首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Cultured cerebellar granule cells were subjected to toxic activation of the NMDA receptor that was terminated by MK-801. Subsequent resuscitation experiments were mostly conducted in the presence of a physiological concentration of Ca2+. Addition of pyruvate and inorganic phosphate, in addition to glucose, which was always present, rescued ∼40% of the dying neurons. La3+ and ruthenium red were also effective resuscitating agents. The combination of pyruvate, inorganic phosphate, and ruthenium red rescued 65% of the dying neurons. Parallel studies with 45Ca indicated that La3+ and ruthenium red facilitated the decrease of 45Ca in the neurons, whereas inorganic phosphate, supported by energy-yielding pyruvate, formed perhaps, a less harmful Ca complex inside the neurons.  相似文献   

2.
Barley plants were grown in nutrient solutions, which were maintained at either 0 (-P) or 15 μ M orthophosphate (+P). After 11 days phosphate influx into the intact roots of the -P plants began to increase by comparison with +P plants. During this period differences became apparent between the treatments in absolute growth rates, as well as in the root:shoot ratios. Phosphate influx in the -P plants continued to increase as a function of time, to a maximum value of 2.4 μmol (g fresh wt)-1h-1 at 16 days after germination. This rate was 6 times higher than influx values for +P plants of the same age. During the period of enhanced uptake phosphate was strongly correlated (r2= 0.77) with root organic phosphate concentration. – The enhancement of inorganic phosphate influx into intact roots of -P plants was rapidly reduced by the provision of 15 μ M orthophosphate. Typically, within 4 h of exposure to this concentration of phosphate, influx values fell from 1.80 ± 0.20 to 0.75 ± 0.03 μmol (g fresh wt)-1 h-1, while inorganic phosphate concentrations of the roots increased from 0.12 to 1.15 μmol (g fresh wt)-1 during the same period. Hill plots of the influx data obtained during this period, treating root inorganic phosphate as an inhibitor of influx, gave Hill coefficients close to 2. The rapidity of the reduction of influx associated with increased root inorganic phosphate together with the Hill plot data provide evidence for an allosteric inhibition of influx by internal inorganic phosphate.  相似文献   

3.
The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in different combinations and comparing their ability to restore Pb2+, Zn2+ and Cd2+ resistance in a metal-sensitive C. metallidurans strain DN440. We show that lead resistance in C. metallidurans is achieved through the cooperation of the Zn/Cd/Pb-translocating ATPase PbrA and the undecaprenyl pyrophosphate phosphatase PbrB. While PbrA non-specifically exported Pb2+, Zn2+ and Cd2+, a specific increase in lead resistance was observed when PbrA and PbrB were coexpressed. As a model of action for PbrA and PbrB we propose a mechanism where Pb2+ is exported from the cytoplasm by PbrA and then sequestered as a phosphate salt with the inorganic phosphate produced by PbrB. Similar operons containing genes for heavy metal translocating ATPases and phosphatases were found in several different bacterial species, suggesting that lead detoxification through active efflux and sequestration is a common lead-resistance mechanism.  相似文献   

4.
Abstract. Transverse slices through developing grains of Triticum aestivum cv. SUN 9E 16 d after anthesis were incubated in simple defined media with various radioactive labels. In some enzymic assays slices were pretreated with 2.5% Triton X-100 or with 5% butanol to remove cellular membranes and endogenous substrates.
Endogenous potassium leaked from endosperm slices into 30mol m−3 sucrose while sucrose was converted partly into starch. Exogenous alkali-ions, except Li+, stimulated conversion of sucrose to insoluble matter, specifically to starch with K+. Starch synthetase activity of Triton-pretreated slices was stimulated by K+ at both high and low substrate ADPG concentration, but was not affected by phosphate (25 mol m−3).
Phosphate in the medium had no effect on incorporation of sucrose or glucose into alcohol-insoluble material or starch in fresh slices (internal inorganic phosphate (P,) concentration was about 11 mol m−3). Three- to four-fold contrasts in internal Pi level, achieved by prolonged preincubations in different media, did not show an inhibition of starch synthesis by Pi. However, phosphate (25mol m−3) inhibited starch synthesis, that was mediated by ADPG pyrophosphorylase in butanol-pretreated endosperm slices by 15–18%.
It is concluded that starch synthesis in wheat endosperm is not regulated directly by apoplastic Pi; level.  相似文献   

5.
Effects of salinity and phosphate on ion distribution in lupin leaflets   总被引:1,自引:0,他引:1  
Lupin ( Lupinus luteus L. cv. Weiko III) were grown in nutrient solution over a range of inorganic phosphate (Pi) concentrations, with or without 50 m M NaCl. Plants with high Pi (2 m M ) and salt showed progressive leaf necrosis and had higher concentrations of total phosphate than plants grown with high Pi alone. Most of the extra total phosphate in salt treated plants was in the Pi form. Pi supply did not influence Na+, K+ or Cl concentrations in epidermal vacuoles or mesophyll cells. However, epidermal vacuoles accumulated more monovalent cations (Na+ and K+) than Cl, and in vacuoles of plants grown with 0.1 m M Pi additional Pi was accumulated, possibly to maintain charge balance. Plants grown with 2 m M Pi did not accumulate additional Pi in epidermal vacuoles, but showed higher phosphorus levels in cell walls. It is suggested that at moderate phosphorus concentrations Pi plays a role in epidermal osmotic adjustment, possibly explaining the beneficial role of additional phosphorus on salt stressed plants. At high Pi supply with salt, Pi does not contribute to osmotic adjustment and instead accumulates in cell walls. However, the cause of leaf damage under conditions of high phosphorus supply and salinity is still not entirely clear.  相似文献   

6.
The calcium antagonists diltiazem and verapamil at 100 μM caused considerable inhibition of the glycolysis system in recently fertilized eggs of the echiuroid, Urechis unicinctus . The levels of glycolytic intermediates in eggs were found to be higher 5 min after insemination than before fertilization while the levels of adenine nucleotides and inorganic phosphate were almost the same before and after fertilization. Addition of diltiazem or verapamil 30 sec after insemination did not inhibit fertilization, but resulted in maintenance of as low levels of glycolytic intermediates as in unfertilized eggs. The apparent mass action ratio in the phosphorylase step, calculated from the levles of glucose-1-phosphate and inorganic phosphate was normally higher in fertilized eggs than in unfertilized eggs, but was maintained at as low a level as in unfertilized eggs by adding these compounds 30 sec after insemination. Phosphorylase a activity also normally increased after insemination, but was maintained at a low level in fertilized eggs by adding these compounds. These compounds also inhibited the increased 45Ca2+ uptake normally observed after fertilization. These results suggest that after fertilization, the Ca2+ level increases associated with fertilization-induced Ca2+ influx and that this stimulates Ca2+ dependent protein kinase to phosphorylate phosphorylase b , resulting in an increased rate of the phosphorylase reaction.  相似文献   

7.
Abstract: Elevated concentrations of extracellular K+ increased inositol phosphate accumulation in primary cultures of chick retinal photoreceptors and multipolar neurons. K+-evoked stimulation of inositol phosphate accumulation was greater in photoreceptor-enriched cell cultures than in cultures where multipolar neurons were the predominant cell type. Destroying multipolar neurons, but not photoreceptors, with kainic acid and N -methyl- d -aspartate did not reduce the K+-evoked stimulation of inositol phosphate accumulation. Both of these observations indicate that the observed effects occur in photoreceptor cells. The K+-evoked stimulation of inositol phosphate accumulation was blocked by omitting Ca2+ from the incubation medium or by adding the dihydropyridine-sensitive Ca2+-channel antagonists, nitrendipine and nifedipine. Bay K 8644, a dihydropyridine agonist, stimulated inositol phosphate accumulation and enhanced the effect of K+. ω-Conotoxin GVIA, an inhibitor of N-type Ca2+ channels, had no significant effect on K+-stimulated inositol phosphate accumulation. Pretreatment with pertussis toxin neither blocked K+-evoked inositol phosphate accumulation nor altered the inhibitory effect of nifedipine. K+-evoked inositol phosphate accumulation appears to reflect activation of phosphatidylinositol-specific phospholipase C, as it is inhibited by U-73122. These results indicate that Ca2+ influx through voltage-gated, dihydropyridine-sensitive channels activates phospholipase C in photoreceptor inner segments and/or synaptic terminals.  相似文献   

8.
The osmoacclimation of Ectocarpus siliculosus isolates known to have different salt tolerances was investigated. Included were isolates originating from 5 different locations in the northern hemisphere, and sporophyte and gametophyte phases of different ploidy from two of the locations were compared. The effect of salinity treatment (8–64%0) on inorganic ions (K+, Na+, Mg2+, Cl, SO2−4, phosphate) and the low molecular weight carbohydrate mannitol was measured, together with complimentary measurements of cell viability. Very different responses between isolates were obtained, both between isolates of different geographic origin and between sporophytes and gametophytes from the same parent material. A similarity in response between haploid and diploid gametophytes, and diploid and triploid sporophytes indicates that physiological differences between gametophyte and sporophyte generations are not necessarily based on ploidy changes alone. There were no identifiable differences in the responses of male and female gametophytes. K+ is the major osmolyte within the species, and differences in the regulation of K+ largely account for the observed variation in osmoacclimation, both between life history phases and between isolates from different localities. Isolates with broader salt tolerances had the higher concentrations of mannitol. There were differences between isolates in the amounts and regulation of Cl and phosphate, the latter being present in unusually high concentrations. There were also isolate differences in the concentrations of Mg2+ and SO2−4, although these divalent ions were present only in low concentrations.  相似文献   

9.
The concentrations of the main plasma inorganic electrolytes Na+, K+, Ca2+, Mg2+, Cl- and and PO43- have been determined for different orders of marine fishes. For Na+ and Cl- a typical decrease was found when passing from cyclostomes, holocephalans and elasmobranchs to teleosts. The concentrations of K+, Ca2+ and Mg2+ showed a similar trend except that there was a rise in the teleost group, which showed a large range of variation for these three ions. In the case of PO43- no significant differences between groups were found.  相似文献   

10.
Abstract A diatom biofilm was grown in a chamber developed for culture of biofilms in chemical gradients. The diatoms grew on a polycarbonate membrane filter which separated a sterile reservoir, with added phosphate, from a reservoir without phosphate. Within 3 weeks of inoculation, a thick biofilm developed on the surface of the filter. The biofilms were homogeneous and therefore suitable for calculations of O2 diffusion fluxes from concentration profiles of O2. Profiles of O2, pH, and gross photosynthesis at different light intensities and liquid medium concentrations of dissolved inorganic carbon and O2 were measured with microelectrodes. Respiratory activity in a layer of the biofilm was determined as the difference between gross photosynthesis and outflux of O2 from that layer. The photosynthetic activity in a well-developed biofilm grown at 360 μEinst m−2 s−1 and 2.4 mM HCO3 was limited by the supply of inorganic carbon. Exposure to light above 360 μEinst m−2 s−1 stimulated gross photosynthesis as well as respiratory processes without affecting net outflux of O2. Higher concentrations of inorganic carbon, on the other hand, enhanced gross photosynthesis without concurrent increase in respiratory rate, resulting in an increased outflux of O2. High concentrations of O2 in the liquid medium decreased the net outflux of O2 with little effect on the gross photosynthesis. The effects of inorganic carbon and O2 on the metabolic activities of the biofilm were consistent with the presence of photorespiratory activity.  相似文献   

11.
An acid phosphatase (EC 3.1.3.2) has been identified and purified from castor bean ( Ricinus communis L., IAC-80 ) seed through sulphopropyl (SP)-Sephadex, diethylaminoethyl (DEAE)-Sephadex, Sephacryl S-200, and Concanavalin A-Sepharose chromatography. The enzyme was purified 2 000-fold to homogeneity, with a final specific activity of 3.8 μkat mg−1 protein. The purified enzyme revealed a single diffuse band with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis, at pH 8.3. The relative molecular mass, determined by high-performance liquid chromatography (HPLC), was found to be 60 kDa. The acid phosphatase had a pH optimum of 5.5 and an akpparent Km value for p -nitrophenylphosphate of 0.52 m M . The enzyme-catalyzed reaction was inhibited by inorganic phosphate, fluoride, vanadate, molybdate, p -chloromercuribenzoate ( p CMB), Cu2+ and Zn2+. The strong inhibition by p CMB, Cu2+ and vanadate suggests the presence of sulfhydryl groups essential for catalysis. The castor bean enzyme also recognized tyrosine-phosphate and inorganic pyrophosphate (KPPi) as substrate. The highest specificity constant (Vmax/Km) was observed with KPPi, making it a potential physiological substrate.  相似文献   

12.
The photosynthetic characteristics of the terrestrial cyanobacterium, Nostoc flagelliforme , after complete recovery by rewetting, was investigated to see whether it could use bicarbonate as the external inorganic carbon source when submerged. The photosynthesis–pH relationship and high pH compensation point suggested that the terrestrial alga could use bicarbonate to photosynthesize when submerged. The photosynthetic oxygen evolution rates were significantly inhibited in Na + -free and Na + + Li + media but were not affected by the absence of Cl , implying that the bicarbonate uptake was associated with Na + / HCO3 symport rather than Cl /HCO3 exchange system.  相似文献   

13.
The two microspecies were Taraxacum sellandii Dahlst., which usually occurs in heavily fertilized grasslands, and Taraxacum nordstedtii Dahlst., which on the whole is restricted to undisturbed and mineral-poor habitats. Growth response curves were established, depicting the relative yield of (whole) plant tissue water and the internal K+ concentration (on a whole plant basis). The critical K+ concentration, i.e. the lowest [K+]i associated with maximal growth, was derived from the response curve. T. nordstedtii , the microspecies with the low maximal growth, showed a distinctly lower critical K+ concentration than T. sellandii. A relationship between growth potential and critical K+ concentration is proposed. Responses to a declining [K+]i differed between the two microspecies. The roots of T. nordstedtii stopped functioning as a sink for inulin, and mobilized additional carbohydrates for maintaining osmotic potential and growth. The productive strategy of the fast-growing T. sellantlii is lacking such a mechanism to buffer effects of a declining [K+]i.
Various changes were noted as regards the internal concentrations of other inorganic ions, measured as a function of [K+]i, With declining [K+]i, internal NO-3 decreased considerably in shoot and roots, especially in T. nordstedtii , while Mg2+ accumulated, especially in the roots of T. sellandii. The interactions between growth potential and the accumulation of inorganic ions are discussed.  相似文献   

14.
Abstract: The present study reports the ion dependency of 2β-carbomethoxy-3β-(4-fluorophenyl)[3H]tropane ([3H]- CFT) binding to the dopamine transporter in the rat striaturn. The results indicate that [3H]CFT binding to synaptosomal P2 membranes requires low concentrations of Na+ (peak binding between 20 and 50 m M Na+), is stimulated by phosphate anion or l-, but is unaffected or only slightly affected by F-, Cl-, Br-, NO3-, or SO42-, Concentrations of Na+ of >50 m M become inhibitory except in the presence of l-, which shifts peak binding levels toward higher Na+ concentrations and also elevates the peak binding level. K+ strongly decreased [3H]CFT binding with a shallow inhibition curve, and Na+ could not overcome this effect. Saturation analysis of [3H]CFT binding revealed a single binding site changing its affinity for CFT depending on the concentration of sodium phosphate buffer (6, 10, 30, 50, 130, or 200 m M ; 1 mM plus 49 mM NaCIversus 10 m M plus 40 m M NaCI; or 1 mM plus 129 m M Nal versus 10 m M plus 120 m M Nal). No differences were observed in the density of CFT binding sites between any of the conditions examined.  相似文献   

15.
Treeby, M. T. and van Steveninck, R. F. M. 1988. The influence of salinity on phosphate uptake and distribution in lupin roots. - Physiol. Plant. 72: 617–622.
The uptake and distribution of phosphate in lupin ( Lupinus luteus L. cv. Weiko III) roots under moderate salt (NaCl) stress was studied. Vacuolar inorganic phosphate (PJ concentrations in high phosphate plants were decreased by salt, although whole root P| was unaffected. In low phosphate plants, vacuolar Pi was unaffected by salt while whole root Pi was increased. Phosphate uptake was not altered by salt in high phosphate plants, but was depressed in low phosphate plants. These observations lead to the conclusion that in high phosphate plants Pi accumulates in cytoplasm and/or stele, ultimately giving rise to phosphate toxicity in shoots. Increasing phosphate supply had no effect on Na+ accumulation in root cell vacuoles in the epidermis or cortex, but the concentration of Cl in endodermal vacuoles was lowered.  相似文献   

16.
Rhizobium leguminosarum biovar viceae strain TAL 1236 growing on different organic phosphorus compounds as sources of phosphate exhibited phosphatase activities. The strain was able to produce both acid and alkaline phosphatases. However, its ability to produce alkaline phosphatase was much higher. When cellular phosphate fell to 0.115% of cell protein, cellular and extracellular phosphatase activities were promoted. Mg2+, Co2+ and Ca2+ enhanced slightly the activity of alkaline phosphatase more than acid phosphatase. However, Mn2+ and Fe2+ activated acid phosphatase rather than alkaline phosphatase. It may be concluded that Rh. leguminosarum plays an important role in the release of phosphorus from its organic compounds through the action of phosphatases which can be slightly activated by a range of cations.  相似文献   

17.
Abstract: Inositol phosphate accumulation on carbachol stimulation of rat cerebellar granule cells shows a marked dependence on factors affecting cytosolic Ca2+ concentration ([Ca2+]c). After 5 min, potassium depolarisation caused a modest accumulation of inositol phosphates but augmented the response to carbachol by a factor of 2–3. These effects of potassium were dependent on an extracellular source of calcium and could be partially blocked by specific (nifedipine) and nonspecific (verapamil) calcium channel blockers. Measurements of [Ca2+]c under a range of stimulatory conditions demonstrated a close correlation between the elevation of [Ca2+]c and agonist-stimulated phospholipase C (PLC) activity. The maximal potentiation of carbachol-stimulated inositol phosphate accumulation was achieved using 20 m M KCl, which increased [Ca2+]c from ∼20 to ∼75 n M , indicating the involvement of relatively low threshold Ca2+ channels and the high sensitivity of the relevant PLC to small changes in [Ca2+]c. By contrast, increases in [Ca2+]c induced by the Ca2+ ionophore ionomycin were associated with more modest and less potent effects on agonist-stimulated PLC. These results demonstrate a cooperative interaction between a receptor/G protein-regulated PLC and voltage-stimulated elevations of [Ca2+]c, which may function to integrate ionotropic and metabotropic signalling mechanisms in cerebellar granule cells.  相似文献   

18.
Processing tomato ( Lycopersicon esculentum Mill. cv. UC82B) plants were subjected to moderate levels of water deficit and salinity (Na2SO4/CaCl2) in sand culture. Fruit water content and the relative contributions of organic and inorganic constituents to fruit solute potential (Ψ) and soluble solids content were determined throughout development. Fruit Ψ averaged –0.63, –0.86 and –0.77 MPa in the control, salinity and water deficit plants, respectively. Reduced net water import and maintenance of solute accumulation, irrespective of water import, accounted for the reductions in Ψ of stressed fruits. Mineral ions (Na+, K+, Ca2+, Mg2+, Cl and SO2-4) contributed –0.31 MPa to Ψ in salinized fruit, compared with –0.19 MPa in control and water deficit treatments. Changes in net carbon accumulation were not observed among treatments, despite considerable differences in fruit K+ status. Starch accumulation in immature fruit was increased and hexose accumulation was decreased by both salinity and water deficit. Maximum starch levels were negatively correlated with total fruit Ψ, but were independent of fruit K+. Organic acid levels were generally higher throughout development in salinized plants, relative to control plants, and correlated with increased inorganic cation rather than anion accumulation in these fruits.  相似文献   

19.
Abstract Phosphate interference in the production of cephalosporins by Streptomyces clavuligerus had been associated with repression of expandase (desacetoxycephalosporin C synthetase) and inhibition of both expandase and cyclase (isopenicillin N synthetase). The present work shows that inhibition of enzyme action could be prevented by increasing the Fe2+ added to the cell-free reactions or to resting cells incubated with chloramphenicol. Since excess Fe2+ could not reverse phosphate interference of antibiotic synthesis in complete fermentations, it is clear that the major cause of the phosphate effect in fermentations is phosphate repression, rather than phosphate inhibition caused by Fe2+ deprivation.  相似文献   

20.
Abstract. Xylem sap was collected from individual leaves of intact transpiring lupin plants exposed to increasing concentrations of NaCl by applying pneumatic pressure to the roots. Concentrations of Na+ and Cl in the xylem sap increased linearly with increases in the external NaCl concentration, averaging about 10% of the external concentration. Concentrations of K+ and NO3, the other major inorganic ions in the sap, were constant at about 2.5 and 1.5 mol m−3, respectively. There was no preferential direction of Na + or Cl to either young or old leaves: leaves of all ages received xylem sap having similar concentrations of Na+ and Cl, and transpiration rates (per unit leaf area) were also similar for all leaves. Plants exposed to 120–160 mol m−3 NaCl rapidly developed injury of oldest leaves; when this occurred, the Na+ concentration in the leaflet midrib sap had increased to about 40 mol m−3 and the total solute concentration to 130 osmol m−3. This suggests that uptake of salts from the transpiration stream had fallen behind the rate of delivery to the leaf and that salts were building up in the apoplast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号