首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifty cyanobacterial strains (10 genera) were tested in batch culture for their ability to use organic phosphorus compounds (1 mg liter−1 P) as their sole P source. Two monoesters, Na2-β-glycerophosphate and π-nitrophenyl phosphate (πNPP), supported growth of all strains, and the diester bis-π-nitrophenyl phosphate (bis-π-NPP) and herring sperm DNA supported almost all strains. ATP was either a very favorable or poor P source and failed to support growth of nine strains, seven of which were Rivulariaceae with trichomes ending in a hair or long tapered region. Phytic acid was in general the least favorable P source. P-limited cultures grown initially with inorganic phosphate to conditions of P limitation were also tested for cell-bound and extracellular phosphomonoesterase (PMEase) and phosphodiesterase (PDEase) activities at two pH values (7.6, 10.3) using πNPP and bis-πNPP as substrates. Cell-bound PMEase was inducible in all strains and cell-bound PDEase in most strains. Most showed extracellular PMEase, but not extracellular PDEase. The highest values (μM πNPP or bis-πNPP hydrolyzed mg dry weight−1 hour−1) all occurred in strains ofGloeotrichia as follows: cell-bound PMEase at pH 7.6, 2.7 μM in strain D602; cell-bound PMEase at pH 10.3, 5.2 μM in D602; extracellular PMEase at pH 7.6, 0.73 μM in D281; extracellular PMEase at pH 10.3, 6.6 μM in D281; cell-bound PDEase at 7.6, 0.40 μM in D613; cell-bound PDEase at pH 10.3, 1.0 μM in D613. The results were compared to see if they indicated possible relationships between phosphatase activity and taxonomic or ecological grouping. The following differences were significant (P<0.05). Rivulariaceae produced higher yields than filamentous non-Rivulariaceae with β-glycerophosphate, πNPP, and DNA. Rivulariaceae with the ability to form hairs in culture showed poorer growth in ATP than non-hair-forming Rivulariaceae, but were more effective at utilizing phytic acid. Strains from calcareous environments had higher PMEase activity at pH 10.3 than strains from noncalcareous environments (P<0.01).  相似文献   

2.
Summary Alkaline phosphatases (APase), both phosphomonoesterase (PMEase) and phosphodiesterase (PDEase) were studied in the cyanobacterium Anabaena oryzae for their specific requirements of temperature, pH, micro- and macronutrients and their activities in the presence of salinity and heavy metal stress. The alkaline phosphatases (PMEase and PDEase) are quite stable enzymes and require a narrow range of pH (pH 10–10.2) and temperature (35–40 °C) for their optimal activity.A pH of 10, 10.2 and 10.2 supported optimal activity of cellular PMEase, cellular PDEase and extracellular PMEase, respectively, whereas temperatures of 35, 38 and 40 °C were required for their optimal activity. The requirement for Ca2+ and Mg2+ as macronutrients and the significance of the micronutrients Zn2+, Co2+, Fe2+, Mn2+ and Cu2+ in APase activity in the cyanobacterium suggests nutritional regulation of enzyme activity in A. oryzae. The metals Pb2+, Cr6+ and Ni2+ severely inhibited APase activity, whereas the NaCl stress had a dual role, which was concentration dependent. NaCl stress at lower concentrations (≤20 mM) caused an increase in cellular PMEase activity while its higher concentration (>20 mM) favoured release of the extracellular PMEase. The decrease in cellular activity and an increase in extracellular activity suggest that the higher concentrations of salt stimulate the release of the enzyme.The data suggest that the cyanobacterium A. oryzae possess a potential application as biofertilizer in high salinity and alkaline (Ca2+-rich) soils because of its ability to release PO43− enzymatically under these conditions.  相似文献   

3.
M. Tretiach  A. Geletti 《Oecologia》1997,111(4):515-522
CO2 exchange of the endolithic lichen Verrucaria baldensis was measured in the laboratory under different conditions of water content, temperature, light, and CO2 concentration. The species had low CO2 exchange rates (maximum net photosynthesis: c. 0.45 μmol CO2 m−2 s−1; maximum dark respiration: c. 0.3 μmol CO2 m−2 s−1) and a very low light compensation point (7 μmol photons m−2 s−1 at 8°C). The net photosynthesis/respiration quotient reached a maximum at 9–15°C. Photosynthetic activity was affected only after very severe desiccation, when high resaturation respiratory rates were measured. Microclimatic data were recorded under different weather conditions in an abyss of the Trieste Karst (northeast Italy), where the species was particularly abundant. Low photosynthetically active radiation (normally below 40 μmol photons m−2 s−1), very high humidities (over 80%), and low, constant temperatures were measured. Thallus water contents sufficient for CO2 assimilation were often measured in the absence of condensation phenomena. Received: 22 September 1996 / Accepted: 26 April 1997  相似文献   

4.
Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.  相似文献   

5.
Cyanobacteria that grow above seawater salinity at temperatures above 45°C have rarely been studied. Cyanobacteria of this type of thermo-halophilic extremophile were isolated from siliceous crusts at 40–45°C in a geothermal seawater lagoon in southwest Iceland. Iceland Clone 2e, a Leptolyngbya morphotype, was selected for further study. This culture grew only at 45–50°C, in medium ranging from 28 to 94 g L−1 TDS, It showed 3 doublings 24 h−1 under continuous illumination. This rate at 54°C was somewhat reduced, and death occurred at 58°C. A comparison of the 16S rDNA sequence with all others in the NCBI database revealed 2 related Leptolyngbya isolates from a Greenland hot spring (13–16 g L−1 TDS). Three other similar sequences were from Leptolyngbya isolates from dry, endolithic habitats in Yellowstone National Park. All 6 formed a phylogenetic clade, suggesting common ancestry. These strains shared many similarities to Iceland Clone 2e with respect to temperature and salinity ranges and optima. Two endolithic Leptolyngbya isolates, grown previously at 23°C in freshwater medium, grew well at 50°C but only in saline medium. This study shows that limited genotypic similarity may reveal some salient phenotypic similarities, even when the related cyanobacteria are from vastly different and remote habitats.  相似文献   

6.
The present study investigates the efficiency of Aspergillus niger to produce invertase, an industrially important enzyme by using powdered stem of Cympopogan caecius (Lemon grass) as sole substrate and sole carbon source for the microorganism. The molecular weight of invertase was estimated to be 66–70 kDa by sodium do decyl sulphate poly acrylamide gel electrophoresis (SDS PAGE). The production of the enzyme was studied at different pH scales ranging from pH 4.0 to 7.0 at a constant temperature of 30°C and 2% substrate concentration. The maximum production of invertase (specific activity −0.0516 μk/mg protein) was obtained at pH 5.5 at 30°C temperature, and incubation for 48 h. The activity was found to be stable at pH 5.5 for 30 min. The enzyme was found to be stable in the temperature range of 20–55°C. The effect of divalent metal ions Cu2+, Fe2+, Co2+ on the activity of the enzyme invertase showed that these ions affected the activity by a certain factor. The study can be further industrially exploited in a country-like India where lemon grass is found in plenty and can be used as substrate for enzyme production. Moreover, the preparation of the substrate is also a simple process.  相似文献   

7.
α-l-Rhamnosidase was extracted and purified from the cells of Pseudomonas paucimobilis FP2001 with a 19.5% yield. The purified enzyme, which was homogeneous as shown by SDS-PAGE and isoelectric focusing, had a molecular weight of 112,000 and an isoelectric point of 7.1. The enzyme activity was accelerated by Ca2+ and remained stable for several months when stored at –20 °C. The optimum pH was 7.8; the optimum temperature was 45 °C. The K m, V max and k cat for p-nitrophenyl α-l-rhamnopyranoside were 1.18 mM, 92.4 μM · min–1 and 117,000 · min–1, respectively. Examination of the substrate specificity using various synthetic and natural l-rhamnosyl glycosides showed that this enzyme had a relatively broader substrate specificity than those reported so far. Received: 24 May 1999 / Accepted: 7 October 1999  相似文献   

8.
Cultures able to dechlorinate cis-1,2-dichloroethene (cDCE) were selected with ethene (3–20%, v/v) as the sole source of carbon and energy. One mixed culture (K20) could degrade cDCE (400 μmol l–1) or vinyl chloride (100 μmol l–1) in the presence of ethene (≤ 80 μmol l–1 and ≤ 210 μmol l–1, respectively). This culture consists of at least five bacterial strains. All five strains were able to degrade cDCE cometabolically in pure culture. The mixed culture K20 was highly tolerant against cDCE (up to 6 mmol l–1 in the liquid phase). Degradation of cDCE (200 μmol l–1) was not affected by the presence of trichloroethene (100 μmol l–1) or tetrachloroethene (100 μmol l–1). Transformation yields (Ty, defined as unit mass of chloroethene degraded per unit mass of ethene consumed) of the mixed culture K20 were relatively high (0.51 and 0.61 for cDCE and vinyl chloride, respectively). The yield for cDCE with ethene as auxiliary substrate was ninefold higher than any values reported with methane or methane/formate as auxiliary substrate. The viability of the cells of the mixed culture K20 (0.3 mg of cells ml–1) was unaffected by the transformation of ≤ 200 μmol l–1 cDCE in 300 min. Received: 9 March 1999 / Accepted: 21 July 1999  相似文献   

9.
Extracellular laccase in cultures of Grifola frondosa grown in liquid culture on a defined medium was first detectable in the early/middle stages of primary growth, and enzyme activity continued to increase even after fungal biomass production had peaked. Laccase production was significantly increased by supplementing cultures with 100–500 μM Cu over the basal level (1.6 μM Cu) and peak levels observed at 300 μM Cu were 7-fold higher than in unsupplemented controls. Decreased laccase activity similar to levels detected in unsupplemented controls, as well as an adverse effect on fungal growth, occurred with further supplementation up to and including 0.9 mM Cu, but higher enzyme titres (2- to 16-fold compared with controls) were induced in cultures supplemented with 1–2 mM Cu2+. SDS-PAGE combined with activity staining revealed the presence of a single protein band (M r 70 kDa) exhibiting laccase activity in control culture fluids, whereas an additional distinct laccase protein band (M r 45 kDa) was observed in cultures supplemented with 1–2 mM Cu. Increased levels of extracellular laccase activity, and both laccase isozymes, were also detected in cultures of G. frondosa supplemented with ferulic, vanillic, veratric and 4-hydroxybenzoic acids, and 4-hydroxybenzaldehyde. Using 2,2′-azino-bis(ethylbenzothiazoline-6-sulfonate) (ABTS) as substrate, the optimal temperature and pH values for laccase activity were 65°C and pH 2.2, respectively, and the enzyme was relatively heat stable. In solid-state cultures of G. frondosa grown under conditions adopted for industrial-scale mushroom production, extracellular laccase levels increased during the substrate colonization phase, peaked when the substrate was fully colonized, and then decreased sharply during fruit body development.  相似文献   

10.
Two 60-day experiments were conducted to study the influence of photon flux density (PFD) and temperature on the attachment and development of Gloiopeltis tenax and Gloiopeltis furcata tetraspores. In the first experiment, tetraspores of the two Gloiopeltis species were incubated at five temperature ranges (8°C, 12°C, 16°C, 20°C, 24°C) under a constant PFD of 80 μmol photons m−2 s−1 with a photoperiod of 12:12. In a second experiment, tetraspores were incubated under five PFD gradients (30, 55, 80, 105, 130 μmol photons m−2 s−1) at a constant temperature of 16°C with a photoperiod of 12:12. Maximum density of attached tetraspores was observed at 16°C for both species. Maximum per cent of spore germinating into disc was recorded at 12–16°C for G. tenax and 8–12°C for G. furcata. Maximum per cent of discs producing erect axes for G. tenax and G. furcata were recorded at 24°C and 20°C, respectively. Light had no significant effect on tetraspore attachment and developing into disc, but it affected the growth, sprouting and survival of its discs. Under 30–55 μmol photons m−2 s−1, the discs of the two species of Gloiopeltis did not form thallus until the end of the experiment. Optimum PFD range for G. tenax discs was 80–105 μmol photons m−2 s−1, whilst it was 80–130 μmol photons m−2 s−1 for G. furcata. Results presented in this study are expected to assist the progress of artificial seeding of Gloiopeltis.  相似文献   

11.
Xylaria regalis, a wood-grown ascomycete isolated in Taiwan, produces β-glucosidase (EC 3.2.1.21) extracellularly. The β-glucosidase was purified to homogeneity by ammonium sulfate precipitation, ion-exchange, and gel filtration chromatography. The molecular mass of the purified enzyme was estimated to be 85 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. With p-nitrophenyl β-D-glucopyranoside (PNPG) as the substrate at pH 5.0 and 50°C, the K m was 1.72 mM and V max was 326 μmol/min/mg. Optimal activity with PNPG as the substrate was at pH 5.0 and 50°C. The enzyme was stable at pH 5.0 at temperatures up to 50°C. The purified β-glucosidase was active against PNPG, cellobiose, sophorose, and gentiobiose, but did not hydrolyze lactose, sucrose, Avicel, and o-nitrophenyl β-D-galactopyranoside. The activity of β-glucosidase was stimulated by Ca2+, Mg2+, Mn2+, Cd2+ and β-mercaptoethanol, and inhibited by Ag+, Hg2+, SDS, and p-chloromercuribenzoate (PCMB). Received: 30 March 1996 / Accepted: 3 May 1996  相似文献   

12.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

13.
A thermostable β-galactosidase was produced extracellularly by a thermophilic Rhizomucor sp, with maximum enzyme activity (0.21 U mg−1) after 4 days under submerged fermentation condition (SmF). Solid state fermentation (SSF) resulted in a nine-fold increase in enzyme activity (2.04 U mg−1). The temperature range for production of the enzyme was 38–55°C with maximum activity at 45°C. The optimum pH and temperature for the partially purified enzyme was 4.5 and 60°C, respectively. The enzyme retained its original activity on incubation at 60°C up to 1 h. Divalent cations like Co2+, Mn2+, Fe2+ and Zn2+ had strong inhibitory effects on the enzyme activity. The K m and V max for p-nitrophenyl-β- D-galactopyranoside and o-nitrophenyl-β - D-galactopyranoside were 0.39 mM, 0.785 mM and 232.1 mmol min−1 mg−1 respectively. The K m and V max for the natural substrate lactose were 66.66 μM and 0.20 μ mol min−1 mg−1. Received 10 March 1997/ Accepted in revised form 17 July 1997  相似文献   

14.
We cloned the gene, CdPAL1, from Cistanche deserticola callus using RACE PCR with degenerate primers that were designed based on a multiple sequence alignment of known PAL genes from other plant species. The gene shows high homology to other known PAL genes registered in GenBank. The recombinant protein exhibited MichaelisMenten kinetics with a K m of 0.1013 mM, V max of 4.858 μmol min−1, K cat of 3.36 S−1, and K cat/K m is 33,168 M−1 S−1. The enzyme had an optimal pH of 8.5 and an activation energy of 38.92 kJ mol−1 when l-Phenylalanine was used as a substrate; l-tyrosine cannot be used as substrate for this protein. The optimal temperature was 55°C, and the thermal stability results showed that, after a treatment at 70°C for 20 min, the protein retained 87% activity, while a treatment at 75°C for 20 min resulted in a loss of over 85% of the enzyme activity. Treatment with heavy metal ions (Hg2+, Pb2+, and Zn2+) showed remarkable inhibitory effects. Among the intermediates from the lignin (cinnamyl alcohol, cinnamyl aldehyde, coniferyl aldehyde, coniferyl alcohol), phenylpropanoid (cinnamic acid, coumaric acid, caffeic acid, and chlorogenic acid) and phenylethanoid (tyrosol and salidroside) biosynthetic pathways, only cinnamic acid showed strong inhibitory effects against CdPAL1 activity with a K i of 8 μM. Competitive inhibitor AIP exhibited potent inhibition with K i = 0.056 μM.  相似文献   

15.
 The zooplankton of the under-shelf-ice ecosystem at White Island (78°10′ S, 167°30′ E), McMurdo Sound, Antarctica was investigated during December 1976 and January 1977. The water column was sampled through a hole in the McMurdo Ice Shelf over a water depth of 67 m. Seawater temperatures under the ice shelf ranged from −1.91 to 1.96°C. Dissolved oxygen levels ranged from 5.0–6.05 ml l-1 in early December to 4.65–4.8 ml l-1 in late January. Current speeds of up to 0.13 m s-1 were recorded at a depth of 50 m and a predominantly northward flow was detected. Light levels under the shelf ice were low with less than 1% of the incident light being transmitted to a depth of 3 m. No chlorophyll a was detected within the water column throughout the investigation. Mean zooplankton biomass values in the water column ranged from 12 to 447 mg wet weight m-3 and were similar to values recorded elsewhere from Antarctic inshore waters, but were very much higher than those recorded from under seasonal sea ice in McMurdo Sound. Thirty-two zooplankton species were recorded including 1 ostracod, 21 copepods (10 calanoids, 3 cyclopoids and 8 harpacticoids), 4 amphipods, 2 euphausiids, a chaetognath and 3 pteropods. Larvae of polychaetes and fish were found on some occasions. The species composition in general was similar to that recorded from McMurdo Sound and other Antarctic inshore localities. Among the Copepoda, however, there were a number of species, especially among the Harpacticoidea, that have not been found previously in McMurdo Sound and the Ross Sea, but that are known to be associated with ice in other localities in Antarctica. Two recently described species are known only from White Island. They were present in the water column but were most abundant in the surface water of the tide crack where they were the most abundant zooplankters. The tide crack, which probably is an extension of the under-ice habitat, is apparently a significant nursery area for amphipods and copepod species. Received: 23 November 1994/Accepted 7 May 1995  相似文献   

16.
The enzyme responsible for formaldehyde removal in industrial wastewaters by cells of Rhodococcus erythropolis UPV-1 was identified as a broad-specific aldehyde dehydrogenase (EC 1.2.1.3). The enzyme was purified to electrophoretic homogeneity from ethanol-grown cells with a specific activity of 19.5 U mg−1 protein and an activity recovery of 56%. The enzyme showed an isoelectric point (pI) of 5.3 and was a trimer of 162 kDa consisting of three identical 54-kDa subunits. It was specific for NAD+ and showed hyperbolic kinetics for this coenzyme (K m=90 μM), but sigmoidal kinetics for the aliphatic aldehydes used as substrates. The enzyme affinity for aldehydes increased with their hydrocarbon chain length, ranging from 333 μM for formaldehyde to 85 nM for n-octanal. The corresponding calculated Hill coefficients were in the 1.55–2.77 range. With n-propanal as substrate, the optimum pH and temperature for activity were 9.5–10.0 and 47.5°C, respectively, with an E a for catalysis of 28.6 kJ mol−1. NAD+ protected the enzyme against thermal inactivation, but aldehydes were ineffective. The activity was severely inhibited by p-hydroxymercuribenzoate, indicating that a thiol was essential for catalysis. The 1,524-bp aldhR gene encoding a 507-amino-acid protein was expressed in cells of Escherichia coli M15 as a hexahistidine-tagged protein.  相似文献   

17.
A limnological survey of 15 lakes and 6 streams was carried out on Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) during austral summer 2001–2002. Most of the surface waters had low conductivities (20–105 μS cm−1) and nutrients (total phosphorus 0.01–0.24 μM), but some coastal lakes were enriched by nutrient inputs from seal colonies and marine inputs. Plankton communities in the lakes contained picocyanobacteria (102–104 cells ml−1), diatoms, chrysophytes and chlorophytes, and a large fraction of the total biomass was bacterioplankton. Zooplankton communities were dominated by Boeckella poppei and Branchinecta gainii; the benthic cladoceran Macrothrix ciliata was also recorded, for the first time in Antarctica. The chironomids Belgica antarctica and Parochlus steinenii, and the oligochaete Lumbricillus sp., occurred in stream and lake benthos. The phytobenthos included cyanobacterial mats, epilithic diatoms and the aquatic moss Drepanocladus longifolius. These observations underscore the limnological richness of this seasonally ice-free region in maritime Antarctica and its value as a long-term reference site for monitoring environmental change.  相似文献   

18.
The coloration of cells of the cyanobacterium Synechococcus sp. PCC 7002 changed from normal blue-green to yellow-green when cells were grown at 15° C in a medium containing nitrate as the sole nitrogen source. This change of coloration was similar to a general response to nutrient deprivation (chlorosis). For the chlorotic cells at 15° C, the total amounts of phycobiliproteins and chlorophyll a decreased, high levels of glycogen accumulated, and growth was arithmetic rather than exponential. These changes in composition and growth occurred in cells grown at low (50 μE m–2 s–1) as well as high (250 μE m–2 s–1) light intensity. After a temperature shift-up to 38° C, chlorotic cells rapidly regained their normal blue-green coloration and normal exponential growth rate within 7 h. When cells were grown at 15° C in a medium containing urea as the reduced nitrogen source, cells grew exponentially and the symptoms of chlorosis were not observed. The decrease in photosynthetic oxygen evolution activity at low temperature was much smaller than the decrease in growth rate for cells grown on nitrate as the nitrogen source. These studies demonstrate that low-temperature-induced chlorosis of Synechococcus sp. PCC 7002 is caused by nitrogen limitation and is not the result of limited photosynthetic activity or photodamage to the photosynthetic apparatus, and that nitrogen assimilation is an important aspect of the low-temperature physiology of cyanobacteria. Received: 24 April 1997 / Accepted: 5 August 1997  相似文献   

19.
Cyanobacteria were a major constituent of phototrophic communities in the lakes, ponds and streams of Bylot Island, in the Canadian high Arctic. The waters spanned a range of temperatures (1.8–16.8°C in late July), pH regimes (6.2–9.2) and conductivities (1.5–1700 μS cm−1) but nutrient concentrations were consistently low (< 1 μg dissolved reactive P l−1 at all sites; < 10 μg NO3-N l−1 at most sites). Picoplanktonic species (Synechococcus spp.) were often the numerical dominants in the plankton, and periphytic filamentous species (Oscillatoriaceae) commonly formed thick (5–50 mm) benthic mats. Bloom-forming species of cyanobacteria were either absent or poorly represented even in Chla-rich ponds. The total community biomass ranged from 0.1 to 29.8 μg Chla l−1 in the plankton and from 1.1 to 34.8 μg Chla cm−2 in the benthos. The in vivo absorbance characteristics of isolates from these environments indicated a genetically diverse range of species in each group of Arctic cyanobacteria. Growth versus irradiance relationships were determined for each of the isolates and similarly revealed large genetic differences (maximum growth rates from 0.17 to 0.61 day−1), even between morphologically identical taxa. A comparison of nutrients, pigment concentrations and species composition underscores the strong similarities between freshwater ecosystems in the north and south polar zones. Received: 3 June 1996 / Accepted: 3 November 1996  相似文献   

20.
The McMurdo Dry Valleys constitute the largest ice-free region of Antarctica and one of the most extreme deserts on Earth. Despite the low temperatures, dry and poor soils and katabatic winds, some microbes are able to take advantage of endolithic microenvironments, inhabiting the pore spaces of soil and constituting photosynthesis-based communities. We isolated a green microalga, Endolithella mcmurdoensis gen. et sp. nov, from an endolithic sandstone sample collected in the McMurdo Dry Valleys (Victoria Land, East Antarctica) during the K020 expedition, in January 2013. The single non-axenic isolate (E. mcmurdoensis LEGE Z-009) exhibits cup-shaped chloroplasts, electron-dense bodies, and polyphosphate granules but our analysis did not reveal any diagnostic morphological characters. On the basis of phylogenetic analysis of the 18S rRNA (SSU) gene, the isolate was found to represent a new genus within the family Chlorellaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号