首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The fertilized egg of the mollusc Lymnaea stagnalis generates a polarized current pattern as measured with the vibrating probe. Here we investigated the basis of these polar ionic currents. Ionic currents were measured around eggs during the second meiotic division after interference with cytokinesis. Cytokinesis was either displaced by centrifugation or inhibited with cytochalasin or nocodazole. Furthermore, ectopic constrictions were induced with lectin treatment. It appeared that the inward current of the animal pole can be displaced by centrifugation and remains associated with the position of the meiotic apparatus. The influence of the meiotic apparatus on the polar current pattern seems to be directly related to membrane constrictions rather than to karyokinesis. This was demonstrated by a change in current density after induction of an ectopic constriction at the vegetal pole and by the abolishment of currents after cytochalasin treatment. Since the location of the outward current was not sensitive to centrifugation, it may be concluded that the vegetal outward current depends upon properties of the vegetal cortex. On the basis of these results, we conclude that the Lymnaea egg generates two types of ionic currents during the second meiotic division. The first is an inward current activated at the site of membrane constrictions. The second is an outward current associated with the vegetal cortex.  相似文献   

2.
The ionic mechanisms of the depolarizing and the hyperpolarizing quinine receptor potentials in the ciliate Paramecium caudatum were examined by using a behavioral mutant strain. The depolarizing receptor potential was induced by stimulating the anterior end of the specimen, and the hyperpolarizing receptor potential by stimulating the posterior end. The amplitude of both the depolarizing and the hyperpolarizing receptor potentials increased linearly with logarithmic increase in quinine concentration applied. Threshold concentration for inducing the depolarizing receptor potential was lower than that for the hyperpolarizing one. The peak level of the depolarizing receptor potential shifted towards the depolarizing direction with increasing external Ca2+ concentration while that of the hyperpolarizing receptor potential shifted in the depolarizing direction with increasing external K+ concentration. Under voltage-clamp conditions, the specimen produced an inward current in response to anterior stimulation, and an outward current in response to posterior stimulation. Both the peak inward and the peak outward currents showed a linear relationship with membrane potential. Current-voltage relationships of the receptor currents indicated conductance increase during the application of quinine. The depolarizing quinine receptor potential appears to be produced by an activation of Ca2+ channels, and the hyperpolarizing quinine receptor potential by an activation of K+ channels. Accepted: 3 October 1997  相似文献   

3.
A new vibrating probe-current voltage measuring system is described which enabled us to detect current-voltage curves in the acid and alkaline regions of Chara corallina (Klein ex Willd., em. R.D.W.). Extracellular current analysis, performed before and after the measurement of a current-voltage curve, established that the voltage-clamp protocol had no significant effect on the transport function of the plasma membrane, provided no action potential was triggered. This validated experimental system was then used to determine the reversal potential (- 450 mV) and the stoichiometry (1 H+:ATP hydrolyzed) of the Chara H+-ATPase, which dominates the acid regions. Current-voltage curves of the acid regions almost saturated at values close to the resting potential, in the absence of exogenous buffer. Introduction of artificial buffers and-or HCO 3 - shifted the reversal potential of this area to more positive values. Furthermore, it was shown that the reversal potential (-120 mV) of the extracellular current in the alkaline band (passive H+ channel) coincided with the threshold for the action potential. We propose that the action potential functions as a component of the spatial control system in the Chara cell.Abbreviations CPW artificial Chara pond water - CPW/B CPW with 1 mM NaHCO3 This work was supported by National Science Foundation grant No. DCB-88-16077 and a matching equipment grant provided by the University of California, Davis, to W.J.L. We thank Jim Haudenshield for his help with some of the illustrations and Lesley Randall for the technical drawings. Special thanks are due to Wes Tallon of the Physical Plant Machine Shop, University of California, Davis for the fabrication of the new vibrating-probe-voltage-clamp system. The Industrial Applications Section of Olympus provided considerable assistance in terms of the development of an appropriate high-resolution fibre-optics microscope.  相似文献   

4.
A simple method was used to measure directly sodium and potassium currents underlying the action potential in single nerve fibres of Xenopus laevis. A short rectangular stimulus under current-clamp conditions elicited an action potential which was digitally stored and later used as command when voltageclamping the same fibre. The currents thus obtained nearly reproduced the original rectangular stimulus. Adding first 100 nM TTX and subsequently 100 nM TTX plus 10 mM TEA to the extracellular Ringer solution revealed the sodium and the potassium currents during an action potential. They were converted to permeabilities by use of the constant-field equation and are in good agreement with the curves which had been calculated from conventional voltage-clamp data. Thus experimentally determined currents and permeabilities are shown as they are changing during an action potential.  相似文献   

5.
The formation of the micropylar apparatus during oogenesis in the silkworm, Bombyx mori, has been studied using light and transmission electron microscopy. The micropylar apparatus is formed by three types of cells: the micropylar channel-forming cells (MCFCs), the micropylar orifice-forming cells (MOFCs), and the micropylar rosette-forming cells (MRFCs). During the formation of the vitelline membrane and the chorion, each of the MCFCs extends a cytoplasmic projection serving as the mold of a micropylar-channel into the egg envelopes. The detachment and collapse of the projections takes place at the end of choriogenesis. The micropylar channels possess a common external orifice on the chorion and several internal orifices within the vitelline membrane. The MOFCs interact closely with the MCFCs and contribute to the formation of the external micropylar orifice. A petal-like rosette surrounding the orifice is imprinted on the outer chorionic surface by the MRFCs which enclose a group of the MCFCs and MOFCs.  相似文献   

6.
Summary

Combined mild centrifugation and uv irradiation of Chironomus embryos modified the developmental types expected from centrifugation alone, somewhat differently from the combined strong centrifugation and uv irradiation of Smittia embryos. The modifications changed with the stages irradiated. The change caused by anterior irradiation may depend on whether or not a part of the cytoplasmic zone is irradiated simultaneously with the anterior yolky end; because most of the cytoplasm lies in the posterior half of egg at early irradiation, while the tip of the cytoplasm redistributes near the anterior end by the late irradiation. Early uv irradiation of the anterior end of centrifuged eggs, causing the formation of a double abdomen (DA) or an inverted embryo, is not photoreversible, while the uv damage to the anterior end of uncentrifuged eggs, inducing DA, is. These facts suggest that there is another photoirreversible uv target in addition to the photoreversible target for DA induction or the anterior determinant shown in Smittia. Other changes, such as the induction of a double cephalon by late irradiation of the centrifuged egg, are photoreversible, but in an unusual way in that the level of photorecovery is similar to the result of incubation in the dark after early irradiation, and not to that of the centrifuged controls. These modified results were then compared with those for Smittia embryos.  相似文献   

7.
In the ovarian follicle, the micropylar cell (MPC) is distinguished from neighboring granulosa cells by its larger cell size and its thick cytoplasmic process. The micropylar cell body fits into a shallow depression (micropylar vestibule) on the outer surface of the egg envelope; its process extends through the micropylar canal, which extends from the bottom of the vestibule through the full thickness of the zona pellucida interna. At its distal end, the cell process expands into a bulb which fits into an indentation of the ooplasmic surface immediately beneath the inner opening of the micropylar canal. Intermediate and desmosomelike junctions establish an intimate association between MPC process and oocyte. Various kinds of organelles and inclusions in the MPC show a characteristic pattern of cytoplasmic distribution; rough endoplasmic reticulum with markedly dilated cisternae is found exclusively in the main cell body, while microtubules and thin filaments are observed in the cytoplasmic process. Immediately before or during the breakdown of the germinal vesicle in the intrafollicular oocyte, the cytoplasmic process of the MPC gradually decreases in length and begins to withdraw from the micropylar canal. At the same time, the ooplasmic surface protrudes outward to form a papilla in the canal. The intimate MPC-oocyte association disappears during formation of the ooplasmic papilla. Hydration of the oocyte apparently occurs at the final stage of maturation and probably participates in papilla formation. Although the MPC undergoes degenerative changes as ovulation draws near, it remains attached to the inner surface of the granulosa cell layer even after its association with the oocyte has completely disappeared. We speculate that the micropyle develops during fish oogenesis through the combined activity of the MPC and neighboring granulosa cells. It appears that the cell body of the micropylar cell and nearby granulosa cells exert mechanical pressure on the external surface of the growing oocyte and thus participate in formation of the micropylar vestibule. The cytoplasmic process of the MPC evidently forms a passive barrier to deposition of material for the egg envelope in the animal pole, thereby resulting in formation of the micropylar canal.  相似文献   

8.
A computer-assisted, two-dimensional vibrating probe was used to study the ionic currents around developing lateral roots of Raphanus sativus in vitro. This system allowed us to superimpose current vectors on the video image of the roots. In a young lateral root, current entered the cap, meristematic, and elongation zones and exited the primary root surface close to the base of the lateral root. As the lateral root grew, current began to exit from its basal (cell maturation zone) end. The densities of currents entering the apical portion of the faster-growing lateral roots in a medium lacking indole 3-acetic acid were about twice as large as those entering the apical region of the slower-growing lateral roots in indole 3-acetic acid-supplemented medium.  相似文献   

9.
Summary The developmental potential of the cells of the somatic follicular epithelium (follicle cells) was studied in mutants in which the differentiation of the germ-line cells is blocked at different stages of oogenesis. In two mutants, sn 36a and kelch, nurse cell regression does not occur, yet the follicle cells around the small oocyte continue their normal developmental program and produce an egg shell with micropylar cone and often deformed operculum and respiratory appendages. Neither the influx of nurse cell cytoplasm into the oocyte nor the few follicle cells covering the nurse cells are apparently required for the formation of the egg shell. In the tumor mutant benign gonial cell neoplasm (bgcn) the follicle cells can also differentiate to some extent although the germ-line cells remain morphologically undifferentiated. Vitelline membrane material was synthesized by the follicle cells in some bgcn chambers and in rare cases a columnar epithelium, which resembled morphologically that of wild-type stage-9 follicles, formed around the follicle's posterior end. The normal polarity of the follicular epithelium that is characteristic for mid-vitellogenic stages may, therefore, be established in the absence of morphologically differentiating germ-line cells. However, the tumorous germ-line cells do not constitute a homogeneous cell population since in about 30% of the analyzed follicles a cell cluster at or near the posterior pole can be identified by virtue of its high number of concanavalin A binding sites. This molecular marker reveals an anteroposterior polarity of the tumorous chambers. In follicles mutant for both bgcn and the polarity gene dicephalic the cluster of concanavalin A-stained germ-line cells shifts to more anterior positions in the follicle.  相似文献   

10.
We investigated the effects of pressure overload hypertrophy on inward sodium (I Na) and calcium currents (I Ca) in single left ventricular myocytes to determine whether changes in these current systems could account for the observed prolongation of the action potential. Hypertrophy was induced by pressure overload caused by banding of the abdominal aorta. Whole-cell patch clamp experiments were used to measure tetrodotoxin (TTX)-sensitive inward currents. The main findings were that I Ca density was unchanged whereas I Na density after stepping from –80 to –30 mV was decreased by 30% (–9.0 ± 1.16 pA pF–1 in control and –6.31 ± 0.67 pA pF–1 in hypertrophy, p < 0.05, n= 6). Steady-state activation/inactivation variables of I Na, determined by using double-pulse protocols, were similar in control and hypertrophied myocytes, whereas the time course of fast inactivation of I Na was slowed (p < 0.05) in hypertrophied myocytes. In addition, action potential clamp experiments were carried out in the absence and presence of TTX under conditions where only Ca2+ was likely to enter the cell via TTX-sensitive channels. We show for the first time that a TTX-sensitive inward current was present during the plateau phase of the action potential in hypertrophied but not control myocytes. The observed decrease in I Na density is likely to abbreviate rather than prolong the action potential. Delayed fast inactivation of Na+ channels was not sustained throughout the voltage pulse and may therefore merely counteract the effect of decreased I Na density so that net Na+ influx remains unaltered. Changes in the fast I Na do not therefore appear to contribute to lengthening of the action potential in this model of hypertrophy. However, the presence of a TTX-sensitive current during the plateau could potentially contribute to the prolongation of the action potential in hypertrophied cardiac muscle. (Mol Cell Biochem 261: 217–226, 2004)  相似文献   

11.
Fern (Onoclea sensibilis L.) gametophytes exposed to blue light are induced to undergo a morphological transition from a tip-growing filament to a planar prothallus. Extracellular measurements of electric currents and localized ion activities around the apical cell of 8 to 10 day-old gametophytes were made with a vibrating probe and ion selective electrodes. In darkness, we observed exit current densities of an average of 75 nanoamperes per square centimeter near the tip and 2 to 15 nanoamperes per square centimeter along the lateral walls of this cell. Measurements with ion selective electrodes for H+, K+, and Ca2+ showed that this cell was bounded by a thin layer of medium that was depleted in K+ and Ca2+ and exhibited a lower pH than the bulk solution. Both the K+ and Ca2+ depletion zones and the zone of higher acidity were particularly pronounced at the tip end of the cell; the pH at 2 micrometers from the tip was nearly 0.5 units more acid than the bulk medium at pH 6. Disruption of steady state, external gradients with media that contained lower concentrations of H+, K+, Ca2+, or Cl produced certain differences in the rates of restoration of particular ion zones, raising the possibility that some of the ion migrations are interdependent. Within 15 minutes after irradiation with blue light, current leaving the tip declined to levels which were indistinguishable from those leaving the lateral walls and there was a rapid lowering in the rates of tip acidification and K+ depletion near the tip. The rapid dissipation of both the longitudinally aligned electrical field and the tip-localized asymmetries in external cation distribution in blue light suggest that loss of electrical polarity in this tip growing cell may be an initial step in the chain of events which govern changes in cell shape.  相似文献   

12.
Micropylar wall extensions in the egg of Plumbago capensis arise as small pegs of periodic acid-Schiff's-positive material soon after the egg is organized. These inward projections of egg wall increase in size, becoming extensive near anthesis. Some branching of the filiform apparatus occurs. In mature embryo sacs the micropylar portion, with the lowermost portion of the egg included, becomes entrenched in the nucellus. The possible significance of this “gametic transfer cell” is discussed in relation to the apparent absence of synergids from the reduced embryo sac of Plumbago.  相似文献   

13.
In Sternopygus macrurus, electrocyte action potential duration determines the electric organ discharge pulse duration. Since the electric organ discharge is a sexually-dimorphic behavior under the control of steroid hormones, and because electrocyte action potential durations can range from 3–14 ms, the electrocytes provide a unique opportunity to study how sex steroids regulate membrane excitability. In this study, the voltage-sensitive ionic currents of electrocytes were identified under current- and voltage-clamp as a prelude to further studies on their regulation by sex steroid hormones.Bath application of TTX completely abolished the spike and eliminated an inward current under voltage clamp, indicating that the action potential is due primarily to a sodium current. Calcium-free saline had no effect on spike waveform or voltage-clamp currents, indicating that neither calcium nor calcium-dependent currents contribute to the action potential. Application of potassium channel blocking agents, such as tetraethylammonium and cesium ions, caused changes in the spike which, together with voltage-clamp results, indicate the presence of two potassium currents: an inward rectifier and a classical delayed rectifier. In addition, these cells have a large, presumably voltage-insensitive, chloride current. Differences in one or more of these currents could be responsible for the range of action potential durations found in these cells and for the steroid-mediated changes in spike duration.Abbreviations EOD electric organ discharge - VC voltage clamp - CC current clamp - AP action potential - VI/IV voltage-current/current-voltage  相似文献   

14.
M. G. Mina  A. Goldsworthy 《Planta》1991,186(1):104-108
Weak externally applied electric currents changed the natural electrical pattern surrounding cells from tobacco (Nicotiana tabacum L.) suspension cultures. The artificial currents were applied transversely to short filaments of cells placed between a microelectrode lose to the filament surface and a large platinum electrode some distance away. The natural current patterns before and after electrical treatment were measured with a vibrating probe. Significant effects were confined to the cell adjacent to the microelectrode. Currents with densities of 100 A · cm–2 at the cell surface applied for 10 min or 3 A · cm–2 for several hours caused a localized increase in the natural current entering the part of the cell which had been nearest the positive electrode. There was no corresponding local increase in current leaving from the opposite side of the cell. Instead, the extra current appeared to leave over a relatively large area. The overall effect was a tendency for the cell to repolarize transversely with a greater proportion of its transcellular currents flowing in the direction of the current applied. The effect was measurable for several hours after the external current was discontinued and may be evidence for a natural mechanism by which neighbouring cells entrain one another's polarities during differentiation. The effect of external currents on cells growing in a 2,4-dichlorophenoxyacetic acid (2,4-D) medium (which suppresses differentiation) was qualitatively the same as on cells in an indole-3-acetic acid medium (which promotes differentiation). If anything, the response was greater in 2,4-D, implying that the disruptive effect of 2,4-D on cell and tissue polarization is not a consequence of it preventing cells sensing the transcellular currents of their neighbours.Abbreviation 2,4-D 2,4-dichlorophenoxyacetic acid The authors are indebted to the Agricultural and Food Research Council of the U.K. for financial support and to the Royal Society for the provision of the vibrating probe.  相似文献   

15.
Variation in egg surface morphology and morphometrics of Culex quinquefasciatus mosquitoes of the Jodhpur, Bikaner, Jamnagar, and Bathinda strains were correlated with geographical distribution in different ecological regions of India. We report the geographic variation in Cx. quinquefasciatus based on 44 attributes of micropylar and conical‐shaped regions of eggs, including micropylar apparatus (corolla, disc, and mound), micropylar tubercles, and the exochorionic tubercle, pores, and network in anterior, middle, and posterior regions. No remarkable differences were observed in the surface morphology of eggs of these strains except the absence of small tubercles in the anterior and middle region of the JMN strain. However, a statistical analysis indicated significant morphometric variations in 66% of the attributes of the eggs. The cluster analysis of all egg attributes showed that the JD, BKN, and BTH strains are closer to each other than the JMN strain. The positive correlation (r = 0.95) also indicated an effect of geographical distribution on morphometry of various egg attributes of these strains. The present study suggests that ecological variation may have affected the morphometric attributes of the egg of four strains of Cx. quinquefasciatus from different geographical areas.  相似文献   

16.
Summary Ionic currents around caulonema tip cells of the filamentous protonema of the mossFunaria hygrometrica were examined using a nonintrusive vibrating microelectrode to map electrical current before and during mitosis. Tip cells in interphase generate inward electrical currents that are maximal at the nuclear region. These currents remain concentrated over the nucleus as it migrates forward maintaining a constant distance from the growing tip. Just prior to mitosis this inward current increases twofold. During mitosis and cytokinesis current at the nuclear zone increases to four times the resting level and fluctuates, falling to zero after cell plate fusion with parental walls. The locus of outward current could not be dectected. These results suggest that plasma membrane ion currents may regulate both nuclear positioning and subsequent temporal and spatial control of cell division.  相似文献   

17.
Ion currents and membrane domains in the cleaving Xenopus egg   总被引:4,自引:3,他引:1       下载免费PDF全文
《The Journal of cell biology》1983,97(6):1753-1761
We used an extracellular vibrating probe to measure ion currents through the cleaving Xenopus laevis egg. Measurements indicate sharp membrane heterogeneities. Current leaves the first cleavage furrow after new, unpigmented membrane is inserted. This outward current may be carried by K+ efflux. No direct involvement of the Na+,K+-ATPase in the generation of this outward current is detected at first cleavage. Inward current enters the old, pigmented membrane; however, it does not enter uniformly. The inward current is largest at the old membrane bordering the new membrane. This suggests a heterogeneous ion channel distribution within the old membrane. Experiments suggest that the inward current may be carried by Na+ influx, Ca2+ influx, and Cl- efflux. No steady currents were detected during grey crescent formation, the surface contraction waves preceding cleavage, or with groove formation at the beginning of cleavage.  相似文献   

18.
Summary Actin organization was observed inm-maleimidobenzoic acid N-hydroxysuccinimide ester(MBS)-treated maize embryo sacs by confocal laser scanning microscopy. The results revealed that dynamic changes of actin occur not only in the degenerating synergid, but also in the egg during fertilization. The actin filaments distribute randomly in the chalazal part of the synergid before fertilization; they later become organized into numerous aggregates in the chalazal end after pollination. The accumulation of actin at this region is intensified after the pollen tube discharges its contents. Concurrently, actin patches have also been found in the cytoplasm of the egg cell and later they accumulate in the cortical region. To compare with MBS-treated maize embryo sacs, we have performed phalloidin microinjection to label the actin cytoskeleton in living embryo sacs ofTorenia fournieri. The results have extended the previous observations on the three-dimensional organization of the actin arrays in the cells of the female germ unit and confirm the occurrence of the actin coronas in the embryo sac during fertilization. We have found that there is an actin cap occurring near the filiform apparatus after anthesis. In addition, phalloidin microinjection into the Torenia embryo sac has proved the presence of intercellular actin between the cells of the female germ unit and thus confirms the occurrence of the actin coronas in the embryo sac during fertilization. Moreover, actin dynamic changes also take place in the egg and the central cell, accomplished with the interaction between the male and female gametes. The actin filaments initially organize into a distinct actin network in the cortex of the central cell after anthesis; they become fragmented in the micropylar end of the cell after pollination. Similar to maize, actin patches have also been observed in the egg cortex after pollination. This is the first report of actin dynamics in the living embryo sac. The results suggest that the actin cytoskeleton may play an essential role in the reception of the pollen tube, migration of the male gametes, and even gametic fusion.  相似文献   

19.
Summary Inward-rectifier channels in cardiac cells (I K1) stabilize the resting membrane potential near the K equilibrium potential. Here we investigate the role ofI K1 in the regulation of action potentials and link this to the influx of Ca during beating. Inward Ca current alters the open-channel probability of outwardI K1 current. Thus Ca ions depolarize cells not only by carrying an inward current but also by blocking an outward current.  相似文献   

20.
《Developmental biology》1987,122(2):516-521
The membrane electrical properties of the Dentalium egg have been studied under voltage-clamp, before and after fertilization, up to the trefoil stage. The egg has an action potential with two rapid rising phases and one steady component. Most of the current is carried by calcium ions. All inward currents are blocked by cobalt. After fertilization, excitability disappears within about 50 min. This is mainly due to the appearance of a new steady K conductance, which provides a shunt to the calcium current. This new conductance appears shortly after emission of the second polar body and slightly before the formation of the polar lobe of the embryo. It is also blocked by cobalt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号