首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple long molecular dynamics simulations are used to probe the oligomerization mechanism of Abeta(16-22) (KLVFFAE) peptides. The peptides, in the monomeric form, adopt either compact random-coil or extended beta strand-like structures. The assembly of the low-energy oligomers, in which the peptides form antiparallel beta sheets, occurs by multiple pathways with the formation of an obligatory alpha-helical intermediate. This observation and the experimental results on fibrillogenesis of Abeta(1-40) and Abeta(1-42) peptides suggest that the assembly mechanism (random coil --> alpha helix --> beta strand) is universal for this class of peptides. In Abeta(16-22) oligomers both interpeptide hydrophobic and electrostatic interactions are critical in the formation of the antiparallel beta sheet structure. Mutations of either hydrophobic or charged residues destabilize the oligomer, which implies that the 16-22 fragments of Arctic (E22G), Dutch (E22Q), and Italian (E22K) mutants are unlikely to form ordered fibrils.  相似文献   

2.
Recent experiments with amyloid beta (Abeta) peptide indicate that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation. 1), We use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations; and 2), we employ all-atom molecular mechanics simulations to estimate thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts 10 different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40) dimers. We find that 1), dimer conformations have higher free energies compared to their corresponding monomeric states; and 2), the free-energy difference between the Abeta(1-42) and the corresponding Abeta(1-40) dimer conformation is not significant. Our results suggest that Abeta oligomerization is not accompanied by the formation of thermodynamically stable planar beta-strand dimers.  相似文献   

3.
We report solid state nuclear magnetic resonance (NMR) measurements that probe the supramolecular organization of beta-sheets in the cross-beta motif of amyloid fibrils formed by residues 11-25 of the beta-amyloid peptide associated with Alzheimer's disease (Abeta(11-25)). Fibrils were prepared at pH 7.4 and pH 2.4. The solid state NMR data indicate that the central hydrophobic segment of Abeta(11-25) (sequence LVFFA) adopts a beta-strand conformation and participates in antiparallel beta-sheets at both pH values, but that the registry of intermolecular hydrogen bonds is pH-dependent. Moreover, both registries determined for Abeta(11-25) fibrils are different from the hydrogen bond registry in the antiparallel beta-sheets of Abeta(16-22) fibrils at pH 7.4 determined in earlier solid state NMR studies. In all three cases, the hydrogen bond registry is highly ordered, with no detectable "registry-shift" defects. These results suggest that the supramolecular organization of beta-sheets in amyloid fibrils is determined by a sensitive balance of multiple side-chain-side-chain interactions. Recent structural models for Abeta(11-25) fibrils based on X-ray fiber diffraction data are inconsistent with the solid state NMR data at both pH values.  相似文献   

4.
Zanuy D  Ma B  Nussinov R 《Biophysical journal》2003,84(3):1884-1894
Experimentally, short peptides have been shown to form amyloids similar to those of their parent proteins. Consequently, they present useful systems for studies of amyloid conformation. Here we simulate extensively the NFGAIL peptide, derived from the human islet amyloid polypeptide (residues 22-27). We simulate different possible strand/sheet organizations, from dimers to nonamers. Our simulations indicate that the most stable conformation is an antiparallel strand orientation within the sheets and parallel between sheets. Consistent with the alanine mutagenesis, we find that the driving force is the hydrophobic effect. Whereas the NFGAIL forms stable oligomers, the NAGAIL oligomer is unstable, and disintegrates very quickly after the beginning of the simulation. The simulations further identify a minimal seed size. Combined with our previous simulations of the prion-derived AGAAAAGA peptide, AAAAAAAA, and the Alzheimer Abeta fragments 16-22, 24-36, 16-35, and 10-35, and the solid-state NMR data for Abeta fragments 16-22, 10-35, and 1-40, some insight into the length and the sequence matching effects may be obtained.  相似文献   

5.
The solution structure of neuronal bungarotoxin (nBgt) has been studied by using two-dimensional 1H NMR spectroscopy. Sequence-specific assignments for over 95% of the backbone resonances and 85% of the side-chain resonances have been made by using a series of two-dimensional spectra at four temperatures. From these assignments over 75% of the NOESY spectrum has been assigned, which has in turn provided 582 distance constraints. Twenty-seven coupling constants (NH-alpha CH) were determined from the COSY spectra, which have provided dihedral angle constraints. In addition, hydrogen exchange experiments have suggested the probable position of hydrogen bonds. The NOE constraints, dihedral angle constraints, and the rates of amide proton exchange suggest that a triple-stranded antiparallel beta sheet is the major component of secondary structure, which includes 25% of the amino acid residues. A number of NOE peaks were observed that were inconsistent with the antiparallel beta-sheet structure. Because we have confirmed by sedimentation equilibrium that nBgt exists as a dimer, we have reinterpreted these NOE constraints as intermolecular interactions. These constraints suggest that the dimer consists of a six-stranded antiparallel beta sheet (three from each monomer), with residues 55-59 forming the dimer interface.  相似文献   

6.
Amino acid cross-strand pairing interactions along a beta-sheet surface have been implicated in protein beta-structural assembly and stability, yet the relative contributions have been difficult to evaluate directly. Here we develop the central core sequence of the Abeta peptide associated with Alzheimer's disease, Abeta(16-22), as an experimental system for evaluating these interactions. The peptide allows for internal comparisons between electrostatic and steric interactions within the beta-sheet and an evaluation of these cross-strand pair contributions to beta-sheet registry. A morphological transition from fibers to hollow nanotubes arises from changes in beta-sheet surface complementarity and provides a convenient indicator of the beta-strand strand registry. The intrinsic beta-sequence and pair correlations are critical to regulate secondary assembly. These studies provide evidence for a critical desolvation step that is not present in most models of the nucleation-dependent pathway for amyloid assembly.  相似文献   

7.
In mitochondria, the hydrolytic activity of ATP synthase is prevented by an inhibitor protein, IF1. The active bovine protein (84 amino acids) is an alpha-helical dimer with monomers associated via an antiparallel alpha-helical coiled coil composed of residues 49-81. The N-terminal inhibitory sequences in the active dimer bind to two F1-ATPases in the presence of ATP. In the crystal structure of the F1-IF1 complex at 2.8 A resolution, residues 1-37 of IF1 bind in the alpha(DP)-beta(DP) interface of F1-ATPase, and also contact the central gamma subunit. The inhibitor opens the catalytic interface between the alpha(DP) and beta(DP) subunits relative to previous structures. The presence of ATP in the catalytic site of the beta(DP) subunit implies that the inhibited state represents a pre-hydrolysis step on the catalytic pathway of the enzyme.  相似文献   

8.
Egnaczyk GF  Greis KD  Stimson ER  Maggio JE 《Biochemistry》2001,40(39):11706-11714
The assembly of the beta-amyloid peptide (Abeta) into amyloid fibrils is essential to the pathogenesis of Alzheimer's disease. Detailed structural information about fibrillogenesis has remained elusive due to the highly insoluble, noncrystalline nature of the assembled peptide. X-ray fiber diffraction, infrared spectroscopy, and solid-state NMR studies performed on fibrils composed of Abeta peptides have led to conflicting models of the intermolecular alignment of beta-strands. We demonstrate here the use of photoaffinity cross-linking to determine high-resolution structural constraints on Abeta monomers within amyloid fibrils. A photoreactive Abeta(1-40) ligand was synthesized by substituting L-p-benzoylphenylalanine (Bpa) for phenylalanine at position 4 (Abeta(1-40) F4Bpa). This peptide was incorporated into synthetic amyloid fibrils and irradiated with near-UV light. SDS-PAGE of dissolved fibrils revealed the light-dependent formation of a covalent Abeta dimer. Enzymatic cleavage followed by mass spectrometric analysis demonstrated the presence of a dimer-specific ion at MH(+) = 1825.9, the predicted mass of a fragment composed of the N-terminal Abeta(1-5) F4Bpa tryptic peptide covalently attached to the C-terminal Abeta(29-40) tryptic peptide. MS/MS experiments and further chemical modifications of the cross-linked dimer led to the localization of the photo-cross-link between the ketone of the Bpa4 side chain and the delta-methyl group of the Met35 side chain. The Bpa4-Met35 intermolecular cross-link is consistent with an antiparallel alignment of Abeta peptides within amyloid fibrils.  相似文献   

9.
Amyloid beta (Abeta) peptides are one of the classes of amphiphilic molecules that on dissolution in aqueous solvents undergo interesting conformational transitions. These conformational changes are known to be associated with their neuronal toxicity. The mechanism of structural transition involved in the monomeric Abeta to toxic assemblage is yet to be understood at the molecular level. Early results indicate that oriented molecular crowding has a profound effect on their assemblage formation. In this work, we have studied how different microenvironments affect the conformational transitions of one of the active amyloid beta-peptide fragments (Abeta(25-35)). Spectroscopic techniques such as CD and Fourier transform infrared spectroscopy were used. It was observed that a stored peptide concentrates on dissolution in methanol adopts a minor alpha-helical conformation along with unordered structures. On changing the methanol concentration in the solvated film form, the conformation switches to the antiparallel beta-sheet structure on the hydrophilic surface, whereas the peptide shows transition from a mixture of helix and unordered structure into predominantly a beta-sheet with minor contribution of helix structure on the hydrophobic surface. Our present investigations indicate that the conformations induced by the different surfaces dictate the gross conformational preference of the peptide concentrate.  相似文献   

10.
11.
The amyloid beta peptide (Abeta), composed of 40 or 42 amino acids, is a critical component in the etiology of the neurodegenerative Alzheimer disease. Abeta is prone to aggregate and forms amyloid fibrils progressively both in vitro and in vivo. To understand the process of amyloidogenesis, it is pivotal to examine the initial stages of the folding process. We examined the equilibrium folding properties, assembly states, and stabilities of the early folding stages of Abeta40 and Abeta42 prior to fibril formation. We found that Abeta40 and Abeta42 have different conformations and assembly states upon refolding from their unfolded ensembles. Abeta40 is predominantly an unstable and collapsed monomeric species, whereas Abeta42 populates a stable structured trimeric or tetrameric species at concentrations above approximately 12.5 microm. Thermodynamic analysis showed that the free energies of Abeta40 monomer and Abeta42 trimer/tetramer are approximately 1.1 and approximately 15/ approximately 22 kcal/mol, respectively. The early aggregation stages of Abeta40 and Abeta42 contain different solvent-exposed hydrophobic surfaces that are located at the sequences flanking its protease-resistant segment. The amyloidogenic folded structure of Abeta is important for the formation of spherical beta oligomeric species. However, beta oligomers are not an obligatory intermediate in the process of fibril formation because oligomerization is inhibited at concentrations of urea that have no effect on fibril formation. The distinct initial folding properties of Abeta40 and Abeta42 may play an important role in the higher aggregation potential and pathological significance of Abeta42.  相似文献   

12.
Dimer structure of magainin 2 bound to phospholipid vesicles   总被引:4,自引:0,他引:4  
Magainin 2 from African clawed frog Xenopus laevis is an antimicrobial peptide with broad spectra and action mechanisms considered to permeabilize bacterial membranes. CD, vibration, and solid-state NMR spectroscopies indicate the peptide adopts an alpha-helical conformation on binding to phospholipid bilayers, and its micelle-bound conformation, being monomeric and alpha-helical, is well detailed. We showed, however, that the peptide dimerizes on binding to phospholipid bilayers. This difference in the conformation and aggregation state between micelle- and bilayer-bound states prompted us to analyze the conformation of an equipotent analog of magainin 2 (F5Y,F16W magainin 2) bound to phosphatidylcholine vesicles using transferred nuclear Overhauser enhancement (TRNOE) spectroscopy. While observed medium-range TRNOE cross peaks were characteristic of alpha-helix, many long-range cross peaks were not compatible with the peptide's monomeric state. Simulated annealing calculations generated dimer structures indicating (1) two peptide molecules have a largely helical conformation in antiparallel orientation forming a short coiled-coil structure, (2) residues 4-20 are well converged and residues 9-20 are in an alpha-helical conformation, and (3) the interface of the two peptide molecules is formed by well-defined side chains of hydrophobic residues. Finally, determined structures are compatible with numerous investigations examining magainin-phospholipid interactions.  相似文献   

13.
Assemblyof the amyloid-beta peptide (Abeta) into fibrils and its deposition in distinct brain areas is considered responsible for the pathogenesis of Alzheimer's disease (AD). Thus, inhibition of fibril assembly is a potential strategy for therapeutic intervention. Electron cryomicroscopy was used to monitor the initial, native assembly structure of Abeta42. In addition to the known fibrillar intermediates, a nonfibrillar, polymeric sheet-like structure was identified. A temporary sequence of supramolecular structures was revealed with (i) polymeric Abeta42 sheets during the onset of assembly, inversely related to the appearance of (ii) fibril intermediates, which again are time-dependently replaced by (iii) mature fibrils. A cell-based primary screening assay was used to identify compounds that decrease Abeta42-induced toxicity. Hit compounds were further assayed for binding to Abeta42, radical scavenger activity, and their influence on the assembly structure of Abeta42. One compound, Ro 90-7501, was found to efficiently retard mature fibril formation, while extended polymeric Abeta42 sheets and fibrillar intermediates are accumulated. Ro 90-7501 may serve as a prototypic inhibitor for Abeta42 fibril formation and as a tool for studying the molecular mechanism of fibril assembly.  相似文献   

14.
The three-dimensional structure of rabbit phosphoglucomutase has been determined to 2.7 A resolution by a combination of isomorphous and molecular replacement techniques. Heavy atom positions were found by using vector search and difference Fourier methods. The two molecules in the asymmetric unit form a dimer with its 2-fold axis perpendicular to and intersecting with a crystallographic 4(1) axis. Thus, the dimers are arranged so that they form fibers that are coincident with the 4(1) axes. A polypeptide model, corresponding with the known residue sequence, has been fitted to the electron density map to produce a structure that consists of four domains. All four have an alpha/beta structure; the first three have a somewhat similar topology that is based on a mixed parallel/antiparallel beta sheet, whereas the fourth is based on an antiparallel sheet. The active site lies between the four domains, with the phosphoserine residue in the first domain and some of the probable substrate-binding residues in the fourth and final domain. The carboxyl edges of all four sheets are directed towards the active site region, which lies in a deep crevice.  相似文献   

15.
16.
Irbäck A  Mitternacht S 《Proteins》2008,71(1):207-214
Using all-atom Monte Carlo simulations with implicit water, combined with a cluster size analysis, we study the aggregation of Abeta(16) (-22), a peptide capable of forming amyloid fibrils. We consider a system of six initially randomly oriented Abeta(16) (-22) peptides, and investigate the thermodynamics and structural properties of aggregates formed by this system. The system is unaggregated without ordered secondary structure at high temperature, and forms beta-sheet rich aggregates at low temperature. At the crossover between these two regimes, we find that clusters of all sizes occur, whereas the beta-strand content is low. In one of several runs, we observe the spontaneous formation of a beta-barrel with six antiparallel strands. The beta-barrel stands out as the by far most long-lived aggregate seen in our simulations.  相似文献   

17.
Schmick SD  Weliky DP 《Biochemistry》2010,49(50):10623-10635
The HIV gp41 protein catalyzes fusion between viral and host cell membranes, and its apolar N-terminal region or "fusion peptide" binds to the host cell membrane and plays a key role in fusion. "HFP" is a construct containing the fusion peptide sequence, induces membrane vesicle fusion, and is an important fusion model system. Earlier solid-state nuclear magnetic resonance (SSNMR) studies showed that when HFP is associated with membranes with ~30 mol % cholesterol, the first 16 residues have predominant β strand secondary structure and a fraction of the strands form antiparallel β sheet structure with residue 16→1/1→16 or 17→1/1→17 registries for adjacent strands. In some contrast, other SSNMR and infrared studies have been interpreted to support a large fraction of an approximately in-register parallel registry of adjacent strands. However, the samples had extensive isotopic labeling, and other structural models were also consistent with the data. This SSNMR study uses sparse labeling schemes that reduce ambiguity in the determination of the fraction of HFP molecules with parallel β registry. Quantitative analysis of the data shows that the parallel fraction is at most 0.15 with a much greater fraction of antiparallel 16→1/1→16 and 17→1/1→17 registries. These data strongly support a model of HFP-induced vesicle fusion caused by antiparallel rather than parallel registries and provide insight into the arrangement of gp41 molecules during HIV-host cell fusion. This study is an example of quantitative determination of a complex structural distribution by SSNMR, including experimentally validated inclusion of natural abundance contributions to the SSNMR data.  相似文献   

18.
The tetrameric Mnt repressor is involved in the genetic switch between the lysogenic and lytic growth of Salmonella bacteriophage P22. The solution structure of its C-terminal tetramerization domain, which holds together the two dimeric DNA-binding domains, has been determined by NMR spectroscopy. This structure reveals an assembly of four alpha-helical subunits, consisting of a dimer of two antiparallel coiled coils with a unique right-handed twist. The superhelical winding is considerably stronger and the interhelical separation closer than those found in the well-known left-handed coiled coils in fibrous proteins and leucine zippers. An unusual asymmetry arises between the two monomers that comprise one right-handed coiled coil. A difference in the packing to the adjacent monomer of the other coiled coil occurs with an offset of two helical turns. The two asymmetric monomers within each coiled coil interconvert on a time scale of seconds. Both with respect to symmetry and handedness of helical packing, the C2 symmetric four-helix bundle of Mnt differs from other oligomerization domains that assemble DNA-binding modules, such as that in the tumor suppressor p53 and the E. coli lac repressor.  相似文献   

19.
The conformational states sampled by the Alzheimer amyloid beta (10-35) (Abeta 10-35) peptide were probed using replica-exchange molecular dynamics (REMD) simulations in explicit solvent. The Abeta 10-35 peptide is a fragment of the full-length Abeta 40/42 peptide that possesses many of the amyloidogenic properties of its full-length counterpart. Under physiological temperature and pressure, our simulations reveal that the Abeta 10-35 peptide does not possess a single unique folded state. Rather, this peptide exists as a mixture of collapsed globular states that remain in rapid dynamic equilibrium with each other. This conformational ensemble is dominated by random coil and bend structures with insignificant presence of an alpha-helical or beta-sheet structure. The 3D structure of Abeta 10-35 is seen to be defined by a salt bridge formed between the side-chains of K28 and D23. This salt bridge is also observed in Abeta fibrils and our simulations suggest that monomeric conformations of Abeta 10-35 contain pre-folded structural motifs that promote rapid aggregation of this peptide.  相似文献   

20.
The GrpE heat shock protein from Escherichia coli has a homodimeric structure. The dimer interface encompasses two long alpha-helices at the NH(2)-terminal end from each monomer (forming a "tail"), which lead into a small four-helix bundle from which each monomer contributes two short sequential alpha-helices in an antiparallel topological arrangement. We have created a number of different deletion mutants of GrpE that have portions of the dimer interface to investigate requirements for dimerization and to study four-helix bundle formation. Using chemical crosslinking and analytical ultracentrifugation techniques to probe for multimeric states, we find that a mutant containing only the long alpha-helical tail portion (GrpE1-88) is unable to form a dimer, most likely due to a decrease in alpha-helical content as determined by circular dichroism spectroscopy, thus one reason for a dimeric structure for the GrpE protein is to support the tail region. Mutants containing both of the short alpha-helices (GrpE1-138 and GrpE88-197) are able to form a dimer and presumably the four-helix bundle at the dimer interface. These two mutants have equilibrium constants for the monomer-dimer equilibrium that are very similar to the full-length protein suggesting that the tail region does not contribute significantly to the stability of the dimer. Interestingly, one mutant that contains just one of the short alpha-helices (GrpE1-112) exists as a tetrameric species, which presumably is forming a four-helix bundle structure. A proposed model is discussed for this mutant and its relevance for factors influencing four-helix bundle formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号