首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
Incorporation of thymidine, thymidine monophosphate (TMP), thymidine triphosphate (TTP), uridine and orotic acid into DNA, RNA and protein in Blastomyces dermatitidis and Histoplasma capsulatum was studied utilizing a specific acid hydrolysis technique developed for these fungi. Thymidine was incorporated to the greatest extent (approximately 0.5 % of added label) followed by uridine, orotic acid, TMP and TTP. In Blastomyces, uridine and orotic acid labeled primarily RNA. TMP and TTP labeled RNA, DNA and protein at nearly the same level. In Histoplasma RNA was labeled poorly by any of these precursors. TMP and TTP labeled DNA predominately and protein to a slightly lower level. Deoxyadenosine or uridine media supplements of 250 g/ml did not enhance incorporation. All precursors tested were found to be nonspecific in that RNA, DNA and protein were labeled. All data indicate that neither RNA nor DNA synthesis can be specifically measured in whole cells or acid precipitates by any of these precursors. Specific radiometric monitoring with these isotopes therefore requires the separation of these macromolecules.  相似文献   

2.
Volker Ssymank 《Planta》1973,111(2):157-166
Summary Radioactive uridine is incorporated by Chlorella strain 211-8b/p into ribosomal subunits and their rapidly labelled RNA comigrates with chloroplast RNA on polycrylamide gels.Ribosomal particles which can be labelled by short pulses of orotic acid cosediment with the particles labelled by uridine pulses and contain the same RNA species as these when separated either on sucrose gradients or on polycrylamide gels. This incorporation is, like that of uridine, sensitive to rifampin and chloramphenicol, but insensitive to cycloheximide.A comparative study of short-time incorporation of uridine, orotic acid and guanosine into the RNA of Chlorella showed that all three precursors were incorporated mainly into RNA of chloroplastic origin. However, guanosine was also partly incorporated into cytoplasmic rRNA. Nitrogen-deficient cells always incorporated part of all three precursors into cytoplasmic rRNA, but the proportions of these were different among the different precursors.These results are consistent with the hypothesis that the described differences in the incorporation of the above mentioned precursors into RNA of different cellular compartments are largely attributable to effects of pool sizes.  相似文献   

3.
SYNOPSIS. Cultures of the intra-erythrocytic stages of Plasmodium knowlesi incubated in vitro utilized all the pre-formed radioactive purines tested (adenine, adenosine, deoxvadenosine, guanine, guanosine and hypoxanthine) but none of the pyrimidines (thymine, thymidine, uracil, uridine, cytidine and deoxycytidine). They did, however, utilize the pyrimidine precursor orotic acid.
All precursors analysed, including deoxyadenosine, were incorporated into both DNA and RNA (in the ratio of ∼1:3) but 19% was incorporated into other unidentified compounds. 3Hadenosine was incorporated into adenine and guanine residues of both DNA and RNA.
No unambiguous evidence was obtained for any periodicity in the synthesis of DNA or RNA in our cultures, even tho cultures remained as synchronous in vitro as they are in vivo. An estimate is presented of the amount of DNA made during one cycle in vitro.  相似文献   

4.
Autoradiography was used to investigate incorporation of tritiated adenine, adenosine, guanosine and thymidine by Eimeria nieschulzi and rat jejunal villus epithelial cells. At 2 1/2 days postinoculation, parasitized and control tissues were incubated for 20 min in oxygenated Tyrode's solution (37 C, pH 7.5) containing 30 μCi/ml of each nucleic acid precursor. Treatment of tissues with ribonuclease revealed that E. nieschulzi incorporated label from [3H]adenine primarily into RNA while that from [3H]adenosine and [3H]guanosine was present mainly in DNA. Label from [3H]thymidine was not utilized by parasites. Host villus epithelial cells incorporated label from [3H]purines primarily into RNA. Labeled cytoplasmic RNA was significantly increased in parasitized cells after incubation in [3H]adenine. Tritiated nuclear RNA and cytoplasmic RNA were significantly decreased in parasitized cells after incubation in [3H]adenosine. Incorporation of label from [3H]guanosine was similar for parasitized and control cells. A small quantity of label from each [3H]precursor was incorporated into DNA of villus epithelial cell nuclei.  相似文献   

5.
DNA synthesis in regenerating liver was studied to determine whether the onset of stimulated DNA synthesis preceded the onset of increased incorporation of thymidine into DNA. Thymidine incorporation into hepatic DNA was not stimulated 15 h after operation, but was stimulated after 18 h; peak stimulation occurred 30 h after operation. Thymidine kinase activity was stimulated 24 h after operation; highest kinase activity was observed at 36 h. The onset of stimulated DNA synthesis was estimated by following the incorporation of labeled aspartic acid, sodium formate, adenine or orotic acid into appropriate DNA bases, viz., thymine, adenine, adenine or cytosine, respectively. Incorporation of adenine and orotic acid was stimulated between 15 h and 18 h after operation; incorporation of aspartic acid and sodium formate was stimulated between 18 h and 21 h after operation.The incorporation of thymidine into DNA was accelerated by stress stimulus and was inhibited by hydrocortisone. Changes in thymidine kinase activity also were correspondingly accelerated or delayed. Incorporation of labeled thymidine, adenine, formate, orotic acid or thymine into appropriate DNA bases, viz., thymine, adenine, adenine, cytosine or thymine, respectively, was stimulated by stress stimulus or was inhibited by hydrocortisone.It was concluded from these data that stimulation of DNA synthesis and of thymidine incorporation into DNA was essentially synchronized in regenerating rat liver. Results from this study were compared with results from similar studies in 2 other tissues, and the limitations, attendant with using thymidine incorporation into DNA as an indicator of stimulated DNA synthesis, were discussed.  相似文献   

6.
—Measurements of the incorporation of [14C]NaHCO3 into orotic acid, uridine nucleotides and RNA in tissue minces establish the occurrence of the complete orotate pathway for the de novo biosynthesis of pyrimidines in rat brain. Selective inhibition of the incorporation of various radiolabelled precursors into orotic acid by uridine demonstrates the operation of a feedback control mechanism in brain minces and indicates carbamoylphosphate synthetase to be the site of inhibition; purine nucleosides were similarly found to inhibit the de novo biosynthesis of pyrimidines. The activity of the orotate pathway, as assessed by the rate of incorporation of [14C]NaHCO3 into orotic acid, was found to be very high in fetal brain and to decline rapidly with neurological development; the mature rat brain exhibits less than 1% of the activity of the fetal brain at 18 days of gestation. Comparative studies on the ability of minces of the brain and several extraneural tissues to utilize [14C]NaHCO3 and [14C]aspartate as precursors of orotic acid lead us to speculate that variations in the ability of tissues to synthesize orotic acid de novo are determined by similar variations in their ability to synthesize carbamoylphosphate.  相似文献   

7.
The incorporation of [methyl-3H]thymidine into DNA, of [5-3H]uridine into RNA, and of [1-14C]leucine into proteins of cerebral hemispheres, cerebellum, and brainstem of guinea pigs after 80 hr of hypoxic treatment was measured. Both in vivo (intraventricular administration of labeled precursors) and in vitro (tissue slices incubation) experiments were performed. The labeling of macromolecules extracted from the various subcellular fractions of the above-mentioned brain regions was also determined. After hypoxic treatment the incorporation of the labeled precursors into DNA, RNA, and proteins was impaired to a different extent in the three brain regions and in the various subcellular fractions examined; DNA and RNA labeling in cerebellar mitochondria and protein labeling in microsomes of the three brain regions examined were particularly affected.  相似文献   

8.
Y. pseudotuberculosis cells cultivated at temperatures of 37 degrees C and 8 degrees C were found to be capable of incorporating exogenic precursors into DNA, RNA and protein. The linear growth of thymidine incorporation occurred during 8 hours of cultivation at 37 degrees C, then the amount of the incorporated label decreased. At 8 degrees C the level of thymidine incorporation into DNA gradually increased for 80 hours and longer, but not reaching the level of incorporation observed at 37 degrees C. The incorporation of uridine into RNA of Y. pseudotuberculosis cells reached its maximum after 4 hours of cultivation at 37 degrees C, at a lower temperature of cultivation the incorporation of uridine into bacterial cells was almost linear, though slower, and lasted for 20 hours. The content of radioactive alanine in Y. pseudotuberculosis protein increased during 16 hours of cultivation at a high temperature, while at 8 degrees C the growth of the incorporation level lasted for at least 40 hours. For all precursors under study the incorporation rate into the cell biopolymers at the initial stages of cultivation was higher at 37 degrees C, than at a lower temperature.  相似文献   

9.
The incorporation of tritiated nucleosides into DNA and RNA has been examined in partially synchronized cells of Rana pipiens embryos at the neurula and tailbud stages. Tritiated thymidine and deoxyguanosine are incorporated into the DNA in two maxima, or waves, during the S phase at both stages. More DNA replicates in the early maximum at the neurula stage than at the tailbud stage. A comparison of the degree of incorporation of labelled deoxyguanosine to labelled thymidine into DNA suggests that earlier replicating DNA at both stages may be GC-rich compared to later replicating DNA. The incorporation of tritiated uridine into RNA during the S phase also differs between the neurula and tailbud stages. Pulse and continuous label experiments indicate that at the neurula stage the highest rate of RNA synthesis occurs late in the S phase whereas at the tailbud stage the higher rate of RNA synthesis has shifted to an interval earlier in the S phase.  相似文献   

10.
The incorporation of uridine into RNA in brain slices was studied. Optimal conditions for uridine incorporation were determined. The characteristics of the product suggest that de novo DNA-directcd synthesis of fairly high molecular weight material takes place. Incorporation into RNA of several areas of brain was studied. The incorporation was also studied as a function of the age of the animal. Finally, an apparent correlation was observed between the decrease in uridine incorporation with age and the increase of the enzyme uridine nucleosidase which hydrolyses uridine to uracil, a material which cannot be incorporated into RNA.  相似文献   

11.
SYNOPSIS. DNA synthesis of Toxoplasma gondii differs from that of other obligate intracellular parasites in that the parasite can synthesize DNA independently of the host cell and can incorporate preformed pyrimidines as well as pyrimidine precursors. However, pyrimidine precursors such as orotic acid are preferentially utilized over preformed pyrimidines such as thymidine. There is little apparent utilization of purine precursors.  相似文献   

12.
Dillerent chicken tissues are shown to display a clearly pronounced specificity relative to [2-14C] orotic acid and [5-3H]uridine as precursors of synthesis of the pool and RNA pyrimidine nucleotides. The fraction of pyrimidine nucleotides synthetized relative to the reserve pathway (uridine utilization) decreases in the series: kidneys greater than duodenum mucosa greater than lungs greater than liver greater than pancreas greater than bone marrow greater than brain greater than spleen. The results of [2-14C]orotic acid and [53H]uridine incorporation into UMP and CMP of the liver and spleen tissues RNA are interpreted in terms of the concept on existence of separate pools of pyrimidine phosphates--RNA precursors.  相似文献   

13.
SYNOPSIS. P. lophurae were removed from their host duck erythrocytes and incubated in vitro in certain modifications of the red cell extract medium previously described. The extent of incorporation, into material precipitable with trichloracetic acid, of 14C-labeled precursors supplied after 15–16 hr of incubation, was determined and compared with effects on structure of the parasites. A decreased concentration of erythrocyte extract, which always resulted in increased numbers of degenerate parasites and decreased development to multinucleate forms, also decreased the incorporation of methionine-methyl-14C and orotic-acid-6-14C. It did not affect incorporation of proline-U-14C or of choline-1,2-14C. With a 1/3rd strength red cell extract, omission of coenzyme A, which increased the proportion of degenerate parasites and usually decreased the multinucleate forms, decreased the incorporation of all 4 substrates, in keeping with the inability of the parasites to synthesize CoA. On the other hand, omission of ATP and pyruvate, which had an even greater deleterious effect on structure of the parasites than omission of CoA, had no effect on incorporation of methionine or orotic acid and probably none on that of choline. Incorporation of adenine was reduced in presence of ATP or AMP, suggesting competition at an uptake site. Incorporation of proline, however, was higher with ATP and pyruvate present, in keeping with the better development of the extracellular parasites. The uptake of proline may depend on an ATPase in the outer of the 2 membranes surrounding the parasite.  相似文献   

14.
[3H]uridine and [3H]orotic acid were equally utilized for labelling of RNA in mouse liver. Incorporation of [3H]cytidine was 2-3 times as high as that of [3H]-labelled uridine or orotic acid. These results differ from findings in rat liver, where both cytidine and orotic acid are better utilized for RNA labelling than is uridine. The ratio between liver RNA [3H]-activity and volatile [3H]-activity was 2, 3 and 13, respectively, at 300 min after injection of labelled uridine, orotic acid and cytidine, indicating an efficient chanelling of cytidine into liver anabolic pathways.  相似文献   

15.
1. Radioactive orotic acid, uridine and adenosine were administered to rats by intracisternal injection. The effects of the size of the dose, the specific radioactivity and time on the incorporation into the RNA of unfractionated nuclei of brain tissue were examined to establish appropriate conditions for studies of the relative activities in vivo of the various sorts of brain nuclei fractionated by zonal centrifugation. Uridine is incorporated more efficiently than either orotic acid or adenosine. 2. With [(3)H]uridine as precursor the astrocytes in zone (II) contain the highest radioactivity except at the beginning of the experiment when the neuronal nuclei of zone (I) are more highly labelled. This fraction utilizes [(14)C]orotic acid more readily than the nuclei of zone (II). The astrocytic nuclei of zone (III) show a general resemblance to those of zone (II). Considerable differences between the incorporations into the two types of oligodendrocyte nuclei in zones (IV) and (V) are observed. 3. The relative synthetic activities of the major types of brain nuclei in vitro and in vivo are discussed.  相似文献   

16.
Autoradiographic methods were used to study the incorporation of tritiated cytidine, thymidine, and uridine into asexual stages of Eimeria tenella cultured in embryonic chick kidney cells. Developing parasites did not incorporate 3H-thymidine either when host cells were labeled prior to infection or when the cultures were labeled for 30 min, 48–72 hr after infection. Continuous exposure of infected cultures to 3H-thymidine for up to 18 hr resulted in light labeling of cell cytoplasm and schizonts. 3H-cytidine and 3H-uridine were incorporated into parasites developing in cultures that were labeled before infection. When the cultures were labeled for 30 min, 48–72 hr postinfection and fixed immediately, schizonts were labeled lightly with 3H-cytidine but contained dense accumulations of 3H-uridine.  相似文献   

17.
Summary The unicellular green alga Chlorella incorporates labeled uridine mainly into the precursors of chloroplast ribosomes. After treatment with rifampicin for 60 min, the uridine incorporation into the particles is completely inhibited. Chloramphenicol treatment results in the same complete inhibition. In constrast, cycloheximide (actidione) slightly stimulates the incorporation of uridine into the chloroplast ribosome precursors.Short-time incorporation of inorganic phosphate into the ribosome fractions is nearly unaffected by rifampicin and chloramphenicol, but it is strongly inhibited by cycloheximide.Isolation and chromatographic separation of nucleic acids after treatment of cells with rifampicin shows that uridine incorporation into RNA is completely inhibited. Chloramphenicol causes only partial inhibition of uridine labeling in the high molecular weight RNA. Here again, cycloheximide stimulates the uridine incorporation.The results indicate that uridine is preferentially incorporated by Chlorella cells into the chloroplast ribosome precursors. Inorganic phosphate is introduced both into cytoplasmic and into chloroplasmic RNA, but because of the quantitative distribution, the cytoplasmic ribosomes are more extensively labeled. Since only inhibitors of bacterial and chloroplasmic RNA-and protein synthesis affect the formation of uridine-labeled ribosomes, this synthesis must take place in the chloroplast itself.
Abkürzungen DNA Desoxyribonucleinsäure - RNA Ribonucleinsäure - MAK-Säule Säule aus methyliertem Albumin mit Kieselgur - Bis-MSB bis-(O-Methylstyryl)-Benzol - PPO 2,5 Diphenyloxazol - Tris Trimethylaminomethan  相似文献   

18.
Permeabilized eggs of Drosophila melanogaster were incubated in tritiated uridine, valine, and phenylalanine. The uptake and incorporation into TCA-insoluble material were measured by scintillation counting. There was very little incorporation of uridine before the blastoderm stage. At the blastoderm stage, the egg took up 2.4 pmoles/hr of uridine and incorporated 0.13 pmoles into RNA (assuming no dilution of specific activity of the precursor). The uptake of amino acids varied with the age of the embryo; virgin eggs synthesized about as much protein as fertilized eggs. Autoradiography of eggs incubated in uridine showed a lack of RNA synthesis in nuclei until the start of the blastoderm formation. The small amount of uridine incorporation before this stage was due to mitochondria. Incorporation of amino acids was uniform in the cytoplasm until the blastoderm; there was no incorporation by yolk granules. Regional difference in labeling appeared during gastrulation. The pole cells did not form RNA during the blastoderm stage, formation started during gastrulation. Protein labeling of the pole cells, on the contrary, was very strong in the blastoderm and early gastrula. These results indicate that the expression of zygotic genome before the blastoderm stage is unlikely.  相似文献   

19.
Polyamine-induced DNA Synthesis and Mitosis in Oat Leaf Protoplasts   总被引:13,自引:8,他引:5       下载免费PDF全文
Freshly isolated protoplasts from leaves of oat seedlings (var. Victory) which do not divide when cultured on a wide range of media are capable of incorporating tritiated leucine, uridine, and thymidine into trichloroacetic acid-insoluble macromolecules. Over 70% of the leucine and uridine incorporated over an 18-hour period are found in protein and RNA, respectively, as shown by hydrolysis of the macromolecular products with a specific protease or RNase. In contrast, little or none of the tritiated thymidine is incorporated into macromolecules hydrolyzable by DNase over an 18- to 96-hour period. Incorporation of thymidine into trichloroacetic acid-insoluble material declines sharply with increasing time of culture after 18 hours. However, addition of diamines or polyamines to the medium not only prevents the decline, but actually increases net thymidine incorporation, including a fraction going into DNA. A significant increase in mitoses and binucleate protoplasts is also observed in 72- to 168-hour cultures.  相似文献   

20.
The production of virus-specific ribonucleic acid (RNA) was investigated in KB cells infected with herpes simplex virus. A fraction of RNA annealable to virus deoxyribonucleic acid (DNA) was found in these cells as early as 3 hr after virus inoculation. Production of this species of RNA increased up to 6 or 7 hr after infection, at which time elaboration of virus messenger RNA (mRNA) declined. At 24 hr after infection, the rate of incorporation of uridine into this RNA was approximately one-half of the rate present at 6 hr after inoculation. Nucleotide analysis of the RNA annealable to virus DNA was compatible with that expected for virus mRNA. Centrifugation showed considerable spread in the size of the virus-induced nucleic acid, the bulk of this RNA sedimenting between 12 and 32S. Incorporation of uridine into cell mRNA, ribosomal precursor RNA, and soluble RNA was suppressed rapidly after infection. As is the case with most other cytocidal viruses investigated to date, virus-induced suppression of cell RNA synthesis appears to be a primary mechanism of cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号