首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apical kernels of maize (Zea mays L.) ears have smaller size and lower growth rates than basal kernels. To improve our understanding of this difference, the developmental patterns of starch-synthesis-pathway enzyme activities and accumulation of sugars and starch was determined in apical- and basal-kernel endosperm of greenhouse-grown maize (cultivar Cornell 175) plants. Plants were synchronously pollinated, kernels were sampled from apical and basal ear positions throughout kernel development, and enzyme activities were measured in crude preparations. Several factors were correlated with the higher dry matter accumulation rate and larger mature kernel size of basal-kernel endosperm. During the period of cell expansion (7 to 19 days after pollination), the activity of insoluble (acid) invertase and sucose concentration in endosperm of basal kernels exceeded that in apical kernels. Soluble (alkaline) invertase was also high during this stage but was the same in endosperm of basal and apical kernels, while glucose concentration was higher in apical-kernel endosperm. During the period of maximal starch synthesis, the activities of sucrose synthase, ADP-Glc-pyrophosphorylase, and insoluble (granule-bound) ADP-Glc-starch synthase were higher in endosperm of basal than apical kernels. Soluble ADP-Glc-starch synthase, which was maximal during the early stage before starch accumulated, was the same in endosperm from apical and basal kernels. It appeared that differences in metabolic potential between apical and basal kernels were established at an early stage in kernel development.  相似文献   

2.
3.
4.
Apical florets of maize (Zea mays L.) ears differentiate later than basal florets and form kernels which have lower dry matter accumulation rates. The purpose of this study was to determine whether increasing the temperature of apical kernels during the dry matter accumulation period would alter the difference in growth rate between apical and basal kernels. Apical regions of field-grown maize (cultivar Cornell 175) ears were heated to 25 ± 3°C from 7 days after pollination to maturity (tip-heated ears) and compared with unheated ears (control). In controls, apical-kernel endosperm had 24% smaller dry weight at maturity, lower concentration of sucrose, and lower activity of ADP-Glc starch synthase than basal-kernel endosperm, whereas ADP-Glc-pyrophosphorylase (ADPG-PPase) activities were similar. In tip-heated ears apical-kernel endosperm had the same growth rate and final weight as basal-kernel endosperm and apical kernels had higher sucrose concentrations, higher ADP-Glc starch synthase activity, and similar ADPG-PPase activity. Total grain weight per ear was not increased by tip-heating because the increase in size of apical kernels was partially offset by a slight decrease in size of the basal- and middle-position kernels. Tip-heating hastened some of the developmental events in apical kernels. ADPG-PPase and ADP-Glc starch synthase activities reached peak levels and starch concentration began rising earlier in apical kernels. However, tip-heating did not shorten the period of starch accumulation in apical kernels. The results indicate that the lower growth rate and smaller size of apical kernels are not solely determined by differences in prepollination floret development.  相似文献   

5.
Past research on kernel growth in wheat (Triticum aestivum) has shown that the kernel itself largely regulates the influx of sucrose for consequent starch synthesis in the endosperm of the grain. The first step in the conversion of sucrose to starch is catalyzed by sucrose synthase (EC 2.4.13). Sucrose synthase activity was assayed in developing endosperms from kernels differing in growth rate and in maximum dry weight accumulation. From 10 to 22 days after anthesis, sucrose synthase activity per wheat endosperm remained constant with respect to time in all grains. However, kernels which had higher rates of kernel growth and which achieved greatest maximum weight had consistently and significantly higher sucrose synthase activities at any point in time than did kernels with slower rates of dry matter accumulation and lower maximum weight. In addition, larger kernels had a significantly greater amount of water in which this activity could be expressed. Although the results do not implicate sucrose synthase as the “rate limiting” enzyme in wheat kernel growth, they do emphasize the importance of sucrose synthase activity in larger or more rapidly growing kernels, as compared to smaller slower growing kernels.  相似文献   

6.
Summary The localization of the two known sucrose synthase isoenzymes of Zea mays L., sucrose synthase 1 and sucrose synthase 2, was studied during kernel development by indirect immunohistochemistry. These enzymes are encoded by the Sh and Sus genes, respectively. Since the antiserum used cross-reacts with both enzymes, tissue sections of Sh and sh kernels were compared. In the latter tissue no sucrose synthase 1 is expressed and thus the signal obtained was ascribed to sucrose synthase 2. We found that the isoenzymes are differentially expressed. While sucrose synthase 1 is expressed only in the endosperm, sucrose synthase 2 is found in almost all tissues of the kernel with cxpression levels specific for cell type and developmental stage. Sucrose synthase 2 is expressed strongly in the aleurone and subaleurone cell layers, where the signal detected is as strong as or even stronger than the sucrose synthase 1 signal in the inner endosperm. The distribution of the enzymes changes characteristically during development.  相似文献   

7.
Acetolactate synthase (EC 4.1.3.18) activity was examined in maize (Zea mays L.) endosperm and embryos as a function of kernel development. When assayed using unpurified homogenates, embryo acetolactate synthase activity appeared less sensitive to inhibition by leucine + valine and by the imidazolinone herbicide imazapyr than endosperm acetolactate synthase activity. Evidence is presented to show that pyruvate decarboxylase contributes to apparent acetolactate synthase activity in crude embryo extracts and a modification of the acetolactate synthase assay is proposed to correct for the presence of pyruvate decarboxylase in unpurified plant homogenates. Endosperm acetolactate synthase activity increased rapidly during early kernel development, reaching a maximum of 3 micromoles acetoin per hour per endosperm at 25 days after pollination. In contrast, embryo activity was low in young kernels and steadily increased throughout development to a maximum activity of 0.24 micromole per hour per embryo by 45 days after pollination. The sensitivity of both endosperm and embryo acetolactate synthase activities to feedback inhibition by leucine + valine did not change during kernel development. The results are compared to those found for other enzymes of nitrogen metabolism and discussed with respect to the potential roles of the embryo and endosperm in providing amino acids for storage protein synthesis.  相似文献   

8.
9.
10.
Yi G  Lauter AM  Scott MP  Becraft PW 《Plant physiology》2011,156(4):1826-1836
The maize (Zea mays) aleurone layer occupies the single outermost layer of the endosperm. The defective kernel1 (dek1) gene is a central regulator required for aleurone cell fate specification. dek1 mutants have pleiotropic phenotypes including lack of aleurone cells, aborted embryos, carotenoid deficiency, and a soft, floury endosperm deficient in zeins. Here we describe the thick aleurone1 (thk1) mutant that defines a novel negative function in the regulation of aleurone differentiation. Mutants possess multiple layers of aleurone cells as well as aborted embryos. Clonal sectors of thk1 mutant tissue in otherwise normal endosperm showed localized expression of the phenotype with sharp boundaries, indicating a localized cellular function for the gene. Sectors in leaves showed expanded epidermal cell morphology but the mutant epidermis generally remained in a single cell layer. Double mutant analysis indicated that the thk1 mutant is epistatic to dek1 for several aspects of the pleiotropic dek1 phenotype. dek1 mutant endosperm that was mosaic for thk1 mutant sectors showed localized patches of multilayered aleurone. Localized sectors were surrounded by halos of carotenoid pigments and double mutant kernels had restored zein profiles. In sum, loss of thk1 function restored the ability of dek1 mutant endosperm to accumulate carotenoids and zeins and to differentiate aleurone. Therefore the thk1 mutation defines a negative regulator that functions downstream of dek1 in the signaling system that controls aleurone specification and other aspects of endosperm development. The thk1 mutation was found to be caused by a deletion of approximately 2 megabases.  相似文献   

11.
Tissue distribution and activity of enzymes involved in sucrose and hexose metabolism were examined in kernels of two inbreds of maize (Zea mays L.) at progressive stages of development. Levels of sugars and starch were also quantitated throughout development. Enzyme activities studied were: ATP-linked fructokinase, UTP-linked fructokinase, ATP-linked glucokinase, sucrose synthase, UDP-Glc pyrophosphorylase, UDP-Glc dehydrogenase, PPi-linked phosphofructokinase, ATP-linked phosphofructokinase, NAD-dependent sorbitol dehydrogenase, NADP-dependent 6-P-gluconate dehydrogenase, NADP-dependent Glc-6-P dehydrogenase, aldolase, phosphoglucoisomerase, and phosphoglucomutase. Distribution of invertase activity was examined histochemically. Hexokinase and ATP-linked phosphofructokinase activities were the lowest among these enzymes and it is likely that these enzymes may regulate the utilization of sucrose in developing maize kernels. Most of the hexokinase activity was found in the endosperm, but the embryo had high activity on a dry weight basis. The endosperm, which stores primarily starch, contained high PPi-linked phosphofructokinase and low ATP-linked phosphofructokinase activities, whereas the embryo, which stores primarily lipids, had much higher ATP-linked phosphofructokinase activity than did the endosperm. It is suggested that PPi required by UDP-Glc pyrophosphorylase and PPi-linked phosphofructokinase in the endosperm may be supplied by starch synthesis. Sorbitol dehydrogenase activity was largely restricted to the endosperm, whereas 6-P-gluconate and Glc-6-P dehydrogenase activities were highest in the base and pericarp. A possible metabolic pathway by which sucrose is converted into starch is proposed.  相似文献   

12.
13.
In plants, lysine catabolism is thought to be controlled by a bifunctional enzyme, lysine ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). Lysine is converted to saccharopine, through condensation with alpha-ketoglutarate, by LKR, and subsequently to glutamate and alpha-aminoadipate-delta-semialdehyde by SDH. To investigate lysine catabolism in maize kernels, we generated transgenic plants with suppressed LKR/SDH activity in either endosperm or embryo. We found that the suppression of LKR/SDH in endosperm induced an increase in free lysine in developing endosperm, which peaked at 32 days after pollination. At later stages of kernel development, most of the free lysine was found in the embryo along with an elevated level of saccharopine. By combining endosperm LKR/SDH suppression with embryo LKR/SDH suppression through crosses, the saccharopine level in embryo was reduced and resulted in higher lysine accumulation in mature kernels. These results reveal new insights into how free lysine level is regulated and distributed in developing maize kernels and demonstrate the possibility of engineering high lysine corn via the suppression of lysine catabolism.  相似文献   

14.
Expression of the cytokinin-synthesizing isopentenyl transferase enzyme under the control of the Arabidopsis (Arabidopsis thaliana) SAG12 senescence-inducible promoter reverses the normal abortion of the lower floret from a maize (Zea mays) spikelet. Following pollination, the upper and lower floret pistils fuse, producing a connated kernel with two genetically distinct embryos and the endosperms fused along their abgerminal face. Therefore, ectopic synthesis of cytokinin was used to position two independent endosperms within a connated kernel to determine how the fused endosperm would affect the development of the two aleurone layers along the fusion plane. Examination of the connated kernel revealed that aleurone cells were present for only a short distance along the fusion plane whereas starchy endosperm cells were present along most of the remainder of the fusion plane, suggesting that aleurone development is suppressed when positioned between independent starchy endosperms. Sporadic aleurone cells along the fusion plane were observed and may have arisen from late or imperfect fusion of the endosperms of the connated kernel, supporting the observation that a peripheral position at the surface of the endosperm and not proximity to maternal tissues such as the testa and pericarp are important for aleurone development. Aleurone mosaicism was observed in the crown region of nonconnated SAG12-isopentenyl transferase kernels, suggesting that cytokinin can also affect aleurone development.  相似文献   

15.
Over 40,000 species of plants accumulate fructan, [beta]-2-1- and [beta]-2-6-linked polymers of fructose as a storage reserve. Due to their high fructose content, several commercial applications for fructans have been proposed. However, plants that accumulate these polymers are not agronomically suited for large-scale cultivation or processing. This study describes the transformation of a Bacillus amyloliquefaciens SacB gene into maize (Zea mays L.) callus by particle bombardment. Tissue-specific expression and targeting of the SacB protein to endosperm vacuoles resulted in stable accumulation of high-molecular-weight fructan in mature seeds. Accumulation of fructan in the vacuole had no detectable effect on kernel development or germination. Fructan levels were found to be approximately 9-fold higher in sh2 mutants compared to wild-type maize kernels. In contrast to vacuole-targeted expression, starch synthesis and endosperm development in mature seeds containing a cytosolically expressed SacB gene were severely affected. The data demonstrate that hexose resulting from cytosolic SacB activity was not utilized for starch synthesis. Transgenic seeds containing a chimeric SacB gene provide further evidence that the dominant pathway for starch synthesis in maize endosperm is through uridine diphosphoglucose catalyzed by the enzyme sucrose synthase.  相似文献   

16.
17.
The association of enzyme activities in developing kernels with specific storage product accumulation at maturity was analyzed in different parts of Zea mays inbred OH43 kernels. Maize kernels were harvested at 20 and 55 days post-pollination and dissected into basal region, pericarp, embryo, lower endosperm, middle endosperm and upper endosperm. Mature (55 days pos(-pollination) kernel parts were analyzed for starch, total protein, zein and oil content. Immature (20 days post-pollination) kernel parts were assayed for activities of 15 enzymes of sugar and amino acid metabolism. Statistical analyses of the data suggested that glucokinase (EC 2.7.1.2) fructokinase (EC 2.7.1.4) and phosphofructokinase (EC 2.7.1.1 11) activities were primarily associated with oil accumulation, whereas ADP'-glueose pyrophosphorylasc (EC 2.7.7.27) and sucrose synthase (EC 2.4.1.13) activities were associated with starch accumulation. The results suggest that oil biosynthesis utilizes inveitase-mediated sucrose degradation in a pathway not requiring pyrophosphatc. whereas starch biosynthesis utilizes a sucrose synthase-mediated pathway of sucrose degradation in a pathway requiring pyrophosphatc. Additional groups of enzyme activities were associated with each oilier but not with any specific storage product and appeared to be associated with general metabolic activity.  相似文献   

18.
To further our understanding of the greater susceptibility of apical kernels in maize inflorescences to water stress, abscisic acid (ABA) catabolism activity was evaluated in developing kernels with chirally separated (+)-[(3)H]ABA. The predominant pathway of ABA catabolism was via 8'-hydroxylase to form phaseic acid, while conjugation to glucose was minor. In response to water deficit imposed on whole plants during kernel development, ABA accumulated to higher concentrations in apical than basal kernels, while both returned to control levels after rewatering. ABA catabolism activity per gram fresh weight increased about three-fold in response to water stress, but was about the same in apical and basal kernels on a fresh weight basis. ABA catabolism activity was three to four-fold higher in placenta than endosperm, and activity was higher in apical than basal kernels. In vitro incubation tests indicated that glucose did not affect ABA catabolism. We conclude that placenta tissue plays an important role in ABA catabolism, and together with ABA influx and compartmentation, determine the rate of ABA transport into endosperms.  相似文献   

19.
Cereal kernel growth and grain yield are functions of endosperm starch accumulation. The objective of this study was to examine how various metabolic factors in developing maize (Zea mays L.) endosperm influence starch deposition. Kernels were grown in vitro on medium with: (a) zero N (−N), (b) optimum N (+N), or (c) −N from 3 to 20 days after pollination followed by +N until maturity (±N) to produce different degrees of endosperm growth and to promote an enhancement of starch synthesis midway through development. At intervals, kernels were harvested and levels of enzyme activities and carbohydrate and N constituents examined. Endosperm starch and protein accumulation were decreased in −N compared to +N kernels, but relief of N starvation increased both constituents. With greater movement of N into ±N kernels, endosperm sugar concentrations declined suggesting an inverse relationship between C and N transport. Unusually high concentrations of sugar in N stressed kernels did not appear to limit or enhance starch production. Rather, increased accumulation of starch in ±N endosperm was correlated with significant increases in the enzymatic activities of sucrose synthase and PPi-linked phosphofructokinase, and to a lessor extent hexokinase. In addition, the occurrence of specific proteins of the albumin/globulin fraction either increased, decreased, or remained unchanged in relation to starch synthesis. These data suggest that lack of N limits starch deposition in maize endosperm primarily through an influence on synthesis of key proteins.  相似文献   

20.
A mutation (Acc1-S2) in the structural gene for maize (Zea mays L.) acetyl-coenzyme A carboxylase (ACCase) that significantly reduces sethoxydim inhibition of leaf ACCase activity was used to investigate the gene-enzyme relationship regulating ACCase activity during oil deposition in developing kernels. Mutant embryo and endosperm ACCase activities were more than 600-fold less sensitive to sethoxydim inhibition than ACCase in wild-type kernel tissues. Moreover, in vitro cultured mutant kernels developed normally in the presence of sethoxydim concentrations that inhibited wild-type kernel development. The results indicate that the Acc1-encoded ACCase accounts for the majority of ACCase activity in developing maize kernels, suggesting that Acc1-encoded ACCase functions not only during membrane biogenesis in leaves but is also the predominant form of ACCase involved in storage lipid biosynthesis in maize embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号