase in ventilatory motor output after episodic peripheral chemoreceptor stimulation. We have previously shown that LTF is activated during sleep following repetitive hypoxia in snorers (Babcock MA and Badr MS. Sleep 21: 709-716, 1998). The purpose of this study was 1) to ascertain the relative contribution of inspiratory flow limitation to the development of LTF and 2) to determine the effect of eliminating inspiratory flow limitation by nasal CPAP on LTF. We studied 25 normal subjects during stable non-rapid eye movement sleep. We induced 10 episodes of brief repetitive isocapnic hypoxia (inspired O(2) fraction = 8%; 3 min) followed by 5 min of room air. Measurements were obtained during control and at 20 min of recovery (R(20)). During the episodic hypoxia study, inspiratory minute ventilation (Vi) increased from 6.7 +/- 1.9 l/min during the control period to 8.2 +/- 2.7 l/min at R(20) (122% of control; P < 0.05). Linear regression analysis confirmed that inspiratory flow limitation during control was the only independent determinant of the presence of LTF (P = 0.005). Six subjects were restudied by using nasal continuous positive airway pressure to ascertain the effect of eliminating inspiratory flow limitation on LTF. Vi during the recovery period was 97 +/- 10% (P > 0.05). In conclusion, 1) repetitive hypoxia in sleeping humans is followed by increased Vi in the recovery period, indicative of development of LTF; 2) inspiratory flow limitation is the only independent determinant of posthypoxic LTF in sleeping human; 3) elimination of inspiratory flow limitation abolished the ventilatory manifestations of LTF; and 4) we propose that increased Vi in the recovery period was a result of preferential recruitment of upper airway dilators by repetitive hypoxia.  相似文献   

14.
Activation of neuronal ATP-sensitive potassium (K(ATP)) channels is an important mechanism that protects neurons and conserves neural function during hypoxia. We investigated hypoxia (bath gassed with 95% N(2)-5% CO(2) vs. 95% O(2)-5% CO(2) in control)-induced changes in K(ATP) current in second-order neurons of peripheral chemoreceptors in the nucleus of the solitary tract (NTS). Hypoxia-induced K(ATP) currents were compared between normoxic (Norm) rats and rats exposed to 1 wk of either chronic sustained hypoxia (CSH) or chronic intermittent hypoxia (CIH). Whole cell recordings of NTS second-order neurons identified after 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide (DiA) labeling of the carotid bodies were obtained in a brain stem slice. In Norm cells (n = 9), hypoxia (3 min) induced an outward current of 12.7 +/- 1.1 pA with a reversal potential of -73 +/- 2 mV. This current was completely blocked by the K(ATP) channel blocker tolbutamide (100 muM). Bath application of the K(ATP) channel opener diazoxide (200 muM, 3 min) evoked an outward current of 21.8 +/- 5.8 pA (n = 6). Hypoxia elicited a significantly smaller outward current in both CSH (5.9 +/- 1.4 pA, n = 11; P < 0.01) and CIH (6.8 +/- 1.7 pA, n = 6; P < 0.05) neurons. Diazoxide elicited a significantly smaller outward current in CSH (3.9 +/- 1.0 pA, n = 5; P < 0.05) and CIH (2.9 +/- 0.9 pA, n = 3; P < 0.05) neurons. Western blot analysis showed reduced levels of K(ATP) potassium channel subunits Kir6.1 and Kir6.2 in the NTS from CSH and CIH rats. These results suggest that hypoxia activates K(ATP) channels in NTS neurons receiving monosynaptic chemoreceptor afferent inputs. Chronic exposure to either sustained or intermittent hypoxia reduces K(ATP) channel function in NTS neurons. This may represent a neuronal adaptation that preserves neuronal excitability in crucial relay neurons in peripheral chemoreflex pathways.  相似文献   

15.
Reflexes arising from the carotid bodies may play an important role in cardiorespiratory changes evoked by chronic intermittent hypoxia (CIH). In the present study, we examined whether CIH affects the hypoxic sensing ability of the carotid bodies and, if so, by what mechanisms. Experiments were performed on adult male rats (Sprague-Dawley, 250-300 g) exposed to two paradigms of CIH for 10 days: 1) multiple exposures to short durations of intermittent hypoxia per day (SDIH; 15 s of 5% O(2) + 5 min of 21% O(2), 9 episodes/h, 8 h/day) and 2) single exposure to longer durations of intermittent hypoxia per day [LDIH; 4 h of hypobaric hypoxia (0.4 atm/day) + 20 h of normoxia]. Carotid body sensory response to graded isocapnic hypoxia was examined in both groups of animals under anesthetized conditions. Hypoxic sensory response was significantly enhanced in SDIH but not in LDIH animals. Similar enhancement in hypoxic sensory response was also elicited in ex vivo carotid bodies from SDIH animals, suggesting that the effects were not secondary to cardiovascular changes. SDIH, however, had no significant effect on the hypercapnic sensory response. The effects of SDIH on the hypoxic sensory response completely reversed after SDIH animals were placed in a normoxic environment for an additional 10 days. Previous treatment with systemic administration of O(2)(-)* radical scavenger prevented SDIH-induced augmentation of the hypoxic sensory response. These results demonstrate that SDIH but not LDIH results in selective augmentation of the hypoxic response of the carotid body and O(2)(-)* radicals play an important role in SDIH-induced sensitization of the carotid body.  相似文献   

16.
N-methyl-d-aspartate (NMDA) receptor antagonism in the phrenic motonucleus area eliminates phrenic long-term facilitation (pLTF; a persistent augmentation of phrenic nerve activity after episodic hypoxia) in anesthetized rats. However, whether NMDA antagonism can eliminate ventilatory LTF (vLTF) in awake rats is unclear. The role of non-NMDA receptors in LTF is also unknown. Serotonin receptor antagonism before, but not after, episodic hypoxia eliminates pLTF, suggesting that serotonin receptors are required for induction, but not maintenance, of pLTF. However, because NMDA and non-NMDA ionotropic glutamate receptors are directly involved in mediating the inspiratory drive to phrenic, hypoglossal, and intercostal motoneurons, we hypothesized that these receptors are required for both formation and maintenance of vLTF. vLTF, induced by five episodes of 5-min poikilocapnic hypoxia (10% O(2)) with 5-min normoxia intervals, was measured with plethysmography in conscious adult male Sprague-Dawley rats. Either (+/-)-2-amino-5-phosphonovaleric acid (APV; NMDA antagonist, 1.5 mg/kg) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDA antagonist, 10 mg/kg) was systemically (ip) injected approximately 30 min before hypoxia. APV was also injected immediately after or 20 min after episodic hypoxia in additional groups. As control, vehicle was similarly injected in each rat 1-2 days before. Regardless of being injected before or after episodic hypoxia, vehicle did not alter vLTF ( approximately 23%), whereas APV eliminated vLTF while having little effect on baseline ventilation or hypoxic ventilatory response. In contrast, CNQX enhanced vLTF ( approximately 34%) while decreasing baseline ventilation. Collectively, these results suggest that activation of NMDA but not non-NMDA receptors is necessary for formation and maintenance of vLTF in awake rats.  相似文献   

17.
Exercise exacerbates acute mountain sickness. In infants and small mammals, hypoxia elicits a decrease in body temperature (Tb) [hypoxic thermal response (HTR)], which may protect against hypoxic tissue damage. We postulated that exercise would counteract the HTR and promote hypoxic tissue damage. Tb was measured by telemetry in rats (n = 28) exercising or sedentary in either normoxia or hypoxia (10% O2, 24 h) at 25 degrees C ambient temperature (Ta). After 24 h of normoxia, rats walked at 10 m/min on a treadmill (30 min exercise, 30 min rest) for 6 h followed by 18 h of rest in either hypoxia or normoxia. Exercising normoxic rats increased Tb ( degrees C) vs. baseline (39.68 +/- 0.99 vs. 38.90 +/- 0.95, mean +/- SD, P < 0.05) and vs. sedentary normoxic rats (38.0 +/- 0.09, P < 0.05). Sedentary hypoxic rats decreased Tb (36.15 +/- 0.97 vs. 38.0 +/- 0.36, P < 0.05) whereas Tb was maintained in the exercising hypoxic rats during the initial 6 h of exercise (37.61 +/- 0.55 vs. 37.72 +/- 1.25, not significant). After exercise, Tb in hypoxic rats reached a nadir similar to that in sedentary hypoxic rats (35.05 +/- 1.69 vs. 35.03 +/- 1.32, respectively). Tb reached its nadir significantly later in exercising hypoxic vs. sedentary hypoxic rats (10.51 +/- 1.61 vs. 5.36 +/- 1.83 h, respectively; P = 0.002). Significantly greater histopathological damage and water contents were observed in brain and lungs in the exercising hypoxic vs. sedentary hypoxic and normoxic rats. Thus exercise early in hypoxia delays but does not prevent the HTR. Counteracting the HTR early in hypoxia by exercise exacerbates brain and lung damage and edema in the absence of ischemia.  相似文献   

18.
Repeated electrical or hypoxic stimulation of peripheral chemoreceptors has been shown to cause a persistent poststimulus increase in respiratory motoneuron activity, termed long-term facilitation (LTF). LTF after episodic hypoxia has been demonstrated most consistently in anesthetized, vagotomized, paralyzed, artificially ventilated rats. Evidence for LTF in spontaneously breathing animals and humans after episodic hypoxia is equivocal and may have been influenced by the awake state of the subjects in these studies. The present study was designed to test the hypothesis that LTF is evoked in respiratory-related tongue muscle and inspiratory pump muscle activities after episodic hypoxia in 10 spontaneously breathing, anesthetized, vagotomized rats. The animals were exposed to three (5-min) episodes of isocapnic hypoxia, separated by 5 min of hyperoxia (50% inspired oxygen). Genioglossus, hyoglossus, and inspiratory intercostal EMG activities, along with respiratory-related tongue movements and esophageal pressure, were recorded before, during, and for 60 min after the end of episodic isocapnic hypoxia. We found no evidence for LTF in tongue muscle (genioglossus, hyoglossus) or inspiratory pump muscle (inspiratory intercostal) activities after episodic hypoxia. Rather, the primary poststimulus effect of episodic hypoxia was diminished respiratory frequency, which contributed to a reduction in ventilatory drive.  相似文献   

19.
Hypoxic episodes can evoke a prolonged augmentation of inspiratory motor output called long-term facilitation (LTF). Hypoglossal (XII) LTF has been assumed to represent increased tongue protrudor muscle activation and pharyngeal airway dilation. However, recent studies indicate that tongue protrudor and retractor muscles are coactivated during inspiration, a behavior that promotes upper airway patency by reducing airway compliance. These experiments tested the hypothesis that XII LTF is manifest as increased inspiratory drive to both tongue protrudor and retractor muscles. Neurograms were recorded in the medial XII nerve branch (XIIMED; contains tongue protrudor motor axons), the lateral XII nerve branch (XIILAT; contains tongue retractor motor axons), and the phrenic nerve in anesthetized, vagotomized, paralyzed, ventilated male rats. Strict isocapnia was maintained for 60 min after five 3-min hypoxic episodes (arterial Po(2) = 35 +/- 2 Torr) or sham treatment. Peak inspiratory burst amplitude showed a persistent increase in XIIMED, XIILAT, and phrenic nerves during the hour after episodic hypoxia (P < 0.05 vs. sham). This effect was present regardless of the quantification method (e.g., % baseline vs. percent maximum); however, comparisons of the relative magnitude of LTF between neurograms (e.g., XIIMED vs. XIILAT) varied with the normalization procedure. There was no persistent effect of episodic hypoxia on inspiratory burst frequency (P > 0.05 vs. sham). These data demonstrate that episodic hypoxia induces LTF of inspiratory drive to both tongue protrudor and retractor muscles and underscore the potential contribution of tongue muscle coactivation to regulation of upper airway patency.  相似文献   

20.
Hypoxia alters vascular tone which regulates regional blood flow in the pulmonary circulation. Endothelial derived eicosanoids alter vascular tone and blood flow and have been implicated as modulators of hypoxic pulmonary vasoconstriction. Eicosanoid production was measured in cultured bovine pulmonary endothelial cells during constant flow and pressure perfusion at two oxygen tensions (hypoxia: 4% O2, 5% CO2, 91% N2; normoxia: 21% O2, 5% CO2, 74% N2). Endothelial cells were grown to confluence on microcarrier beads. Cell cartridges (N = 8) containing 2 ml of microcarrier beads (congruent to 5 x 10(6) cells) were constantly perfused (3 ml/min) with Krebs' solutions (pH 7.4, T 37 degrees C) equilibrated with each gas mixture. After a ten minute equilibration period, lipids were extracted (C18 Sep Pak) from twenty minute aliquots of perfusate over three hours (nine aliquots per cartridge). Eicosanoids (6-keto PGF1 alpha; TXB2; and total leukotriene [LT - LTC4, LTD4, LTE4, LTF4]) were assayed by radioimmunoassay. Eicosanoid production did not vary over time. 6-keto PGF1 alpha production was increased during hypoxia (normoxia 291 +/- 27 vs hypoxia 395 +/- 35 ng/min/gm protein; p less than 0.01). Thromboxane production (normoxia 19 +/- 2 vs hypoxia 20 +/- 2 ng/min/gm protein) and total leukotriene production (normoxia 363 +/- 35 vs hypoxia 329 +/- 29 ng/min/gm protein) did not change with hypoxia. These data demonstrated that oxygen increased endothelial prostacyclin production but did not effect thromboxane or leukotriene production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号