首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Functional analysis of the mammalian genome is an enormous challenge for biomedical scientists. To facilitate this endeavour, the European Conditional Mouse Mutagenesis Program (EUCOMM) aims at generating up to 12 000 mutations by gene trapping and up to 8000 mutations by gene targeting in mouse embryonic stem (ES) cells. These mutations can be rendered into conditional alleles, allowing Cre recombinase-mediated disruption of gene function in a time- and tissue-specific manner. Furthermore, the EUCOMM program will generate up to 320 mouse lines from the EUCOMM resource and up to 20 new Cre driver mouse lines. The EUCOMM resource of vectors, mutant ES cell lines and mutant mice will be openly available to the scientific community. EUCOMM will be one of the cornerstones of an international effort to create a global mouse mutant resource.  相似文献   

2.
Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available mouse mutant lines but predominantly of the embryonic stem (ES) cells resources derived from the European Conditional Mouse Mutagenesis programme (EUCOMM) and the Knockout Mouse Project (KOMP) to produce and study 799 mouse models that were systematically analysed with a comprehensive set of physiological and behavioural paradigms. They captured more than 400 variables and an additional panel of metadata describing the conditions of the tests. All the data are now available through EuroPhenome database (www.europhenome.org) and the WTSI mouse portal (http://www.sanger.ac.uk/mouseportal/), and the corresponding mouse lines are available through the European Mouse Mutant Archive (EMMA), the International Knockout Mouse Consortium (IKMC), or the Knockout Mouse Project (KOMP) Repository. Overall conclusions from both studies converged, with at least one phenotype scored in at least 80?% of the mutant lines. In addition, 57?% of the lines were viable, 13?% subviable, 30?% embryonic lethal, and 7?% displayed fertility impairments. These efforts provide an important underpinning for a future global programme that will undertake the complete functional annotation of the mammalian genome in the mouse model.  相似文献   

3.
The Mouse Phenome Project   总被引:9,自引:0,他引:9  
Bogue MA  Grubb SC 《Genetica》2004,122(1):71-74
The laboratory mouse is the organism of choice for many studies in biology and medicine. Reliable phenotypic data are essential for the full utility of genotypic information emerging from efforts to sequence human and mouse genomes. The Mouse Phenome Project has been organized to help accomplish this task by establishing a collection of baseline phenotypic data on commonly used and genetically diverse inbred mouse strains and making this information publicly available through a web-accessible database. The Mouse Phenome Database (MPD) is being developed to manage these data and to provide researchers with tools for exploring both raw phenotypic data and comparative summary analyses. The MPD serves as a repository for detailed protocols and raw data. This resource enables investigators to identify appropriate strains for (1) physiological testing, (2) drug discovery, (3) toxicology studies, (4) mutagenesis, (5) modeling human diseases, (6) QTL analyses and identification of new genes and (7) unraveling the influence of environment on genotype.  相似文献   

4.
The Mouse Tumor Biology Database (MTB) is a Web-based resource that provides access to information on tumor frequency and latency, genetics and pathology in genetically defined mice (transgenics, targeted mutations and inbred strains). MTB is designed to serve as an information resource for cancer genetics researchers who use the laboratory mouse as a model system for understanding human disease processes. Data in MTB are obtained from the primary scientific literature and direct submissions by the research community. MTB is accessible from the Mouse Genome Informatics Web site (http://www. informatics.jax.org). User support is available for MTB via Email at mgi-help@informatics.jax.org  相似文献   

5.
Recent technological advances have opened the door for the fast and cost-effective generation of genetically engineered mouse models (GEMMs) to study cancer. We describe here a conceptually novel approach for the generation of chimeric GEMMs based on the controlled introduction of various genetic elements in embryonic stem cells (ESCs) that are derived from existing mouse strains with a predisposition for cancer. The isolation of GEMM-derived ESC lines is greatly facilitated by the availability of the newly defined culture media containing inhibitors that effectively preserve ESC pluripotency. The feasibility of the GEMM-ESC approach is discussed in light of current literature and placed into the context of existing models. This approach will allow for fast and flexible validation of candidate cancer genes and drug targets and will result in a repository of GEMM-ESC lines and corresponding vector collections that enable easy distribution and use of preclinical models to the wider scientific community.  相似文献   

6.
The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice.KEY WORDS: Histopathology, High-throughput phenotyping, Mouse, Pathology  相似文献   

7.
Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/ [2]).  相似文献   

8.
Ageing research and more generally the study of the functional basis of human diseases profit enormously from the large-scale approaches and resources in mouse functional genomics: systematic targeted mutation of the mouse genome, systemic phenotyping in mouse clinics, and the archiving and distribution of the mouse resources in public repositories. INFRAFRONTIER, the European research infrastructure for the development, systemic phenotyping, archiving and distribution of mammalian models, offers access to sustainable mouse resources for biomedical research. INFRAFRONTIER promotes the global sharing of high-quality resources and data and thus contributes to data reproducibility and animal welfare. INFRAFRONTIER puts great effort into international standardisation and quality control and into technology development to improve and expand experimental protocols, reduce the use of animals in research and increase the reproducibility of results. In concert with the research community and the International Mouse Phenotyping Consortium (IMPC), INFRAFRONTIER is currently developing new pilot platforms and services for the research on ageing and age-related diseases.  相似文献   

9.
10.
Mice provide an unlimited source of animal models to study mammalian gene function and human diseases. The powerful genetic modification toolbox existing for the mouse genome enables the creation of, literally, thousands of genetically modified mouse strains, carrying spontaneous or induced mutations, transgenes or knock-out/knock-in alleles which, in addition, can exist in hundreds of different genetic backgrounds. Such an immense diversity of individuals needs to be adequately annotated, to ensure that the most relevant information is kept associated with the name of each mouse line, and hence, the scientific community can correctly interpret and benefit from the reported animal model. Therefore, rules and guidelines for correctly naming genes, alleles and mouse strains are required. The Mouse Genome Informatics Database is the authoritative source of official names for mouse genes, alleles, and strains. Nomenclature follows the rules and guidelines established by the International Committee on Standardized Genetic Nomenclature for Mice. Herewith, both from the International Society for Transgenic Technologies (ISTT) and from the scientific journal Transgenic Research, we would like to encourage all our colleagues to adhere and follow adequately the standard nomenclature rules when describing mouse models. The entire scientific community using genetically modified mice in experiments will benefit.  相似文献   

11.
Research on genetically engineered mice provides insights into the etiology, therapy, and genetic basis of human diseases. An important variable that affects the results of mouse studies is the health status of the animals. Pathogen burdens may confound observations and obscure underlying mechanisms. Mouse resource centers frequently rederive infected mouse strains. We review our experience on the use of a well-established technique, embryo transfer to rederive infected mouse strains. The following mouse pathogens were eliminated by embryo transfer: Mouse Parvovirus, Mouse Hepatitis Virus, Mouse Rotavirus, Mouse Encephalomyelitis Virus, Mouse Adenovirus, Helicobacter species, endoparasites, and ectoparasites. We rederived transgenic mouse lines, gene-targeted mouse lines, and lines with spontaneous mutations. In the majority of strains, fertilized eggs for embryo transfer were obtained by mating superovulated egg donors with males of the desired genotype. A total of 309 embryo transfers were performed to rederive 96 mouse strains. The pregnancy rate was 76%; 1996 pups were born, of which 43% carried the desired genotype. We performed 44 additional embryo transfers to rederive 15 other strains. The pregnancy rate was lower (45%) and none of the 135 pups carried the desired genotype. Although we successfully eliminated the pathogens in all transfers, we were unable to obtain pups with the desired genotype in 15 of 111 mouse lines. Multiple factors affect the efficiency of rederivation by embryo transfer. They include the response to superovulation by embryo donors, the number and age of stud males, the yield of fertilized eggs, the number of embryo transfers, and genotyping.  相似文献   

12.
The primary goal of mouse mutagenesis programmes is to develop a fundamental research infrastructure for mammalian functional genomics and to produce human disease models. Many large-scale programmes have been ongoing since 1997; these culminated in the International Knockout Mouse Consortium (IKMC) in 2007 with the aim to establish knockout and conditional mouse strains for all mouse genes. This article traces the origins and rationale of these large-scale mouse mutagenesis programmes.  相似文献   

13.
14.
An improved cryopreservation method for a mouse embryonic stem cell line   总被引:2,自引:1,他引:1  
Embryonic stem (ES) cell lines including the C57BL/6 genetic background are central to projects such as the Knock-Out Mouse Project, North American Conditional Mouse Mutagenesis Program, and European Conditional Mouse Mutagenesis Program, which seek to create thousands of mutant mouse strains using ES cells for the production of human disease models in biomedical research. Crucial to the success of these programs is the ability to efficiently cryopreserve these mutant cell lines for storage and transport. Although the ability to successfully cryopreserve mouse ES cells is often assumed to be adequate, the percent post-thaw recovery of viable cells varies greatly among genetic backgrounds and individual cell lines within a genetic background. Therefore, there is a need to improve the efficiency and reduce the variability of current mouse ES cell cryopreservation methods. To address this need, we employed the principles of fundamental cryobiology to improve the cryopreservation protocol of a C57BL/6 mouse ES cell line by characterizing the membrane permeability characteristics and osmotic tolerance limits. These values were used to predict optimal cooling rates, warming rates, and type of cryoprotectant, which were then verified experimentally. The resulting protocol, generated through this hypothesis-driven approach, resulted in a 2-fold increase in percent post-thaw recovery of membrane-intact ES cells as compared to the standard freezing protocol, as measured by propidium iodide exclusion. Additionally, our fundamental cryobiological approach to improving cryopreservation protocols provides a model system by which additional cryopreservation protocols may be improved in future research for both mouse and human ES cell lines.  相似文献   

15.
A collaborative database of inbred mouse strain characteristics   总被引:5,自引:0,他引:5  
A database and website (MPD: Mouse Phenome Database) have been developed to serve as a consolidated home for mouse strain characterization data being generated by the scientific community. Physiological, anatomical and behavioral data are being collected and integrated into a common framework for tabulation by strain and sex. Genotypic data are being collected as well. The current focus is on a set of 40 inbred strains. The MPD as of February 2004 contains approximately 500 phenotypic parameters relevant to human health, voluntarily contributed by several dozen investigators and laboratories. AVAILABILITY: www.jax.org/phenome  相似文献   

16.
朱文静  刘志玮 《遗传》2021,(4):375-386
小鼠发育代谢表型库(Mouse Developmental and Metabolic Phenotype Repository,MDMPR)是一个致力于小鼠资源和表型数据实时共享的开放性平台,它依托于科技部重点研发计划“发育编程及其代谢调节”专项项目“建立小鼠发育代谢表型库”。该项目预计在5年内完成500个发育代谢相关小鼠敲除模型的建立,并对其表型数据进行标准化的解析、建立表型数据库。MDMPR作为一个资源及数据集成的库,由多个子系统作为支撑,包括ES细胞数据库、项目管理系统、繁育管理系统、精子库管理系统、表型分析系统,信息化管理深入到项目中每个环节,从基因突变ES细胞制备、基因突变小鼠制备、小鼠繁育,精子冻存到最终的表型分析、数据处理及展示,保证了MDMPR产生数据的真实性及实时性。MDMPR除了不断地推进项目进行,增加自身产生的数据外,也在积极的整合其他的资源及数据,如人特异性基因敲除ES细胞库、蛋白相互作用数据库(STRING)、核心转录调节环路(dbCoRc)和Enhancer-Indel数据库,今后还将进一步整合,帮助发育代谢及其他领域的研究人员能够一站式的获取所需资源和数据、加快研究进程,最终服务于全人类的医疗事业。  相似文献   

17.
The Mouse Genome Database (MGD) is the community database resource for the laboratory mouse, a key model organism for interpreting the human genome and for understanding human biology and disease (http://www.informatics.jax.org). MGD provides standard nomenclature and consensus map positions for mouse genes and genetic markers; it provides a curated set of mammalian homology records, user-defined chromosomal maps, experimental data sets and the definitive mouse 'gene to sequence' reference set for the research community. The integration and standardization of these data sets facilitates the transition between mouse DNA sequence, gene and phenotype annotations. A recent focus on allele and phenotype representations enhances the ability of MGD to organize and present data for exploring the relationship between genotype and phenotype. This link between the genome and the biology of the mouse is especially important as phenotype information grows from large mutagenesis projects and genotype information grows from large-scale sequencing projects.  相似文献   

18.
The Gene Expression Database (GXD) is a community resource that stores and integrates expression information for the laboratory mouse, with a particular emphasis on mouse development, and makes these data freely available in formats appropriate for comprehensive analysis. GXD is implemented as a relational database and integrated with the Mouse Genome Database (MGD) to enable global analysis of genotype, expression and phenotype information. Interconnections with sequence databases and with databases from other species further extend GXD's utility for the analysis of gene expression data. GXD is available through the Mouse Genome Informatics Web Site at http://www.informatics.jax.org/  相似文献   

19.
20.
The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.KEY WORDS: Gut microbiota, Humanized mouse models, Mouse core gut microbiota, Mouse models, Mouse pan-gut microbiota  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号