首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One possible cause of patellofemoral pain syndrome is excessive lateral force acting on the patella. Although several treatment methods focus on decreasing the lateral force acting on the patella, the relationship between the lateral force and the patellofemoral contact pressure distribution is unclear. A computational model has been developed to determine how loading variations alter the patellofemoral force and pressure distributions for individual knees. The model allows variation in the quadriceps and patella tendon forces, and calculates the predicted contact pressure distribution using the discrete element analysis technique. To characterize the accuracy of the model, four cadaver knees were flexed on a knee simulator with three initial Q-angles, while recording the force and pressure distributions with a pressure sensor. A model of each knee was created from CT data. Using the external force applied to the knee, the geometry of the knee, and the quadriceps origin as input, the pressure distribution was calculated during flexion. Similar trends were noted for the computational and experimental results. The percentage of the total force applied to the lateral cartilage increased with the Q-angle. The maximum contact pressure increased during flexion. The maximum lateral contact pressure increased with the Q-angle for three knees. For the other knee, increasing the Q-angle decreased the maximum lateral pressure. The maximum medial contact pressure decreased as the Q-angle increased. By characterizing the influence of patellofemoral loading on the force and pressure distributions, the computational model could be used to evaluate treatment methods prescribed for patellofemoral pain.  相似文献   

2.
BackgroundLoss of contact between the femoral and tibial implants following total knee arthroplasty (TKA) has been related to accelerated polyethylene wear and other complications. Two methods have been used to detect loss of contact in single-plane fluoroscopy, the condylar lift-off method and the separation method. The objectives were to assess the ability of each method to detect loss of contact.MethodsTKA was performed on ten cadaveric knee specimens. Tibial force was measured in each compartment as specimens were flexed from 0° to 90° while internal-external and varus-valgus moments were applied. Single-plane radiographs taken simultaneously with tibial force were analyzed for loss of contact using the two methods. Receiver operating characteristic (ROC) and optimum threshold distances were determined.ResultsFor the lift-off method and the separation method, the areas under the ROC curves were 0.89 vs 0.60 for the lateral compartment only and 0.81 vs 0.70 for the medial compartment only, respectively. For the lift-off method, the optimum threshold distances were 0.7 mm in the lateral compartment only and 0.1 mm in the medial compartment only but the false positive rate for the medial compartment only almost doubled. For both compartments jointly, the areas under the ROC curves decreased to 0.70 and 0.59 for the lift-off and separation methods, respectively.ConclusionWhen detecting loss of contact using single-plane fluoroscopy, the lift-off method is useful for the lateral compartment only but not for the medial compartment only and not for both compartments jointly. The separation method is not useful.  相似文献   

3.
Cartilage contact geometry, along with joint loading, can play an important role in determining local articular cartilage tissue stress. Thus individual variations in cartilage thickness can be associated with both individual variations in joint loading associated with activities of daily living as well as individual differences in the anatomy of the contacting surfaces of the joint. The purpose of this study was to isolate the relationship between cartilage thickness predicted by individual variations in contact surface geometry based on the radii of the femur and tibia vs. cartilage thickness predicted by individual variations in joint loading. Knee magnetic resonance (MR) images and the peak knee adduction moments during walking were obtained from 11 young healthy male subjects (age 30.5+/-5.1 years). The cartilage thicknesses and surface radii of the femoral and tibial cartilage were measured in the weight-bearing regions of the medial and lateral compartments of three-dimensional models from the MR images. The ratio of contact pressure between the medial and lateral compartments was calculated from the radii of tibiofemoral contact surface geometries. The results showed that the medial to lateral pressure ratios were not correlated with the medial to lateral cartilage thickness ratios. However, in general, pressure was higher in the lateral than medial compartments and cartilage was thicker in the lateral than medial compartments. The peak knee adduction moment showed a significant positive linear correlation with medial to lateral thickness ratio in both femur (R(2)=0.43,P<0.01) and tibia (R(2)=0.32,P<0.01). The results of this study suggest that the dynamics of walking is an important factor to describe individual differences in cartilage thickness for normal subjects.  相似文献   

4.
Ligament balancing in total knee arthroplasty may have an important influence on joint stability and prosthesis lifetime. In order to provide quantitative information and assistance during ligament balancing, a device that intraoperatively measures knee joint forces and moments was developed. Its performance and surgical advantages were evaluated on six cadaver specimens mounted on a knee joint loading apparatus allowing unconstrained knee motion as well as compression and varus-valgus loading. Four different experiments were performed on each specimen. (1) Knee joints were axially loaded. Comparison between applied and measured compressive forces demonstrated the accuracy and reliability of in situ measurements (1.8N). (2) Assessment of knee stability based on condyle contact forces or varus-valgus moments were compared to the current surgical method (difference of varus-valgus loads causing condyle lift-off). The force-based approach was equivalent to the surgical method while the moment-based, which is considered optimal, showed a tendency of lateral imbalance. (3) To estimate the importance of keeping the patella in its anatomical position during imbalance assessment, the effect of patellar eversion on the mediolateral distribution of tibiofemoral contact forces was measured. One fourth of the contact force induced by the patellar load was shifted to the lateral compartment. (4) The effect of minor and major medial collateral ligament releases was biomechanically quantified. On average, the medial contact force was reduced by 20% and 46%, respectively. Large variation among specimens reflected the difficulty of ligament release and the need for intraoperative force monitoring. This series of experiments thus demonstrated the device's potential to improve ligament balancing and survivorship of total knee arthroplasty.  相似文献   

5.
The object of this study is to develop a three-dimensional mathematical model of the patello-femoral joint, which is modelled as two rigid bodies representing a moving patella and a fixed femur. Two-point contact was assumed between the femur and patella at the medial and lateral sides and in the analysis, the femoral and patellar articular surfaces were mathematically represented using Coons' bicubic surface patches. Model equations include six equilibrium equations and eleven constraints: six contact conditions, four geometric compatibility conditions, and the condition of a rigid patellar ligament; the model required the solution of a system of 17 nonlinear equations in 17 unknowns, its response describing the six-degress-of-freedom patellar motions and the forces acting on the patella. Patellar motions are described by six motion parameters representing the translations and rotations of the patella with respect to the femur. The forces acting on the patella include the medial and lateral component of patello-femoral contact and the patellar ligament force, all of which were represented as ratios to the quadriceps tendon force. The model response also includes the locations of the medial and lateral contact points on the femur and the patella. A graphical display of its response was produced in order to visualize better the motion of the components of the extensor mechanism.Model calculations show good agreement with experimental results available from the literature. The patella was found to move distally and posteriorly on the femoral condyles as the knee was flexed from full extension. Results indicate that the relative orientation of the patellar ligament with respect to the patella remains unchanged during this motion. The model also predicts a patellar flexion which always lagged knee flexion.Our calculations show that as the angle of knee flexion increased, the lateral contact point moved distally on the femur without moving significantly either medially or laterally. The medial contact point also moved distally on the femur but moved medially from full extension to about 40° of knee flexion, then laterally as the knee flexion angle increased. The lateral contact point on the patella did not change significantly in the medial and lateral direction as the knee was flexed; however, this point moved proximally toward the basis of the patella with knee flexion. The medial contact point also moved proximally on the patella with knee flexion, and in a similar manner the medial contact point on the patella moved distally with flexion from full extension to about 40° of flexion. However, as the angle of flexion increased, the medial contact point did not move significantly in the medial-lateral direction.Model calculations also show that during the simulated knee extension exercise, the ratio of the force in the patellar ligament to the force in the quadriceps tendon remains almost unchanged for the first 30° of knee flexion, then decreases as the angle of knee flexion increases. Furthermore, model results show that the lateral component of the patello-femoral contact force is always greater than the medial component, both components increasing with knee flexion.  相似文献   

6.
Fluoroscopy has recently been used to analyze postoperative kinematics in total knee arthroplasty (TKA). These analyses have reported varying results even in patients with similar implant design. In addition, patterns of wear in retrieved tibial polyethylene inserts of similar design have been found to vary substantially. These findings suggest that surgical technique, especially soft tissue balancing, may play a role in postoperative kinematics and implant failure. Accurate soft-tissue balancing is hypothesized to result in similar pressures within the medial and lateral compartments of the knee. However, a method of easily measuring these pressures at TKA has not been developed. In the present study, 32 patients were implanted with a mobile-bearing LCS TKA utilizing the balanced gap technique. An electronic pressure sensor, developed specifically to record pressure magnitude and distribution in the medial and lateral compartments, was incorporated into the implant trials. The knee was then passively taken through a range of motion while pressure data was recorded via computer. Postoperatively, 16 patients underwent active fluoroscopic kinematic analysis to assess for condylar liftoff and femorotibial translation. We found that abnormal compartment pressures and distributions as recorded by the intraoperative pressure sensor were correlated with inappropriate or paradoxical postoperative kinematics. In addition, subjects having similar pressures in both compartments throughout a range of motion did not experience condylar liftoff values greater than 1.0 mm. These data suggest that surgical technique influences the magnitude and distribution of forces at the articulation, postoperative kinematics, and likely, implant longevity.  相似文献   

7.
Large knee adduction moments during gait have been implicated as a mechanical factor related to the progression and severity of tibiofemoral osteoarthritis and it has been proposed that these moments increase the load on the medial compartment of the knee joint. However, this mechanism cannot be validated without taking into account the internal forces and moments generated by the muscles and ligaments, which cannot be easily measured. Previous musculoskeletal models suggest that the medial compartment of the tibiofemoral joint bears the majority of the tibiofemoral load, with the lateral compartment unloaded at times during stance. Yet these models did not utilise explicitly measured muscle activation patterns and measurements from an instrumented prosthesis which do not portray lateral compartment unloading. This paper utilised an EMG-driven model to estimate muscle forces and knee joint contact forces during healthy gait. Results indicate that while the medial compartment does bear the majority of the load during stance, muscles provide sufficient stability to counter the tendency of the external adduction moment to unload the lateral compartment. This stability was predominantly provided by the quadriceps, hamstrings, and gastrocnemii muscles, although the contribution from the tensor fascia latae was also significant. Lateral compartment unloading was not predicted by the EMG-driven model, suggesting that muscle activity patterns provide useful input to estimate muscle and joint contact forces.  相似文献   

8.
Despite significant advances in scaffold design, manufacture, and development, it remains unclear what forces these scaffolds must withstand when implanted into the heavily loaded environment of the knee joint. The objective of this study was to fully quantify the dynamic contact mechanics across the tibial plateau of the human knee joint during gait and stair climbing. Our model consisted of a modified Stanmore knee simulator (to apply multi-directional dynamic forces), a two-camera motion capture system (to record joint kinematics), an electronic sensor (to record contact stresses on the tibial plateau), and a suite of post-processing algorithms. During gait, peak contact stresses on the medial plateau occurred in areas of cartilage–cartilage contact; while during stair climb, peak contact stresses were located in the posterior aspect of the plateau, under the meniscus. On the lateral plateau, during gait and in early stair-climb, peak contact stresses occurred under the meniscus, while in late stair-climb, peak contact stresses were experienced in the zone of cartilage–cartilage contact. At 45% of the gait cycle, and 20% and 48% of the stair-climb cycle, peak stresses were simultaneously experienced on both the medial and lateral compartment, suggesting that these phases of loading warrant particular consideration in any simulation intended to evaluate scaffold performance. Our study suggests that in order to design a scaffold capable of restoring ‘normal’ contact mechanics to the injured knees, the mechanics of the intended site of implantation should be taken into account in any pre-clinical testing regime.  相似文献   

9.
A new technique is presented that utilizes relative velocity vectors between articulating surfaces to characterize internal/external rotation of the tibio-femoral joint during dynamic loading. Precise tibio-femoral motion was determined by tracking the movement of implanted tantalum beads in high-speed biplane X-rays. Three-dimensional, subject-specific CT reconstructions of the femur and tibia, consisting of triangular mesh elements, were positioned in each analyzed frame. The minimum distance between subchondral bone surfaces was recorded for each mesh element comprising each bone surface, and the relative velocity between these opposing closest surface elements was determined in each frame. Internal/external rotation was visualized by superimposing tangential relative velocity vectors onto bone surfaces at each instant. Rotation about medial and lateral compartments was quantified by calculating the angle between these tangential relative vectors within each compartment. Results acquired from 68 test sessions involving 23 dogs indicated a consistent pattern of sequential rotation about the lateral condyle (approximately 60 ms after paw strike) followed by rotation about the medial condyle (approximately 100 ms after paw strike). These results imply that axial knee rotation follows a repeatable pattern within and among subjects. This pattern involves rotation about both the lateral and medial compartments. The technique described can be easily applied to study human knee internal/external rotation during a variety of activities. This information may be useful to define normal and pathologic conditions, to confirm post-surgical restoration of knee mechanics, and to design more realistic prosthetic devices. Furthermore, analysis of joint arthrokinematics, such as those described, may identify changes in joint mechanics associated with joint degeneration.  相似文献   

10.
Abnormal loading of the knee due to injuries or obesity is thought to contribute to the development of osteoarthritis (OA). Small animal models have been used for studying OA progression mechanisms. However, numerical models to study cartilage responses under dynamic loading in preclinical animal models have not been developed. Here we present a musculoskeletal finite element model of a rat knee joint to evaluate cartilage biomechanical responses during a gait cycle. The rat knee joint geometries were obtained from a 3-D MRI dataset and the boundary conditions regarding loading in the joint were extracted from a musculoskeletal model of the rat hindlimb. The fibril-reinforced poroelastic (FRPE) properties of the rat cartilage were derived from data of mechanical indentation tests. Our numerical results showed the relevance of simulating anatomical and locomotion characteristics in the rat knee joint for estimating tissue responses such as contact pressures, stresses, strains, and fluid pressures. We found that the contact pressure and maximum principal strain were virtually constant in the medial compartment whereas they showed the highest values at the beginning of the gait cycle in the lateral compartment. Furthermore, we found that the maximum principal stress increased during the stance phase of gait, with the greatest values at midstance. We anticipate that our approach serves as a first step towards investigating the effects of gait abnormalities on the adaptation and degeneration of rat knee joint tissues and could be used to evaluate biomechanically-driven mechanisms of the progression of OA as a consequence of joint injury or obesity.  相似文献   

11.
A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning.  相似文献   

12.
Analysis of polyethylene component wear and implant loosening in total knee arthroplasty (TKA) requires precise knowledge of in vivo articular motion and loading conditions. This study presents a simultaneous in vivo measurement of tibiofemoral articular contact forces and contact kinematics in three TKA patients. These measurements were accomplished via a dual fluoroscopic imaging system and instrumented tibial implants, during dynamic single leg lunge and chair rising-sitting. The measured forces and contact locations were also used to determine mediolateral distribution of axial contact forces. Contact kinematics data showed a medial pivot during flexion of the knee, for all patients in the study. Average axial forces were higher for lunge compared to chair rising-sitting (224% vs. 187% body weight). In this study, we measured peak anteroposterior and mediolateral forces averaging 13.3% BW during lunge and 18.5% BW during chair rising-sitting. Mediolateral distributions of axial contact force were both patient and activity specific. All patients showed equitable medial-lateral loading during lunge but greater loads at the lateral compartment during chair rising-sitting. The results of this study may enable more accurate reproduction of in vivo loads and articular motion patterns in wear simulators and finite element models. This in turn may help advance our understanding of factors limiting longevity of TKA implants, such as aseptic loosening and polyethylene component wear, and enable improved TKA designs.  相似文献   

13.
The knowledge of articular cartilage contact biomechanics in the knee joint is important for understanding the joint function and cartilage pathology. However, the in vivo tibiofemoral articular cartilage contact biomechanics during gait remains unknown. The objective of this study was to determine the in vivo tibiofemoral cartilage contact biomechanics during the stance phase of treadmill gait. Eight healthy knees were magnetic resonance (MR) scanned and imaged with a dual fluoroscopic system during gait on a treadmill. The tibia, femur and associated cartilage were constructed from the MR images and combined with the dual fluoroscopic images to determine in vivo cartilage contact deformation during the stance phase of gait. Throughout the stance phase of gait, the magnitude of peak compartmental contact deformation ranged between 7% and 23% of the resting cartilage thickness and occurred at regions with thicker cartilage. Its excursions in the anteroposterior direction were greater in the medial tibiofemoral compartment as compared to those in the lateral compartment. The contact areas throughout the stance phase were greater in the medial compartment than in the lateral compartment. The information on in vivo tibiofemoral cartilage contact biomechanics during gait could be used to provide physiological boundaries for in vitro testing of cartilage. Also, the data on location and magnitude of deformation among non-diseased knees during gait could identify where loading and later injury might occur in diseased knees.  相似文献   

14.
Proper tension of the knee’s soft tissue envelope is important during total knee arthroplasty; incorrect tensioning potentially leads to joint stiffness or instability. The latter remains an important trigger for revision surgery. The use of sensors quantifying the intra-articular loads, allows surgeons to assess the ligament tension at the time of surgery. However, realistic target values are missing. In the framework of this paper, eight non-arthritic cadaveric specimens were tested and the intra-articular loads transferred by the medial and lateral compartment were measured using custom sensor modules. These modules were inserted below the articulating surfaces of the proximal tibia, with the specimens mounted on a test setup that mimics surgical conditions. For both compartments, the highest loads are observed in full extension. While creating knee flexion by lifting the femur and flexing the hip, mean values (standard deviation) of 114 N (71 N) and 63 N (28 N) are observed at 0° flexion for the medial and lateral compartment respectively. Upon flexion, both medial and lateral loads decrease with mean values at 90° flexion of 30 N (22 N) and 6 N (5 N) respectively. The majority of the load is transmitted through the medial compartment. These observations are linked to the deformation of the medial and lateral collaterals, in addition to the anatomy of the passive soft tissues surrounding the knee. In conclusion, these findings provide tangible clinical guidance in assessing the soft tissue loads when dealing with anatomically designed total knee implants.  相似文献   

15.
As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (ie., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.  相似文献   

16.
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics–kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17 N m is varied by ±50% to 25.5 N m and 8.5 N m. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.  相似文献   

17.
Subject-specific models were developed and finite element analysis was performed to observe the effect of the frontal plane tibiofemoral angle on the normal stress, Tresca shear stress and normal strain at the surface of the knee cartilage. Finite element models were created for three subjects with different tibiofemoral angle and physiological loading conditions were defined from motion analysis and muscle force mathematical models to simulate static single-leg stance. The results showed that the greatest magnitude of the normal stress, Tresca shear stress and normal strain at the medial compartment was for the varus aligned individual. Considering the lateral knee compartment, the individual with valgus alignment had the largest stress and strain at the cartilage. The present investigation is the first known attempt to analyze the effects of tibiofemoral alignment during single-leg support on the contact variables of the cartilage at the knee joint. The method could be potentially used to help identify individuals most susceptible to osteoarthritis and to prescribe preventive measures.  相似文献   

18.
Contact area is often used to characterize the biomechanical properties of joints, especially in testing of injury and joint replacement. Several methods have been developed to measure contact area, including piezo-resistive thin-film arrays. The purpose of this study was to determine the accuracy with which one of these systems (Tekscan, Inc., South Boston, MA) could measure the contact area of flat-ended circular indenters of varying known sizes. Static loads ranging from 1000 to 7000 N were applied to four flat, circular indenters (1140, 2027, 3167, and 4560 mm(2)) and the contact areas were recorded with Tekscan 5076 sensor. Similar testing was carried out on a 4000 sensor. I-scan software (Tekscan Inc., South Boston, MA) was used to analyze the Tekscan-recorded area measurements. The Tekscan data were also post-processed to filter out sensel signal intensity values that were at least two standard deviations from the average sensel signal intensity values of the sensor matrix. Unprocessed Tekscan measurements with the 5076 sensor had area percent errors ranging from 5% to 27%. The filtering algorithm reduced most errors to less than 1%. Similar trends of improved accuracy with post-filtering were found with the 4000 sensor. While this method of thresholding out the sensels with the lowest signal intensity values may not work for all surfaces and indenter shapes, it provides a new approach to improve the accuracy of contact area measurements collected with the Tekscan system.  相似文献   

19.
Unlike the case with total knee arthroplasty, the femorotibial angle (FTA) after unicompartmental knee arthroplasty (UKA) does not directly depend on the inclination of the tibial component when the height of the joint line is maintained. This study analyzed the effects of the inclination of the tibial component in the coronal plane on the contact pressure of the implant-bone surface and the stresses on the proximal tibia. A two-dimensional, coronal plane model of the proximal tibia was subjected to finite-element analysis. Sixteen patterns of finite-element models of equal FTA were developed in which the inclination of tibial components ranged from 5 degrees valgus to 10 degrees varus in increments of 1 degrees. Stress concentration at the proximal medial diaphyseal cortex gradually increased as the inclination changed from valgus to varus. Maximum contact pressure on the metal-bone interface similarly changed and shifted from the lateral edge to the medial edge of the implant as the inclination changed to varus. It was found that even without changing FTA, the inclination of the tibial component might affect stress concentration and contact pressure in the proximal tibia after UKA. The results suggested that slight valgus inclination of the tibial component might be preferable to varus and even to 0 degrees (square) inclination so far as the stress distribution is concerned.  相似文献   

20.
The goal of this study is to quantify changes in knee joint contact behavior following varying degrees of the medial partial meniscectomy. A previously validated 3D finite element model was used to simulate 11 different meniscectomies. The accompanying changes in the contact pressure on the superior surface of the menisci and tibial plateau were quantified as was the axial strain in the menisci and articular cartilage. The percentage of medial meniscus removed was linearly correlated with maximum contact pressure, mean contact pressure, and contact area. The lateral hemi-joint was minimally affected by the simulated medial meniscectomies. The location of maximum strain and location of maximum contact pressure did not change with varying degrees of partial medial meniscectomy. When 60% of the medial meniscus was removed, contact pressures increased 65% on the remaining medial meniscus and 55% on the medial tibial plateau. These data will be helpful for assessing potential complications with the surgical treatment of meniscal tears. Additionally, these data provide insight into the role of mechanical loading in the etiology of post-meniscectomy osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号