首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized plk1 in mouse oocytes during meiotic maturation and after parthenogenetic activation until entry into the first mitotic division. Plk1 protein expression remains unchanged during maturation. However, two different isoforms can be identified by SDS-PAGE. A fast migrating form, present in the germinal vesicle, seems characteristic of interphase. A slower form appears as early as 30 min before germinal vesicle breakdown (GVBD), is maximal at GVBD, and is maintained throughout meiotic maturation. This form gradually disappears after exit from meiosis. The slow form corresponds to a phosphorylation since it disappears after alkaline phosphatase treatment. Plk1 activation, therefore, takes place before GVBD and MAPK activation since plk1 kinase activity correlates with its slow migrating phosphorylated form. However, plk1 phosphorylation is inhibited after treatment with two specific p34(cdc2) inhibitors, roscovitine and butyrolactone, suggesting plk1 involvement in the MPF autoamplification loop. During meiosis plk1 undergoes a cellular redistribution consistent with its putative targets. At the germinal vesicle stage, plk1 is found diffusely distributed in the cytoplasm and enriched in the nucleus and during prometaphase is localized to the spindle poles. At anaphase it relocates to the equatorial plate and is restricted to the postmitotic bridge at telophase. After parthenogenetic activation, plk1 becomes dephosphorylated and its activity drops progressively. Upon entry into the first mitotic M-phase at nuclear envelope breakdown plk1 is phosphorylated and there is an increase in its kinase activity. At the two-cell stage, the fast migrating form with weak kinase activity is present. In this work we show that plk1 is present in mouse oocytes during meiotic maturation and the first mitotic division. The variation of plk1 activity and subcellular localization during this period suggest its implication in the organization and progression of M-phase.  相似文献   

2.
3.
We report that protein kinase C (PKC) plays a regulatory role in early cleavage in Chaetopterus eggs. Using Western blotting, we assayed the expression patterns of conventional PKCs (cPKC), novel PKCs (nPKC), and atypical PKCs (aPKC). During early development after fertilization, PKC protein levels varied independently by isoform. PKC protein expression during differentiation, without cleavage and after parthenogenetic activation, was very similar to that during normal development indicating that PKC gene expression does not require cellularization. Since PKC has been shown to regulate meiosis in this organism, we also assayed the membrane association of these isoforms as an indicator of their activation during meiosis and early cleavage. PKC-gamma transiently associated with membranes and therefore became activated before meiotic division and cleavage, whereas PKC-alpha and -beta transiently dissociated from membranes and therefore became inactivated at these times. Inhibition of these PKC isoforms by bisindolylmaleimide I had no effect on cleavage or early development to the trochophore larva, indicating that PKC-gamma activation is not essential for cleavage or early development. However, their persistent activation by thymeleatoxin blocked cleavage. The results indicate that the dissociation of PKC-alpha and/or -beta from the membrane fraction, and therefore their inactivation, is essential for normal cleavage. Elevated PKC activity is essential for nuclear envelope breakdown and spindle formation at meiosis I. By contrast, down-regulation of this activity is essential for cleavage after fertilization.  相似文献   

4.
Mitogen-activated protein kinase (MAP kinase) is a serine/threonine kinase whose enzymatic activity is thought to play a crucial role in mitogenic signal transduction and also in the progesterone-induced meiotic maturation of Xenopus oocytes. We have purified MAP kinase from Xenopus oocytes and have shown that the protein is present in metaphase ll oocytes under two different forms: an inactive 41-kD protein able to autoactivate and to autophosphorylate in vitro, and an active 42-kD kinase resolved into two tyrosine phosphorylated isoforms on 2D gels. During meiotic maturation, MAP kinase becomes tyrosine phosphorylated and activated following the activation of the M-phase promoting factor (MPF), a complex between the p34cdc2 kinase and cyclin B. In vivo, MAP kinase activity displays a different stability in metaphase l and in metaphase II: protein synthesis is required to maintain MAP kinase activity in metaphase I but not in metaphase II oocytes. Injection of either MPF or cyclin B into prophase oocytes promotes tyrosine phosphorylation of MAP kinase, indicating that its activation is a downstream event of MPF activation. In contrast, injection of okadaic acid, which induces in vivo MPF activation, promotes only a very weak tyrosine phosphorylation of MAP kinase, suggesting that effectors other than MPF are required for the MAP kinase activation. Moreover, in the absence of protein synthesis, cyclin B and MPF are unable to promote in vivo activation of MAP kinase, indicating that this activation requires the synthesis of new protein(s). © 1993 Wiley-Liss, Inc.  相似文献   

5.
In excised pith parenchyma from Nicotiana tabacum L. cv. Wisconsin Havana 38, auxin (naphthalene-1-acetic acid) together with cytokinin (6-benzylaminopurine) induced a greater than 40-fold increase in a p34cdc2-like protein, recoverable in the p13suc1-binding fraction, that had high H1 histone kinase activity, but enzyme induced without cytokinin was inactive. In suspension-cultured N. plumbaginifolia Viv., cytokinin (kinetin) was stringently required only in late G2 phase of the cell division cycle (cdc) and cells lacking kinetin arrested in G2 phase with inactive p34cdc2-like H1 histone kinase. Control of the Cdc2 kinase by inhibitory tyrosine phosphorylation was indicated by high phosphotyrosine in the inactive enzyme of arrested pith and suspension cells. Yeast cdc25 phosphatase, which is specific for removal of phosphate from tyrosine at the active site of p34cdc2 enzyme, was expressed in bacteria and caused extensive in-vitro activation of p13suc1-purified enzyme from pith and suspension cells cultured without cytokinin. Cytokinin stimulated the removal of phosphate, activation of the enzyme and rapid synchronous entry into mitosis. Therefore, plants can control cell division by tyrosine phosphorylation of Cdc2 but differ from somatic animal cells in coupling this mitotic control to hormonal signals.Abbreviations BAP 6-benzylaminopurine - BrdUrd 5-bromo-2-deoxyuridine - cdc cell division cycle - Cdc25 cdc phospho-protein phosphatase - CKI cyclin dependent kinase inhibitor - 2,4-D 2,4-dichlorophenoxyacetic acid - DAPI 4,6 diamidino-2-phenylindole - GST-cdc25 glutathione sulfur transferase-truncated cdc25 fusion - MS Murashige and Skoog (1962) - NAA naphthalene-1-acetic acid - p34cdc2 34-kDa product of the cdc2 gene  相似文献   

6.
Summary Immunofluorescence microscopy with a monoclonal antibody raised against the PSTAIR sequence, which corresponds to a peptide conserved in the p 34cdc2 protein kinase throughout the phylogenetic scale including higher plants, was used to study the intracellular localization of p 34cdc2 during the cell cycle in onion root tip cells. Although p 34cdc2 was evenly distributed in the cytoplasm throughout the cell cycle, a more intense staining was observed in the cortical region, where the preprophase band of microtubules (MTs) was located. Double staining with the PSTAIR and plant tubulin antibodies showed that the width of p 34cdc2 band was narrower than that of MT band. These data raise the interesting question regarding the possible role of p 34cdc2 protein kinase in determining the division site in plant cells.  相似文献   

7.
To investigate the effect of female age on oocyte developmental competence, we focused on protein kinase C (PKC), a major component of the signalling pathway involved in oocyte activation, and put forward the hypothesis that, as it occurs in many organs and tissues, aging affects PKC function in mouse oocytes. Biochemical activity of PKC along with the expression and subcellular distribution of some PKC isoforms were monitored in young and old mouse oocytes parthenogenetically activated by SrCl(2). We found that PKC activity increased reaching a level that was lower in old compared to young oocytes in association with an incomplete translocation of PKCbetaI to the plasma membrane. Moreover, old oocytes exhibited a reduced expression of PKCbeta1 and PKCalpha at the protein level, without significant effects on the expression of the Ca(2+)-independent PKCdelta. Detectable amounts of PKCbeta1 mRNA were observed in young and old oocytes at GV stage with no difference between the two groups of age. When meiotic progression to anaphase II up to first cleavage were analyzed, a delay in meiosis resumption and significantly lower rates of pronuclei formation and first cleavage were observed in old compared to young oocytes. Moreover, we found that, in contrast to SrCl(2), PMA (12-O-tetradecanoyl phorbol-13-acetate), a PKC agonist, was ineffective in activating old oocytes. Present findings provide evidence that aging affects the correct storage and activation of some PKCs, functional components of the machinery involved in oocyte activation, and suggest that these changes may negatively influence the activation competence of old oocytes.  相似文献   

8.
The regulation of MAP kinase phosphorylation by cAMP and protein kinase C (PKC) modulators during pig oocyte maturation was studied by Western immunoblotting. We showed that both forskolin and IBMX inhibited MAP kinase phosphorylation and meiosis resumption in a dose-dependent manner, and this inhibitory effect was overcome by the protein phosphatase inhibitor, okadaic acid. Pharmacological PKC activator phorbol myristate acetate or physiological PKC activator diC8 also delayed MAP kinase phosphorylation and meiosis resumption, and their effect was abrogated by PKC inhibitors, staurosporine, and calphostin C. The results suggest that meiotic resumption is inhibited by elevation of cAMP or delayed by activation of PKC probably via down-regulation of MAP kinase activation, which is mediated by protein phosphatase, during pig oocyte maturation.  相似文献   

9.
Cdc25C expression in meiotically competent and incompetent goat oocytes   总被引:2,自引:0,他引:2  
Change in Cdc25C expression and localization during maturation and meiotic competence acquisition was investigated in goat oocytes. Western blot analysis revealed that Cdc25C is constitutively expressed throughout meiosis in competent goat oocytes, with changes in its phosphorylation level. Cdc25C was detected at 55 and 70 kDa, representing the nonphosphorylated form and the hyperphosphorylated active form, respectively. During the G2-M transition at meiosis resumption, Cdc25C was hyperphosphorylated as evidenced by a clear shift from 55 to 70 kDa. Okadaic acid which induced premature meiosis resumption associated with MPF activation also involved a premature shift from 55 to 70 kDa in goat competent oocytes. After artificial activation of goat oocytes, Cdc25C returned to its 55 kDa form. By indirect immunofluorescence, Cdc25C was found essentially localized in the nucleus at the germinal vesicle stage, suggesting that Cdc25C functions within the nucleus to regulate MPF activation. Concomitantly with germinal vesicle breakdown, Cdc25C was redistributed throughout the cytoplasm. The amount of Cdc25C, very low in incompetent oocytes, increased with meiosis competence acquisition. On the other hand, during oocyte growth while the expression of Cdc25C increased, its phosphorylation level increased concomitantly as well as its nuclear translocation. These results suggest that meiosis resumption needs a sufficient amount of Cdc25C which must be completely phosphorylated and nuclear and that the amount of Cdc25C may be a limiting factor for meiotic competence acquisition. We could consider that Cdc25C nuclear translocation and phosphorylation, during oocyte growth, prepare the oocytes in advance for the G2-M phase transition occurring during meiosis resumption.  相似文献   

10.
The mechanism of development of mouse fertilized eggs from the one-cell stage to the two-cell stage remains unclear to date. In the present study, we have evaluated protein kinase C (PKC) and M-phase promoting factor (MPF) kinase activity in fertilized mouse eggs treated with a PKC modulator. PKC and MPF activity have similar activity. The two subunits of MPF, p34(cdc2) and cyclin B, were shown to be included in the substrates phosphorylated by PKC in fertilized mouse eggs, while PKC modulator affected the electrophoretic mobility shift of cdc2 and cdc25C by dephosphorylation and phosphorylation. These results clearly indicate that PKC may affect the progression of the cell cycle through post-translational modification of MPF activity.  相似文献   

11.
We have examined the presence of protein kinase C in oocytes of Chaetopterus pergamentaceus and its role in the initiation of germinal vesicle breakdown (GVBD). First, we demonstrated that the oocytes contain a phospholipid- and calcium-dependent protein kinase, protein kinase C (PKC). Since PKC is the primary intracellular receptor for phorbol esters, we tested the ability of phorbol 12,13-dibutyrate (PDBu) to induce GVBD and compared several critical events and processes involved in GVBD induced by PDBu to those induced normally (by seawater). Seawater and 100-200 nM PDBu induced chromosome condensation, spindle formation, and spindle migration over a similar time course. Both treatments induced similar alterations in the SDS-PAGE pattern of newly synthesized proteins. The synthesis of polypeptides of approximately 46 and 54 kDa increased specifically. Both treatments increased oocyte protein phosphorylation, especially of proteins of 22, 32, 46, 55, 64, and 84 kDa. Both treatments resulted in the activation of an M-phase-specific histone H1 kinase activity, which demonstrates the appearance of maturation-promoting factor. Staurosporine, a potent protein kinase C inhibitor, blocked GVBD and the activation of M-phase-specific H1 kinase, whereas HA1004, which preferentially antagonizes protein kinase A, had no effect. The results of this study demonstrate that protein kinase C can activate a wide spectrum of essential biochemical and morphological processes involved in GVBD. Further, these studies suggest that protein kinase C elicits GVBD by activating maturation-promoting factor and support the hypothesis that protein kinase C plays an essential role in oocyte maturation in this species.  相似文献   

12.
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献   

13.
There are indications from genetic, biochemical and cell biological studies that protein kinase CK2 (formerly casein kinase II) has a variety of functions at different stages in the cell cycle. To further characterize CK2 and its potential roles during cell cycle progression, one of the objectives of this study was to systematically examine the expression of all three subunits of CK2 at different stages in the cell cycle. To achieve this objective, we examined levels of CK2, CK2 and CK2 on immunoblots as well as CK2 activity in samples prepared from: (i) elutriated populations of MANCA (Burkitt lymphoma) cells, (ii) serum-stimulated GL30-92/R (primary human fibroblasts) cells and (iii) drug-arrested chicken bursal lymphoma BK3A cells. On immunoblots, we observed a significant and co-ordinate increase in the expression of CK2 and CK2 following serum stimulation of quiescent human fibroblasts. By comparison, no major fluctuations in CK2 activity were detected during any other stages during the cell cycle. Furthermore, we did not observe any dramatic differences between the relative levels of CK2 to CK2 during different stages in the cell cycle. However, we observed a significant increase in the amount of CK2 relative to CK2 in cells arrested with nocodazole. We also examined the activity of CK2 in extracts or in immunoprecipitates prepared from drug-arrested cells. Of particular interest is the observation that the activity of CK2 is not changed in nocodazole-arrested cells. Since CK2 is maximally phosphorylated in these cells, this result suggests that the phosphorylation of CK2 by p34cdc2 does not affect the catalytic activity of CK2. However, the activity of CK2 was increased by incubation with p34cdc2 in vitro. Since this activation was independent of ATP we speculate that p34cdc2 may have an associated factor that stimulates CK2 activity. Collectively, the observations that relative levels of CK2 increase in mitotic cells, that CK2 and CK2 are phosphorylated in mitotic cells and that p34cdc2 affects CK2 activity in vitro suggest that CK2 does have regulatory functions associated with cell division.  相似文献   

14.
P34cdc2 is a key cell-cycle protein in fission yeast that is necessary for progress in the cell cycle from the G1 to the S phase and from G2 through mitosis. Homologues of p34cdc2 have been found in all eukaryotes that have been investigated. Levels of p34cdc2-like protein were studied by quantitative Western blotting in developing cotyledons of Daucus carota L. (carrot) seedlings, in expiants from the same seedlings transferred to tissueculture media with and without 2,4-dichlorophenoxyacetic acid (2,4-D), and in nutrient-starved suspension cultures derived from carrot callus. During the cessation of cell division, which accompanies development of the cotyledon to maturity, there was a 16-fold decline in the level of the p34cdc2-like protein. Auxin-stimulated dedifferentiation in excised tissue from mature cotyledons was accompanied by restoration of the level of p34cdc2-like protein, and the responding cells formed a callus. These data support our earlier proposition, based upon evidence from wheat leaf, that changes in the level of p34cdc2-like protein act in the switch between cycling and differentiation. Persisting high levels of p34cdc2-like protein in suspension cultures, when division was stopped by nutrient limitation, indicated that decline of the protein was not an inevitable consequence of the cessation of division. Decline of p34cdc2 in differentiation may therefore be a regulated process that determines exit from the cell cycle and the converse increase in p34cdc2 may be a regulated process controlling dedifferentiation and resumption of cell division.Abbreviations BrdUrd 5-bromodeoxyuridine - 2,4-D 2,4-dichlorophenoxyacetic acid - kDa kilodalton - MS Murashige and Skoog (1962) J.R.G. gratefully acknowledges the support of a National Research Fellowship from the Australian Government during the time this work was done.  相似文献   

15.
We previously reported that OsERG1 and OsERG3 encode rice small C2-domain proteins with different biochemical properties in Ca2+- and phospholipid-binding assays. Os-ERG1 exhibited Ca2+-dependent phospholipid binding, which was not observed with OsERG3. In the present study, we show that both OsERG1 and OsERG3 proteins exhibit oligomerization properties as determined by native polyacrylamide gel electrophoresis (PAGE) and glutaraldehyde cross-linking experiments. Furthermore, in vitro phosphorylation assays reveal the phosphorylation of OsERG1 and OsERG3 by a rice calcium-dependent protein kinase, OsCDPK5. Our mutation analysis on putative serine phosphorylation sites shows that the first serine (Ser) at position 41 of OsERG1 may be an essential residue for phosphorylation by OsCDPK5. Mutation of Ser41 to alanine (OsERG1S41A) and aspartate (OsERG1S41D) abolishes the ability of OsERG1 to bind phospholipids regardless of the presence or absence of Ca2+ ions. In addition, unlike the OsERG1 wild-type form, the mutant OsERG1 (S41A)::smGFP construct lost the ability to translocate from the cytosol to the plasma membrane in response to calcium ions or fungal elicitor. These results indicate that Ser41 may be essential for the function of OsERG1.  相似文献   

16.
Histone acetylation is an important epigenetic modification implicated in the regulation of chromatin structure and, subsequently, gene expression. Global histone deacetylation was reported in mouse oocytes during meiosis but not mitosis. The regulation of this meiosis-specific deacetylation has not been elucidated. Here, we demonstrate that p34(cdc2) kinase activity and protein synthesis are responsible for the activation of histone deacetylases and the inhibition of histone acetyltransferases (HATs), respectively, resulting in deacetylation of histone H4 at lysine-12 (H4K12) during mouse oocyte meiosis. Temporal changes in the acetylation state of H4K12 were examined immunocytochemically during meiotic maturation using an antibody specific for acetylated H4K12. H4K12 was deacetylated during the first meiosis, temporarily acetylated around the time of the first polar body (PB1) extrusion, and then deacetylated again during the second meiosis. Because these changes coincided with the known oscillation pattern of p34(cdc2) kinase activity, we investigated the involvement of the kinase in H4K12 deacetylation. Roscovitine, an inhibitor of cyclin-dependent kinase activity, prevented H4K12 deacetylation during both the first and second meiosis, suggesting that p34(cdc2) kinase activity is required for deacetylation during meiosis. In addition, cycloheximide, a protein synthesis inhibitor, also prevented deacetylation. After PB1 extrusion, at which time H4K12 had been deacetylated, H4K12 was re-acetylated in the condensed chromosomes by treatment with cycloheximide but not with roscovitine. These results demonstrate that HATs are present but inactivated by newly synthesized protein(s) that is (are) not involved in p34(cdc2) kinase activity. Our results suggest that p34(cdc2) kinase activity induces the deacetylation of H4K12 and that the deacetylated state is maintained by newly synthesized protein(s) that inhibits HAT activity during meiosis.  相似文献   

17.
The Xenopus oocyte expression system was used to explore the mechanisms of inhibition of the cloned rat epithelial Na(+) channel (rENaC) by PKC (Awayda, M.S., I.I. Ismailov, B.K. Berdiev, C.M. Fuller, and D.J. Benos. 1996. J. Gen. Physiol. 108:49-65) and to determine whether human ENaC exhibits similar regulation. Effects of PKC activation on membrane and/or channel trafficking were determined using impedance analysis as an indirect measure of membrane area. hENaC-expressing oocytes exhibited an appreciable activation by hyperpolarizing voltages. This activation could be fit with a single exponential, described by a time constant (tau) and a magnitude (DeltaI (V)). A similar but smaller magnitude of activation was also observed in oocytes expressing rENaC. This activation likely corresponds to the previously described effect of hyperpolarizing voltage on gating of the native Na(+) channel (Palmer, L.G., and G. Frindt. 1996. J. Gen. Physiol. 107:35-45). Stimulation of PKC with 100 nM PMA decreased DeltaI(V) in hENaC-expressing oocytes to a plateau at 57.1 +/- 4.9% (n = 6) of baseline values at 20 min. Similar effects were observed in rENaC-expressing oocytes. PMA decreased the amiloride-sensitive hENaC slope conductance (g(Na)) to 21.7 +/- 7.2% (n = 6) of baseline values at 30 min. This decrease was similar to that previously reported for rENaC. This decrease of g (Na) was attributed to a decrease of membrane capacitance (C (m)), as well as the specific conductance (g(m)/C(m )). The effects on g(m)/C(m) reached a plateau within 15 min, at approximately 60% of baseline values. This decrease is likely due to the specific ability of PKC to inhibit ENaC. On the other hand, the decrease of C(m) was unrelated to ENaC and is likely an effect of PKC on membrane trafficking, as it was observed in ENaC-expressing as well as control oocytes. At lower PMA concentrations (0.5 nM), smaller changes of C(m) were observed in rENaC- and hENaC-expressing oocytes, and were preceded by larger changes of g(m ) and by changes of g(m)/C(m), indicating specific effects on ENaC. These findings indicate that PKC exhibits multiple and specific effects on ENaC, as well as nonspecific effects on membrane trafficking. Moreover, these findings provide the electrophysiological basis for assessing channel-specific effects of PKC in the Xenopus oocyte expression system.  相似文献   

18.
19.
Summary Calcium signaling systems in nonexcitable cells involve activation of Ca2+ entry across the plasma membrane and release from intracellular stores as well as activation of Ca2+ pumps and inhibition of passive Ca2+ pathways to ensure exact regulation of free cytosolic Ca2+ concentration ([Ca2+] i ). A431 cells loaded with fura-2 cells were used as a model system to examine regulation of Ca2+ entry and intracellular release. Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-) both stimulated Ca2+ entry and release while bradykinin appeared only to release Ca2+ from intracellular stores. The possible role of protein kinase C (PKC) in modulating the [Ca2+] i response to these agonists was examined by four methods. Low concentrations of TPA (2×10–10 m) had no effect on Ca2+ release due to EGF, TGR- or bradykinin but resulted in a rapid return of [Ca2+] i to baseline levels for EGF or TGF-. Addition of the PKC inhibitor staurosporine (1 and 10nm)_completely inhibited the action of TPA on EGF-induced [Ca2+] i changes. An inhibitor of diglyceride kinase (R59022) mimicked the action of TPA. Down-regulation of PKC by overnight incubation with 0.1 or 1 m TPA produced the converse effect, namely prolonged Ca2+ entry following stimulation with EGF or TGF-. To show that one effect of TPA was on Ca2+ entry, fura-2 loaded cells were suspended in Mn2+ rather than Ca2+ buffers. Addition of EGF or TGF- resulted in Ca2+ release and Mn2+ entry. TPA but not the inactive phorbol ester, 4--phorbol-12,13-didecanoate, inhibited the Mn2+ influx. Thus, PKC is able to regulate Ca2+ entry due to EGF or TGF- in this cell type. A431 cells treated with higher concentrations of TPA (5×10–8 m) inhibited not only Ca2+ entry but also Ca2+ release due to EGF/TGF- but had no effect on bradykinin-mediated Ca2+ release, suggesting differences in the regulation of the intracellular stores responsive to these two classes of agonists. Furthermore, sequential addition of EGF or TGF- gave a single transient of [Ca2+] i , showing a common pool of Ca2+ for these agonists. In contrast, sequential addition of EGF (or TGF-) and bradykinin resulted in two [Ca2+] i transients equal in size to those obtained with a single agonist. Ionomycin alone was able to fully deplete intracellular Ca2+ stores, whereas ionomycin following either EGF (or TGF-) or bradykinin gave an elevation of the [Ca2+] i signal equal to that of the second agonist. These data indicate that there are separate pools of intracellular Ca2+ for EGF-mediated Ca2+ release which also respond differently to TPA.  相似文献   

20.
The expression of protein kinase C (PKC) isoforms and the modulation of Ca2+ mobilization by PKC were investigated in the human submandibular duct cell line A253. Three new PKC (nPKC) isoforms (, , and ) and one atypical PKC (aPKC) isoform () are expressed in this cell line. No classical PKC (cPKC) isoforms were present. The effects of the PKC activator phorbol 12-myristate-13-acetate (PMA) and of the PKC inhibitors calphostin C (CC) and bisindolymaleimide I (BSM) on inositol 1,4,5-trisphosphate (IP3) and Ca2+ responses to ATP and to thapsigargin (TG) were investigated. Pre-exposure to PMA inhibited IP3 formation, Ca2+ release and Ca2+ influx in response to ATP. Pre-exposure to CC or BSM slightly enhanced IP3 formation but inhibited the Ca2+ release and the Ca2+ influx induced by ATP. In contrast, pre-exposure to PMA did not modify the Ca2+ release induced by TG, but reduced the influx of Ca2+ seen in the presence of this Ca2+-ATPase inhibitor. These results suggest that PKC modulates elements of the IP3/Ca2+ signal transduction pathway in A253 cells by (1) inhibiting phosphatidylinositol turnover and altering the sensitivity of the Ca2+ channels to IP3, (2) altering the activity, the sensitivity to inhibitors, or the distribution of the TG-sensitive Ca2+ ATPase, and (3) modulating Ca2+ entry pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号