首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutaminase of Micrococcus luteus K-3 (intact glutaminase; 48kDa) is digested to a C-terminally truncated fragment (glutaminase fragment; 42kDa) that shows higher salt tolerance than that of the intact glutaminase. The crystal structure of the glutaminase fragment was determined at 2.4A resolution using multiple-wavelength anomalous dispersion (MAD). The glutaminase fragment is composed of N-terminal and C-terminal domains, and a putative catalytic serine-lysine dyad (S64 and K67) is located in a cleft of the N-terminal domain. Mutations of the S64 or K67 residues abolished the enzyme activity. The N-terminal domain has abundant glutamic acid residues on its surface, which may explain its salt-tolerant mechanism. A diffraction analysis of the intact glutaminase crystals (a twinning fraction of 0.43) located the glutaminase fragment in the unit cell but failed to turn up clear densities for the missing C-terminal portion of the molecule.  相似文献   

2.
Proteolytic digestion and indirect immunostaining were used to compare the platelet and sarcoplasmic reticulum Ca2+-ATPase proteins. When the platelet and sarcoplasmic reticulum Ca2+-ATPase proteins were digested in the native state with trypsin, the platelet Ca2+-ATPase, which had an apparent undigested molecular mass of 103 kDa, yielded 78-kDa and 25-kDa fragments. Calcium transport activity depended on the integrity of the 103-kDa protein, while the digested protein had residual ATPase activity. Tryptic digestion of the sarcoplasmic reticulum pump protein, which also had an undigested molecular mass of 103 kDa, yielded products with apparent molecular masses of 55 kDa, 36 kDa, and 26 kDa. Distinct patterns were also observed when the platelet and sarcoplasmic reticulum calcium pump proteins were digested with chymotrypsin and Staphylococcus aureus protease in the presence of sodium dodecyl sulfate. Chymotrypsin digestion of the platelet protein resulted in the appearance of products with apparent molecular masses of 70 kDa, 39 kDa, and 31 kDa, while a similar digestion of the sarcoplasmic reticulum calcium pump protein yielded 54-kDa, 52.5-kDa, 46-kDa, 41-kDa, and 36-kDa fragments. Exposure of the sarcoplasmic reticulum and platelet Ca2+-ATPase proteins to S. aureus protease also yielded dissimilar fragmentation patterns. These results indicate that the Ca2+-ATPases from platelets and sarcoplasmic reticulum are distinct proteins.  相似文献   

3.
α-Amylase from Saccharomycopsis fibuligera R-64 was successfully purified by butyl Toyopearl hydrophobic interaction chromatography, followed by Sephadex G-25 size exclusion and DEAE Toyopearl anion exchange chromatography. The enzyme has a molecular mass of 54 kDa, as judged by SDS PAGE analysis. Upon tryptic digestion, two major fragments with relative molecular masses of 39 kDa and 10 kDa, which resemble the A/B and C-terminal domains in the homologous Taka-amylase, were obtained and were successfully separated with the Sephadex G-50 size exclusion column. The 39-kDa fragment demonstrated a similar amylolytic activity to that of the undigested enzyme. However, it was found that the K m value of the 39-kDa fragment was about two-times higher than that of the undigested enzyme. Moreover, thermostability studies showed a lower half-life time for the 39-kDa fragment. These findings suggest that the 39-kDa fragment is the catalytic domain, while the 10-kDa fragment is the C-terminal one, which plays a role in thermostability and starch binding. Although the undigested enzyme is able to act on raw starches at room temperature, with maize starches as the best substrate, neither the undigested enzyme nor the fragments adsorb the tested raw starches. These results propose Saccharomycopsis fibuligera α-amylase as a raw starch-digesting but not adsorbing amylase, with a similar domain organization to that of Taka-amylase A.  相似文献   

4.
Yang J  Huang X  Tian B  Wang M  Niu Q  Zhang K 《Biotechnology letters》2005,27(15):1123-1128
Lecanicillium psalliotae produced an extracellular protease (Ver112) which was purified to apparent homogeneity giving a single band on SDS-PAGE with a molecular mass of 32 kDa. The optimum activity of Ver112 was at pH 10 and 70 °C (over 5 min). The purified protease degraded a broad range of substrates including casein, gelatin, and nematode cuticle with 81% of a nematode (Panagrellus redivivus) being degraded after treating with Ver112 for 12 h. The protease was highly sensitive to PMSF (1 mM) indicating it to be a serine protease. The N-terminal amino acid residues of Ver112 shared a high degree of similarity with other cuticle-degrading proteases from nematophagous fungi which suggests a role in nematode infection.  相似文献   

5.
The calmodulin-binding domain on microtubule-associated protein 2   总被引:2,自引:0,他引:2  
Microtubule-associated protein 2 (MAP2) binds calmodulin with a stoichiometry approaching 1-1.5 mol of calmodulin/mol of MAP2 in the presence of calcium ion. The calmodulin-binding domain(s) of MAP2 were probed by cross-linking 125I-calmodulin with partially digested MAP2, by limited digestion of the preformed 125I-calmodulin-MAP2 adduct, and by cross-linking 125I-calmodulin with the projection- and assembly-promoting portions of MAP2. Cross-linking 125I-calmodulin with partially digested MAP2 resulted in radioactive adducts of approximately 300, approximately 235, approximately 205, approximately 58, and approximately 40 kDa. The radioactive adducts with smaller molecular mass became prominent with increasing time of digestion concomitant with loss of those with higher molecular size. Limited chymotryptic digestion of preformed 125I-calmodulin-MAP2 adducts also produced a approximately 58-kDa radioactive band followed later by a approximately 40-kDa band. Brief chymotryptic digestion and subsequent centrifugation of microtubules preformed with pure tubulin and MAP2 permitted separation of microtubule-bound MAP2 fragments (molecular mass = approximately 215, approximately 180, and approximately 36 kDa) from unbound fragments (molecular mass = approximately 240, approximately 180, and approximately 140 kDa). 125I-Calmodulin cross-linked only with the microtubule-bound MAP2 fragments (forming mainly the approximately 58-kDa adduct) and not with unbound MAP2 fragments. Since the apparent molecular size of calmodulin is approximately 21 kDa on these sodium dodecyl sulfate-polyacrylamide gels, the results indicate that partial digestion of MAP2 by chymotrypsin produces a approximately 37-kDa fragment which can be further degraded to a approximately 20-kDa fragment. The approximately 37-kDa fragment that is labeled corresponds to the previously identified assembly-promoting fragment that attaches to the microtubule.  相似文献   

6.
H J Goren  M F White  C R Kahn 《Biochemistry》1987,26(8):2374-2382
We have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the beta-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 22 degrees C with low concentrations (5-10 micrograms/mL, pH 7.4) of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the beta-subunit was carried out before and after digestion, and the [32P]phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. Mild trypsin digestion reduced the apparent molecular mass of the beta-subunit from 95 to 85 kDa, and then to 70 kDa. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the beta-subunit (alpha Pep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the [32P]phosphate originally found in the beta-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. Treatment of the intact receptor with staphylococcal V8 protease also converted the beta-subunit to an 85-kDa fragment that did not bind to alpha Pep-1, contained about 50% of the initial radioactivity, and lacked pY2 and pY3. Elastase rapidly degraded the receptor to inactive fragments between 37 and 50 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
An extracellular alkaline serine protease has been purified from a strain of Aspergillus clavatus, to apparent homogeneity, by ammonium sulfate precipitation and chromatography on Sephadex G-75. Its molar mass, estimated by SDS-PAGE, was 35 kDa. Maximum protease activity was observed at pH 9.5 and 40°C. The enzyme was active between pH 6.0 and 11.0 and was found to be unstable up to 50°C. Calcium at 5 mM increased its thermal stability. The protease was strongly inhibited by PMSF and chymostatin as well as by SDS, Tween 80 and carbonate ion. Substrate specificity was observed with N-p-Tos-Gly-Pro-Arg-p-nitroanilide and N-Suc-Ala-Ala-Ala-p-nitroanilide being active substates. Parts of the amino acid sequence were up to 81% homologous with those of several fungal alkaline serine proteases.  相似文献   

8.
An extracellular thermostable alkaline protease isolated from Bacillus laterosporus-AK1 was purified by sephadex G-200 gel filtration and DEAE cellulose ion-exchange chromatography techniques. The purified protease showed a maximum relative activity of 100% on casein substrate and appeared as a single band on SDS-PAGE with the molecular mass of 86.29 kDa. The protease was purified to 11.1-folds with a yield of 34.3%. Gelatin zymogram also revealed a clear hydrolytic zone due to proteolytic activity, which corresponded to the band obtained with SDS-PAGE. The protease enzyme had on optimum pH of 9.0 and exhibited highest activity at 75°C. The enzyme activity was highly susceptible to the specific serine protease inhibitor PMSF, suggesting the presence of serine residues at the active sites. Enzyme activity strongly enhanced by the metal ions Ca2+ and Mg2+ and this enzyme compatible with aril detergent stability retained 75% even 1-h incubation. The purified protease remove bloodstain completely when used with Wheel detergent.  相似文献   

9.
Marine Micrococcus luteus K-3 constitutively produced two salt-tolerant glutaminases, designated glutaminase I and II. Glutaminase I was homogeneously purified about approximately, 1620-fold with a 4% yield, and was a dimer with a molecular weight of about 86,000. Glutaminase II was partially purified about 190-fold with a 0.04% yield. The molecular weight of glutaminase II was also 86,000. Maximum activity of glutaminase I was observed at pH 8.0, 50°C and 8–16% NaCl. The optimal pH and temperature of glutaminase II were 8.5 and 50°C. The activity of glutaminase II was not affected by the presence of 8 to 16% NaCl. The presence of 10% NaCl enhanced thermal stability of glutaminase I. Both enzymes catalyzed the hydrolysis of l-glutamine, but not its hydroxylaminolysis. The Km values for l-glutamine were 4.4 (glutaminase I) and 6.5 mM (glutaminase II). Neither of the glutaminases were activated by the addition of 2 mM phosphate or 2 mM sulfate. p-Chloromercuribenzoate (0.01 mM) significantly inhibited glutaminase I, but not glutaminase II. The conserved sequences LA**V and V**GGT*A were observed in the N-terminal amino acid sequences of glutaminase I, similar to that for other glutaminases.  相似文献   

10.
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when 125I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.  相似文献   

11.
From the culture filtrate of the fungus Dactylellina varietas (syn. Dactylella varietas), an extracellular protease (designed Dv1) was purified by cation exchange and hydrophobic interaction chromatography. The purified protease showed a molecular mass of approximately 30 kDa and displayed an optimal activity at pH 8 and 60.5°C (more than 20 min). This protease could degrade a broad range of substrates including casein, gelatin, BSA (bovine serum albumin), and nematode cuticle. However, its proteolytic activity was highly sensitive to the serine protease inhibitor Phenylmethylphonylfuoride (1 mM), indicating that it belongs to the serine-type peptidase group. This protease could immobilize the free-living nematodes Panagrellus redivivus and Caenorhabditis elegans and hydrolyze the purified cuticle of P. redivivus, suggesting it may play a role in infection against nematodes. The encoding gene of Dv1 and its promoter sequence were cloned using degenerate primers and the DNA walking technology. Its open-reading frame contains 1,224 base pairs and without any intron. The deduced amino-acid sequence shared low identity to serine proteases from other nematode-trapping fungi. Our report identified a novel pathogenic protease from the nematode-trapping fungus D. varietas, and the three-dimensional structure of this protease was predicted using the Swiss-Prot method. Jinkui Yang and Lianming Liang contributed equally to this work.  相似文献   

12.
Barley α-amylase was purified by ammonium sulfate fraction, ion-exchange, ultrafiltration, and gel filtration to homogeneity. The purified enzyme was partially digested with trypsin, and the reaction mixture was applied to a cyclohepta-amylose epoxy Sepharose 6B column. Bound fragments were eluted by free cyclohepta-amylose, lyophilized, and separated on Tricine gels. Four fragments were shown to interact with β-cyclodextrin. The fragment that could be identified on the gel with the lowest molecular weight (11 kDa) was electroblotted onto PVDF membrane for sequencing. The N-terminal sequence of this fragment was determined with the N-terminal amino acid corresponding to Ala283 in the whole protein. The trypsin cleavage was at Lys282/Ala283 and the C-terminal cleavage occurred at Lys354/Ile355 to give a fragment size of 11 kDa as estimated by SDS-PAGE. The fragment would be located at the C-terminal region, forming a majority of the antiparallel β-sheets in domain C and the α7-and α8-helices of the (α/β)8 domain.  相似文献   

13.
Wang QF  Miao JL  Hou YH  Ding Y  Wang GD  Li GY 《Biotechnology letters》2005,27(16):1195-1198
Colwellia sp. NJ341, isolated from Antarctic sea ice, secreted a cold-active serine protease. The purified protease had an apparent Mr of 60 kDa by SDS-PAGE and MALDI-TOF MS. It was active from pH 5–12 with maximum activity at 35 °C (assayed over 10 min). Activity at 0 °C was nearly 30% of the maximum activity. It was completely inhibited by phenylmethylsulfonyl fluoride.  相似文献   

14.
The decapacitating fraction of human seminal plasma, which strongly interacts with concanavalin A, is constituted by high mannose-type N-linked glycoproteins, most of them of less than 44 kDa. Each component with apparent molecular mass of 30, 18, and 17 kDa respectively, as judged by SDS-PAGE, was submitted to "in gel" digestion with trypsin followed by HPLC separation of the peptides and sequencing. They were characterized at microscale as gp17, an aspartyl protease that possibly contributes to liquefaction of the seminal plasma coagulum, two fragments of human acid phosphatase (17 and 30 kDa, respectively), and a 17-kDa fragment of carboxypeptidase E. Neither the fragments of prostatic acid phosphatase nor that of carboxypeptidase E had been described before in the human seminal fluid. Very weak bands, of apparent molecular masses 44 and 52 kDa, are consistent with presence of small amounts of parent compounds, prostatic acid phosphatase and carboxypeptidase E.  相似文献   

15.
Wang B  Wu W  Liu X 《Mycopathologia》2007,163(3):169-176
Serine protease plays an important role in fungal infection to invertebrate hosts. An extracellular protease (Hnsp) was detected in liquid culture of Hirsutella rhossiliensis OWVT-1 with nematodes (Panagrellus redivivus) as the unique nitrogen source and purified to homogeneity by ammonium sulphate precipitation, anion exchange chromatography and gel filtration. Its molecular mass was about 32 kDa, and the optimal reaction pH value and temperature were pH 7 and 40°C, respectively. The Hnsp activity was stable at pH 6–8 and decreased radically at 50°C for 10 min. Hnsp was highly sensitive to inhibitor of PMSF and well decomposed the substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, suggesting that it belonged to the chymotrypsin/subtilisin of serine proteases. The N-terminal amino acid sequence of Hnsp was SVTDQQGADCGLARISHRE, which showed high homology with other serine proteases from nematophagous fungi. Ability to kill nematode and degrade its cuticle in vitro indicated that Hnsp could be involved in the infection of nematode.  相似文献   

16.

Fibrinolytic proteases are enzymes that degrade fibrin. They provide a promising alternative to existing drugs for thrombolytic therapy. A protease isolated from the filamentous fungus Mucor subtilissimus UCP 1262 was purified in three steps by ammonium sulfate fractionation, ion exchange, and molecular exclusion chromatographies, and characterized biochemically and structurally. The purified protease exhibited a molecular mass of 20 kDa, an apparent isoelectric point of 4.94 and a secondary structure composed mainly of α-helices. Selectivity for N-succinyl-Ala–Ala–Pro–Phe-p-nitroanilide as substrate suggests that this enzyme is a chymotrypsin-like serine protease, whose activity was enhanced by the addition of Cu2+, Mg2+, and Fe2+. The enzyme showed a fibrinolytic activity of 22.53 U/mL at 40 °C and its contact with polyethylene glycol did not lead to any significant alteration of its secondary structure. This protein represents an important example of a novel fibrinolytic enzyme with potential use in the treatment of thromboembolic disorders such as strokes, pulmonary emboli, and deep vein thrombosis.

  相似文献   

17.
Gene fragments encoding serine proteases expressed in adult buffalo fly (Haematobia irritans exigua) were amplified from cDNA using generic oligonucleotide PCR primers, based on conserved residues surrounding the active-site His and Ser amino acids found in all serine proteases. The PCR product consisted of a broad band extending from about 450 by to 520 bp, which suggested that the PCR product actually consisted of numerous DNA fragments of slightly variable sizes. Seventeen independent clones of these fragments, each with an insert of approximately 480 bp, were digested with HaeIII. Comparison of restriction fragment patterns indicated that 13 of these clones harboured different PCR products. This was confirmed by DNA sequence analysis of 9 clones. Each of the sequenced clones contained an open reading frame which included structurally conserved regions characteristic of the serine protease superfamily. This study reveals the expression of a large and highly variable repertoire of serine proteases in adult buffalo fly. Importantly, these data also demonstrate the utility of such an approach in obtaining DNA probes for use in further investigations of gene family organization and expression, as well as providing recombinant antigens in the form of fusion proteins which may be used as candidates for vaccine production.  相似文献   

18.
The constitutive expression of human cathelicidin LL-37 antimicrobial peptide was achieved using the methylotrophic yeast, Pichia pastoris. An LL-37 cDNA clone was amplified by PCR using human fetal cDNA library as template. The 111 bp fragment encoding mature LL-37 gene was subcloned into pGAPZ-E, an episomal form of the pGAPZB vector incorporating PARS1. It was then transformed into the P. pastoris X-33 strain for intracellular expression. A small peptide with a molecular mass of about 5 kDa was detected by 17% peptide-PAGE analysis. The recombinant LL-37 peptide was purified from the gel and its amino acid sequence was determined by LC-ESI-MS/MS analysis. The initiating amino acid, methionine, was still attached to the N-terminal region of recombinant LL-37. LL-37 crude extract from P. pastoris showed an antimicrobial activity against Micrococcus luteus as the test strain. The successful expression of human LL-37 indicates that the system may be applicable to the expression of other human defensins without resorting to fusion protein constructions.  相似文献   

19.
This paper extends our recent report that renal Na+,K(+)-ATPase is digested by trypsin in the absence of Ca2+ and presence of Rb+ ions to a stable 19-kDa fragment and smaller membrane-embedded fragments of the alpha chain and essentially intact beta chain. These are referred to as "19-kDa membranes." Occlusion of both Rb+ (K+) or Na+ ions is preserved, but ATP-dependent functions are lost (Karlish, S. J. D., Goldshleger, R., and Stein, W. D. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4566-4570). We now show that extensive digestion with nonselective fungal proteases (Pronase and proteinase K) alone, in combination, or after tryptic digestion can remove up to 70% of membrane protein without destroying Rb+ occlusion. In the most heavily digested membranes, the 19-kDa fragment or a slightly shorter 18.5-kDa fragment and smaller fragments of the alpha chain remain, whereas the beta chain is largely digested, leaving smaller membrane-embedded fragments (13-15 kDa). For either trypsin or Pronase digestion, preservation of Rb+ occlusion and the specific fragmentation pattern is observed only in the absence of divalent metal ions (Mg2+ or Ca2+) and presence of either Rb+ or Na+ or congener ions. Tryptic digestion at pH 7.0 can split the beta chain into two fragments of approximately 50 and 16 kDa joined by an S-S bridge. The 16-kDa fragment is protected against further digestion by the presence of Rb+ ions, but probably is not directly involved in occluding cations. Tryptic 19-kDa membranes show a clear and reproducible fragmentation pattern in which all predicted membrane segments are identifiable. Families of fragments from 19-kDa membranes, including seven peptides of 7.6-11.7 kDa, have been separated by size-exclusion high performance liquid chromatography, concentrated, and resolved on 16.5% Tricine gels. N-terminal sequences of the different fragments have been determined after transfer to polyvinylidene difluoride paper. The most interesting findings are as follows. (a) Whereas the 19-kDa tryptic fragment begins at Asn831 as reported previously, the 18.5-kDa Pronase fragment begins at Thr834. (b) Fragments in tryptic 19-kDa membranes of 7.6-11.7 kDa begin at Asp68, Ile263, and Gln737, respectively. These include all putative transmembrane segments other than those in the 19-kDa fragment. (c) A Pronase fragment of 7.8 kDa begins at Thr834, i.e. apparently the 19-kDa fragment has been partially cut, without loss of Rb+ occlusion. (d) Tryptic 16- and approximately 50-kDa fragments of the beta chain begin at Ala5 and Gly143, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Membrane proteins of purified tonoplast vesicles from leaves of Kalanchoë daigremontiana Hamet et Perrier were solubilized by the non-ionic detergent Triton X-114 and subsequently separated by MonoQ® anion-exchange chromatography. Special attention was given to the range of molecular masses around 30 kDa comprising the central stalk subunit peptides of the H+-transporting V-ATPase. Three polypeptides of apparent molecular masses of 32, 33 and 34 kDa were separated. Proteolytic fragments were obtained by trypsin digestion. Analysis by matrix-assisted laser desorption ionization (MALDI) mass spectrometry of tryptic fragments of the 32 and 33 kDa peptides and protein data- bank comparisons showed that they are two different forms of subunit E. N-terminal amino acid sequencing of tryptic fragments of the 34 kDa peptide showed that it is subunit D. This work provides for the first time unequivocal molecular evidence that the central stalk of the V-ATPase of the obligate CAM plant K. daigremontiana includes subunit D and different forms of subunit E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号