首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Operation of the glycolate pathway in isolated bundle sheath (BS) strands of two C4 species was demonstrated from 14C incorporation into two intermediates, glycine and serine, under conditions favourable for photorespiratory activity. Isolated BS strands fixing 14CO2 under light at physiological rates incorporate respectively 3% (Zea mays L., cv. INRA 258) and 7% (Panicum maximum Jacq.) of total 14C fixed into glycine + serine, at low bicarbonate levels (less than the Km for CO2 fixation, 0.8 mM). Higher bicarbonate concentrations depressed the percentage of incorporation into the two amino acids. No labelling was observed in the absence of added glutamate. Oxygen was required for glycine + serine labelling, since 14C incorporation into glycine was largely depressed by argon flushing, and labelling of the two amino acids was nearly suppressed by the addition of the strong reductant, dithionite, especially in maize. Two inhibitors of the glycolate pathway were tested. With α-hydroxypyridine-methanesulfonic acid, an inhibitor of glycolate oxidase, labelling of glycine and serine remained minimal whereas glycolate was accumulated. Isoniazid, an inhibitor of the transformation of glycine to serine induced a 50% increased labelling of glycine in maize BS, and a large decrease in serine labelling. In Panicum, the increase in [14C]-glycine was 90%. These results suggest that the pathway glycolate → glycine → serine operates in these plants. However, leakage of metabolites occurs in BS cells, especially in maize and a large part of newly formed glycolate, glycine and serine is exported out of the cells. Operation of ribulose-1,5-bisphosphate oxygenase activity in competition with ribulose-1,5-bisphosphate carboxylase is demonstrated by the lowering of total 14CO2 fixation when O2 is increased at low bicarbonate concentration. An interesting feature observed in maize BS, at low bicarbonate concentration, was an increase in ribulose-1,5-bisphosphate labelling when the O2 level was decreased. This was accompanied by an increase in CO2 fixation. This could indicate an increased rate in synthesis of ribulose-1,5-bisphosphate (which accumulated) due to a stimulation of ATP synthesis by cyclic photophosphorylation under anaerobic conditions.  相似文献   

2.
Betsche  Thomas  Eising  Rainer 《Plant and Soil》1986,91(3):367-371
Summary Labelling experiments with15N glutamate and15N alanine were conducted using slices from oat leaves to investigate photorespiratory nitrogen metabolism. It is concluded from the labelling kinetics of glutamine that the refixation of photorespiratory ammonia primarily occurs by glutamine synthetase in the chloroplast. The labelling kinetics of glutamine with15N glutamate indicate that the chloroplastic and cytoplasmic glutamate pools do not exchange easily in oat leaf cells. Alanine was shown to be an important amino donor for photorespiratory glycine formation. This result is discussed with regard to a possible role of alanine in photorespiration. A modification to the scheme of photorespiratory nitrogen metabolism is proposed.  相似文献   

3.
The interconversion of glycine and serine by plant tissue extracts   总被引:16,自引:5,他引:11       下载免费PDF全文
1. Extracts prepared from a variety of higher-plant tissues by ammonium sulphate fractionation were shown to catalyse the interconversion of glycine and serine. This interconversion had an absolute requirement for tetrahydrofolate and appeared to favour serine formation. 2. The biosynthesis of serine from glycine was studied in more detail with protein fractionated from 15-day-old wheat leaves. Synthesis of [14C]serine from [14C]glycine was not accompanied by labelling of glyoxylate, glycollate or formate. 3. The synthesis of serine from glycine was stimulated by additions of formaldehyde, and [14C]formaldehyde was readily incorporated into C-3 of serine in the presence of tetrahydrofolate. 4. The results are interpreted as indicating that serine biosynthesis involves a direct cleavage of glycine whereby the α-carbon is transferred via N5N10-methylenetetrahydrofolate to become the β-carbon of serine.  相似文献   

4.
Summary The ex vivo labelling of DNA-synthesizing epithelial cells in colonic and vaginal mucosa was compared with in vivo labelling. For this purpose, in vivo S-phase cells were labelled with [3H]thymidine (Tdr) and ex vivo labelling was continued by culturing tissue specimens in bromodeoxyuridine (BrdU). Various methods of tissue culture were employed in order to improve diffusion of medium (and BrdU) in the tissue. BrdU and 3H-TdR labelling were evaluated by immunohistochemistry and autoradiography respectively. Ex vivo labelling resulted in a patchy distribution of labelled cells, which did not correspond with the 3H-TdR labelling pattern obtained in vivo. Under the described conditions ex vivo labelling does not appear to be a reliable for estimation of the proliferative activities in vivo.  相似文献   

5.
1. Rats were infused in vivo with [U-(14)C]glycine for periods of 2-6h, during which time the specific radioactivity of the free glycine in plasma and tissue approached a constant value. 2. Free serine also became labelled. The ratio of specific radioactivity of serine to that of glycine in the protein of liver, kidney, brain, jejunum, heart, diaphragm and gastrocnemius muscle was closer to the ratio in the free amino acid pool of the tissue than that of the plasma. 3. The kinetics of incorporation of [(14)C]glycine and [(14)C]serine into the protein of gastrocnemius muscle further suggested that the plasma free amino acids were not the immediate precursors of protein. 4. Infusion of rats with [U-(14)C]serine resulted in labelling of free glycine. The ratio of specific radioactivity of glycine to serine in the protein of liver, kidney, brain, jejunum and heart again suggested incorporation from a pool similar to the free amino acid pool of the tissue. 5. Rates of tissue protein synthesis calculated from the incorporation into protein of both radioactive glycine and serine, either infused or derived, were very similar when the precursor specific radioactivity was taken to be that in the total free amino acids of the tissue. Except for gastrocnemius muscle and diaphragm during the infusion of radioactive serine, the rates of tissue protein synthesis calculated from the specific radioactivity of the free glycine and serine in plasma differed markedly.  相似文献   

6.
—The metabolism of free amino acids: γ-aminobutyric acid (GABA), glutamine, glycine and glutathione has been studied. The labelling of these free amino acids in normal and in myelin-deficient brains of Jimpy mice was followed after intraperitoneal injection of 14C-labelled glucose precursor. The quantitative distribution of these amino acids in the two kinds of mouse brain has been compared. A higher level of GABA and a faster labelling of the amino acids in Jimpy than in normal mouse brain was observed.  相似文献   

7.
Clostridium histolyticum grew on glycine, arginine, or threonine as sole substrate. Arginine degradation preceded that of glycine and partially inhibited that of threonine when two amino acids were present. Each amino acid seemed to be individually catabolized, not by a Stickland type of reaction. Glycine fermentation required the presence of complex ingredients. Therefore, an effect of selenite on glycine catabolism could only be demonstrated after scavenging selenium contamination by preculturing Peptostreptococcus glycinophilus in that medium. C. acidiurici was not suited as selenium accumulating organism as C. histolyticum was inhibited by the residual uric acid. Arginine catabolism was unaffected by seleniuum depriviation. The labelling pattern obtained in acetate after incubation of C. histolyticum with [1-14C]- or [2-14C]glycine strongly indicated the metabolism of glycine via the glycine reductase pathway.  相似文献   

8.
Zinc deficiency caused an accumulation of 14C into malic acid, sugar phosphates, sugar nucleotides, glucose, fructose, phosphoenolpyruvate, glycine and alanine, whereas the 14C labelling in sucrose decreased. The activity of sucrose synthetase (EC 2.4.1.13) was unaffected up to the 15th day and thereafter it declined. Severe Zn deficiency reduced the biosynthesis of total protein and sucrose synthetase by 50 and 20%, respectively.  相似文献   

9.
The functioning of the biosynthetic pathways of the amino acids alanine, glycine, aspartic acid, glutamic acid and tyrosine, and of nucleosides in the photosynthetic bacterium Chlorobium thiosulfatophilum during heterotrophic growth on 13CO2 and unlabelled acetate was investigated using 13C-NMR as the method for determination of the labelling patterns of the separated substances. On the basis of the analysis of the multiplet structure of the spectra of the tightly-coupled systems, the conclusion was drawn that the Calvin cycle does not function in the experimental conditions used. The labelling pattern of the glutamic acid indicated that about 30% of the amino acid molecules were synthesized through the reactions of the reductive carboxylic acid cycle, the remaining 70% being derived from oxaloacetate and exogenous acetate through the reactions of the Krebs cycle. Labelling patterns of the nucleosides were in agreement with their known biosynthetic pathways.  相似文献   

10.
3H-glycine was applied to the cat cerebellar cortex under resting conditions and during inferior olive stimulation which activated the climbing fiber system on a restricted area. Electric recording was made. The autoradiograms showed, that under resting condition labelled glycine was incorporated mainly in granule, Golgi and basket cells and only a few Purkinje and stellate cells were active. Also cerebellar glomeruli remained without labelling. On climbing fiber stimulation Purkinje cells became activated singly and grouped, also Golgi and stellate cells increased in number. Granule cells were totally inhibited. 3H-glycine, when applied to the rat hippocampus, the dentate gyrus, CA1 and CA4 fields showed labelling at low frequency stimulation. When 400 Hz high frequency stimulation periods were interposed, long-term potentiation ensued. The overall labelling of each hippocampal region was intensified significantly, indicating that glycine incorporation may be a sign not only of excitation but also of long-term potentiation. 3H-glycine was applied to frog spinal cord during rest and dorsal root stimulation. Interneurons and motor neurons excited by the afferent fibers showed intensive glycine uptake. It is concluded that the glycine labelling method is suitable for detecting neural excitation in the structures dealt with in this paper.  相似文献   

11.
Two roosters of Single Comb White Leghorn breed were fed on a formula feed containing 2-14C glycine for 16~17 days. The animals were killed and the specific activities of glycine in the tissue proteins and the purine ring of the excreted uric acid were measured. The amount of synthesized glycine in the rooster was calculated by the dilution method based on the specific activities of glycine in the liver protein and the absorbed one. The rooster absorbed about 1 g of glycine and synthesized about 10 g of glycine per day. Quantitative aspect of glycine metabolism in the rooster was discussed.  相似文献   

12.
Using photoautotrophic cells ofArachis hypogaea (L.) growing at ambient CO2, it was shown that exogenous sucrose supplied to the liquid medium reduced14CO2 fixation (supplied as NaH14CO3). This was mostly due to a reduced labelling in P-esters, and to a lesser extent, in the serine/glycine moiety. However, radioactivity in the neutral sugar fraction was increased upon supplement of exogenous sucrose. The reduced labelling of P-esters and serine/glycine agrees with a lower concentration and specific activity of Rubisco in the sucrose supplied treatments as compared to the control. Following a transfer into a sugar free nutrient medium the concentration and activity of Rubisco is increased. The concentration of PEPCase was not influenced by sucrose application, although its specific activity was increased.At elevated CO2 concentration (2.34% v/v) the Rubisco concentration and specific activity was at the same level as in the control (0.03% v/v CO2). However, the concentration and the specific activity of PEPCase was increased and dry weight increase was about 8–9-fold higher than at ambient CO2.  相似文献   

13.
The metabolism of [3H]formate has been examined in etiolated and greening leaves of barley (Hordeum vulgare), dwarf bean (Phaseolus vulgarls), broad bean (Vicia faba) and corn (Zea mays). Tritium was extensively incorporated by primary leaves incubated for 20-min periods in light or dark. The organic acids and free amino acids were the principal products of formate metabolism but these and other products were more heavily labelled in green tissues. Time course experiments with barley leaves revealed a rapid labelling of serine, accompanied by increasing amounts of 3H in glycine and aspartate as the feeding period was extended. These amino acid products were formed throughout a 4-day greening period with an approximate doubling in total incorporation being due to large accumulations of tritiated glycine and aspartate. The involvement of tetrahydrofolate-dependent reactions in formate metabolism was indicated by inhibition of [14C] and [3H]formate incorporation by the folate antagonist, aminopterin. Labelling of glycine and serine was also strongly inhibited (up to 90%) when the leaves were incubated with increasing concentrations of isonicotinylhydrazide.  相似文献   

14.
1. d-[2-(14)C]Glucose, [2-(14)C]acetate, hydroxy[3-(14)C]pyruvate, [3-(14)C]pyruvate and [U-(14)C]glycine were incorporated by surviving scrapings of sheep colonic mucosal tissue into glycoprotein. 2. d-[2-(14)C]Glucose, [2-(14)C]acetate, incorporated hydroxy-[3-(14)C]pyruvate and [3-(14)C]pyruvate resulted in labelling of each of the monosaccharide residues of the glycoprotein, namely N-glycollylneuraminic acid, N-acetylneuraminic acid, galactose, fucose, glucosamine and galactosamine. [U-(14)C]Glycine was incorporated as glycyl and seryl residues of the glycoprotein. 3. Despite N-glycollylneuraminic acid being quantitatively the predominant sialic acid (N-glycollylneuraminic acid and N-acetylneuraminic acid were 8.5 and 5.2% by weight of the glycoprotein respectively) the corresponding ratio of the radio-active labelling from d-[2-(14)C]glucose in N-glycollylneuraminic acid to that in N-acetylneuraminic acid was 1.00:7.27 (expressed as percentages of the total radioactivity in the glycoprotein). Neutral sugar, hexosamine and N-acetylneuraminic acid residues of the mucoprotein were each labelled to a similar extent. 4. Similarly, the ratio of the radioactivity in N-glycollylneuraminic acid to that in N-acetylneuraminic acid in the mucoprotein from tissue incubations with [2-(14)C]-acetate was 1.0:4.0. 5. Both [2-(14)C]acetate and [2-(14)C]glucose with whole tissue led to labelling of the N-glycollyl substituent and of the main nonose skeleton of the N-glycollylneuraminic acid. In whole-tissue incubations, [3-(14)C]pyruvate was also a precursor of radioactive N-glycollylneuraminic acid. 6. Hydroxy[3-(14)C]-pyruvate and [U-(14)C]glycine caused labelling of the carbohydrate and peptide residues of the glycoprotein, but did not give rise to labelling in the N-glycollylneuraminic acid residues. 7. With a wide variety of possible N-glycollyl precursors (fructose 6-phosphate, hydroxypyruvate, glycollate and chemically synthesized glycollyl-CoA) biosynthesis of N-glycollylglucosamine was not observed in cell-free preparations.  相似文献   

15.
Glycine hydroxamate is a competitive inhibitor of glycine decarboxylation and serine formation (referred to as glycine decarboxylase activity) in particulate preparations obtained from both callus and leaf tissue of tobacco. In preparations from tobacco callus tissues, the Ki for glycine hydroxamate was 0.24 ± 0.03 millimolar and the Km for glycine was 5.0 ± 0.5 millimolar. The inhibitor was chemically stable during assays of glycine decarboxylase activity, but reacted strongly when incubated with glyoxylate. Glycine hydroxamate blocked the conversion of glycine to serine and CO2in vivo when callus tissue incorporated and metabolized [1-14C]glycine, [1-14C]glycolate, or [1-14C]glyoxylate. The hydroxamate had no effect on glyoxylate aminotransferase activities in vivo, and the nonenzymic reaction between glycine hydroxamate and glyoxylate did not affect the flow of carbon in the glycolate pathway in vivo. Glycine hydroxamate is the first known reversible inhibitor of the photorespiratory conversion of glycine to serine and CO2.  相似文献   

16.
Rat pancreatic islet homogenates catalyze the incorporation of [2,5–3-H]histamine into endogenous proteins recovered in both the stacking gel and a Mr 84000 protein separated by polyacrylamide electrophoresis. The labelling of these proteins represents a Ca2+-dependent process inhibited by glycine methylester, but not sarcosine methylester, and enhanced after preincubation of the islets at a high concentration of D-glucose. Although transglutaminase activity is found in both soluble and particlate subcelluler fractions, the endogenous transglutaminase substrates were located mainly in paarticulate, possibly membrane-associated, material.  相似文献   

17.
The effects of elevated CO2 (eCO2) on the relative uptake of inorganic and organic nitrogen (N) are unclear. The uptake of different N sources by pak choi (Brassica chinensis L.) seedlings supplied with a mixture of nitrate, glycine and ammonium was studied using 15N‐labelling under ambient CO2 (aCO2) (350 ppm) or eCO2 (650 ppm) conditions. 15N‐labelled short‐term uptake and 15N‐gas chromatography mass spectrometry (GC–MS) were applied to measure the effects of eCO2 on glycine uptake and metabolism. Elevated CO2 increased the shoot biomass by 36% over 15 days, but had little effect on root growth. Over the same period, the N concentrations of shoots and roots were decreased by 30 and 2%, respectively. Elevated CO2 enhanced the uptake and N contribution of glycine, which accounted for 38–44% and 21–40% of total N uptake in roots and shoots, respectively, while the uptake of nitrate and ammonium was reduced. The increased glycine uptake resulted from the enhanced active uptake and enhanced metabolism in the roots. We conclude that eCO2 may increase the uptake and contribution of organic N forms to total plant N nutrition. Our findings provide new insights into plant N regulation under eCO2 conditions.  相似文献   

18.
19.
Uterine cervical tissue was obtained from pregnant women undergoing abortion of caesarean section. The tissue was incubated in Krebs-Ringer bicarbonate buffer containing prostaglandin (PG) E2 and radioactive precursors for collagen (3H proline) and proteoglycans (3H glucosamine). After incubation the tissue-bond radioactivity was determined and related to the tissue dry weight.The effect of PGE2 on te net tissue radiolabelling varied with the gestational age and with the cervical status at operation. In early 1st trimester PGE2 increased the labelling with 3H proline but decreased that with 3H glucosamine. From the 12th week of gestation until term pregnancy conditions were reversed, i.e. the incorporation of 3H proline was reduced and that of 3H glucosamine was augmented following treatment with PGE2. After start of labour and rupture of the membrane, however, PGE2 diminished the labelling with 3H proline as well as 3H glucosamine. It is suggested that PGE2 is a modulator of biochemical events which underlie cervical ripening.  相似文献   

20.
Abstract— The effects of supramaximal electrical stimulation on the metabolism of amino acids and proteins in incubated superior cervical ganglia of the rat were studied by the use of a gas-liquid chromatographic (GLC) assay procedure. Stimulation at 5 Hz for 2 h caused an apparent increase in tissue levels of free amino acids, with alanine, serine, glycine, valine, threonine, isoleucine and aspartate (+ asparagine) most noticeably affected. The amino acid composition (partial) of the TCA-insoluble proteins of resting and stimulated ganglia was approximately the same after 60 min of incubation, but there was less TCA-insoluble protein in the stimulated ganglia. The addition of amino acids (at plasma concentrations) to the standard media had no apparent affect on the amino acid composition of this protein fraction. Stimulation for 0 , 5 h initially increased the efflux of alanine, valine, proline and ornithine into the incubation media but prolonged stimulation (for 4–0 h) decreased the efflux of alanine, serine, glycine and isoleucine and increased the efflux of lysine into the incubation media. The leakage of amino acids from the ganglia appeared to be a sodium-dependent process. The incorporation of 14C from [U-14C]glucose into glutamate (+ glutamine) and aspartate (+ asparagine) was greater in stimulated than in resting ganglia. However, the conversion of glutamate carbons from [U-14C]l -glutamate into aspartate was not affected by stimulation. Incorporation of 14C from [U-14C]glucose into glycine and serine was apparently not affected by stimulation during the 60 min of incubation. However, serine was the only amino acid which exhibited a higher specific radioactivity in stimulated ganglia than in resting ganglia incubated for 4 h in standard media. Lithium ions had the apparent specific effect of increasing the labelling with 14C from [U-14C]glucose into ornithine, and increasing the efflux and overall metabolism of serine in the ganglia. Incorporation of 14C from [U-14C]glucose into proteins was lower in the stimulated than in the resting ganglia if compensation was made for the higher radioactivity available in the total free amino acid pool of the stimulated ganglia. The rate of 14C incorporation from [U-14C]glutamate into the TCA-insoluble proteins of resting ganglia was greater when no other amino acids at concentrations approximating plasma levels were added to the bathing media; this rate was lower in stimulated than in resting ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号