共查询到20条相似文献,搜索用时 15 毫秒
1.
Jolanta B. Zawilska Anna Lorenc Małgorzata Berezińska Berthe Vivien‐Roels Paul Pévet Debra J. Skene 《Chronobiology international》2013,30(1-2):341-350
The aim of the present study was to examine arylalkylamine N‐acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light‐dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night‐time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high‐amplitude melatonin rhythms in the turkey. 相似文献
2.
James Olcese 《Journal of neurochemistry》1991,57(3):943-947
The biosynthesis of the hormone melatonin (MEL) by the mammalian pineal gland has been thought to be regulated strictly by stimulatory factors, most predominantly norepinephrine (NE), released from the sympathetic nerve fibers which heavily innervate the gland. Evidence from many investigators suggests that sympathetic fibers may colocalize other neuroactive factors in addition to NE. One of these factors is neuropeptide Y (NPY), which has been found in the nerve fibers of the pineal gland. The present study sought to explore potential interactions between NE and NPY in the regulation of pineal MEL secretion. Specific, saturable, and reversible binding of 125I-NPY to intact cultured pinealocytes was measured with an affinity constant of 1 nM and an NPY binding site density of 0.04 pmol/mg of protein. In addition, cell culture studies revealed that NPY represents a potent (IC50 of 0.4 nM) endogenous inhibitor of NE-stimulated MEL secretion. However, this inhibition is accompanied by only a modest reduction (35%) of cyclic AMP accumulation. These findings reinforce the view that the mammalian pineal gland, which appears to integrate both inhibitory as well as stimulatory signals, is an important model of autonomic function, particularly in the context of biological rhythmicity. 相似文献
3.
David C. Klein 《Chronobiology international》2006,23(1):5-20
The defining feature of the pineal gland is the capacity to function as a melatonin factory that operates on a ∼24 h schedule, reflecting the unique synthetic capacities of the pinealocyte. Melatonin synthesis is typically elevated at night and serves to provide the organism with a signal of nighttime. Melatonin levels can be viewed as hands of the clock. Issues relating to the evolutionary events leading up to the immergence of this system have not received significant attention. When did melatonin synthesis appear in the evolutionary line leading to vertebrates? When did a distinct pineal gland first appear? What were the forces driving this evolutionary trend? As more knowledge has grown about the pinealocyte and the relationship it has to retinal photoreceptors, it has become possible to generate a plausible hypothesis to explain how the pineal gland and the melatonin rhythm evolved. At the heart of the hypothesis is the melatonin rhythm enzyme arylalkylamine N-acetyltransferase (AANAT). The advances supporting the hypothesis will be reviewed here and expanded beyond the original foundation; the hypothesis and its implications will be addressed. 相似文献
4.
David C. Klein 《Chronobiology international》2013,30(1-2):5-20
The defining feature of the pineal gland is the capacity to function as a melatonin factory that operates on a ~24 h schedule, reflecting the unique synthetic capacities of the pinealocyte. Melatonin synthesis is typically elevated at night and serves to provide the organism with a signal of nighttime. Melatonin levels can be viewed as hands of the clock. Issues relating to the evolutionary events leading up to the immergence of this system have not received significant attention. When did melatonin synthesis appear in the evolutionary line leading to vertebrates? When did a distinct pineal gland first appear? What were the forces driving this evolutionary trend? As more knowledge has grown about the pinealocyte and the relationship it has to retinal photoreceptors, it has become possible to generate a plausible hypothesis to explain how the pineal gland and the melatonin rhythm evolved. At the heart of the hypothesis is the melatonin rhythm enzyme arylalkylamine N‐acetyltransferase (AANAT). The advances supporting the hypothesis will be reviewed here and expanded beyond the original foundation; the hypothesis and its implications will be addressed. 相似文献
5.
Anamika Sengupta 《Chronobiology international》2013,30(5):915-933
The role of the pineal gland and its hormone melatonin in the regulation of annual testicular events was investigated for the first time in a psittacine bird, the roseringed parakeet (Psittacula krameri). Accordingly, the testicular responsiveness of the birds was evaluated following surgical pinealectomy with or without the exogenous administration of melatonin and the experimental manipulations of the endogenous levels of melatonin through exposing the birds to continuous illumination. An identical schedule was followed during the four reproductive phases, each characterizing a distinct testicular status in the annual cycle, namely, the phases of gametogenic quiescence (preparatory phase), seasonal recovery of gametogenesis (progressive phase), seasonal initiation of sperm formation (pre‐breeding phase), and peak gametogenic activity (breeding phase). In each reproductive phase, the birds were subjected to various experimental conditions, and the effects were studied comparing the testicular conditions in the respective control birds. The study included germ cell profiles of the seminiferous tubules, the activities of steroidogenic enzymes 17β‐hydroxysteroid dehydrogenase (17β‐HSD), and Δ53β‐hydroxysteroid dehydrogenase (Δ53β‐ HSD) in the testis, and the serum levels of testosterone and melatonin. An analysis of the data reveals that the pineal gland and its hormone melatonin may play an inhibitory role in the development of the testis until the attainment of the seasonal peak in the annual reproductive cycle. However, in all probability, the termination of the seasonal activity of the testis or the initiation of testicular regression in the annual reproductive cycle appears to be the function of the pineal gland, but not of melatonin. 相似文献
6.
Valérie Simonneaux AH Ouichou Cheryl Craft Paul Pévet 《Journal of neurochemistry》1994,62(6):2464-2471
Abstract: Neuropeptide Y is colocalized with noradrena-line in sympathetic fibers innervating the rat pineal gland. In this article we present a study of the effects and mechanisms of action of neuropeptide Y on the pineal noradrenergic transmission, the main input leading to the rhythmic secretion of melatonin. At the presynaptic level, neuropeptide Y inhibits by 45%, with an EC50 of 50 n M , the potassium-evoked noradrenaline release from pineal nerve endings. This neuropeptide Y inhibition occurs via the activation of pertussis toxin-sensitive G protein-coupled neuropeptide Y-Y2 receptors and is independent from, but additive to, the α2 -adrenergic inhibition of noradrenaline release. At the postsynaptic level, neuropeptide Y decreases by a maximum of 35%, with an EC50 of 5 n M , the β-adrenergic induction of cyclic AMP elevation via the activation of neuropeptide Y-Y1 receptors. This moderate neuropeptide Y-induced inhibition of cyclic AMP accumulation, however, has no effect on the melatonin secretion induced by a β-adrenergic stimulation. On the contrary, in the presence of 1 m M ascorbic acid, neuropeptide Y potentiates (up to threefold) the melatonin secretion. In conclusion, this study has demonstrated that neuropeptide Y modulates the noradrenergic transmission in the rat pineal gland at both presynaptic and postsynaptic levels, using different receptor subtypes and transduction pathways. 相似文献
7.
Avian Melatonin Synthesis: Photic and Circadian Regulation of Serotonin N-Acetyltransferase mRNA in the Chicken Pineal Gland and Retina 总被引:2,自引:5,他引:2
Marianne Bernard P. Michael Iuvone †Vincent M. Cassone Patrick H. Roseboom Steven L. Coon David C. Klein 《Journal of neurochemistry》1997,68(1):213-224
Abstract: The circadian rhythms in melatonin production in the chicken pineal gland and retina reflect changes in the activity of serotonin N -acetyltransferase (arylalkylamine N -acetyltransferase; AA-NAT; EC 2.3.1.87). Here we determined that the chicken AA-NAT mRNA is detectable in follicular pineal cells and retinal photoreceptors and that it exhibits a circadian rhythm, with peak levels at night. AA-NAT mRNA was not detected in other tissues. The AA-NAT mRNA rhythm in the pineal gland and retina persists in constant darkness (DD) and constant lighting (LL). The amplitude of the pineal mRNA rhythm is not decreased in LL. Light appears to influence the phase of the clock driving the rhythm in pineal AA-NAT mRNA in two ways: The peak is delayed by ∼6 h in LL, and it is advanced by >4 h by a 6-h light pulse late in subjective night in DD. Nocturnal AA-NAT mRNA levels do not change during a 20-min exposure to light, whereas this treatment dramatically decreases AA-NAT activity. These observations suggest that the rhythmic changes in chicken pineal AA-NAT activity reflect, at least in part, clock-generated changes in mRNA levels. In contrast, changes in mRNA content are not involved in the rapid light-induced decrease in AA-NAT activity. 相似文献
8.
Norepinephrine Release in the Rat Pineal Gland: The Input from the Biological Clock Measured by In Vivo Microdialysis 总被引:2,自引:1,他引:1
W. J. Drijfhout A. G. van der Linde S. E. Kooi C. J. Grol B. H. C. Westerink 《Journal of neurochemistry》1996,66(2):748-755
Abstract: The sympathetic innervation of the rat pineal gland was investigated, measuring the norepinephrine (NE) release by on-line in vivo microdialysis. NE was assayed using an HPLC method with precolumn derivatization and fluorescence detection. Its high sensitivity and reliability made it very suitable to monitor the low levels of NE in the dialysates (12.5 fmol during nighttime, 3 fmol during daytime). To increase NE levels, the monoamine reuptake inhibitor cocaine was added to Ringer's solution at concentrations of 10−6 and 10−5 M . This resulted in increases of neurotransmitter output of 167 and 219%, respectively, but did not change the qualitative and/or quantitative outcome of other experiments. Perfusion with 10−6 M tetrodotoxin for 1 h resulted in a decrease of the NE release by >80%, whereas perfusion with the α2 -receptor antagonist yohimbine caused a twofold increase. These results indicate that the NE release in the rat pineal was of neuronal origin and regulated by a negative feedback mechanism involving inhibitory presynaptic α2 -receptors. Long-term (i.e., 16 h) measurements are described, showing the circadian properties of NE release. A pronounced rhythm is reported, showing extremely sharp transitions between low daytime and high nighttime values. Increases and decreases are reported to occur within the duration of collecting one sample (20 min). For comparison, the rhythm of melatonin release was also recorded. The on and off switches of the sympathetic input correlated well with the circadian rhythm of melatonin release and can thus be considered as the primary clock signal, inducing the nightly production of melatonin. 相似文献
9.
Balvant R. Sitaram Manjula Sitaram Martin Traut Colin B. Chapman 《Journal of neurochemistry》1995,65(4):1887-1894
Abstract: Liquid chromatographic techniques that permit the simultaneous analysis of S -adenosylmethionine, melatonin, and its intermediary metabolites N -acetyl-5-hydroxytryptamine and 5-hydroxytryptamine within individual pineal glands have been developed. S -Adenosylmethionine has been shown to undergo a marked nyctohemeral rhythm in the pineal gland of the rat, with maximal levels occurring during the light period and minimal levels during the dark period. Detailed studies of the temporal relationships between the levels of S -adenosylmethionine and those of melatonin and its intermediary metabolites suggest that an association exists between the levels of S -adenosylmethionine and the status of the biosynthesis of melatonin. Exposure of animals to continuous light and the administration of the β-adrenoreceptor antagonist propranolol were both found to inhibit the induction of melatonin synthesis and prevent the reduction in the levels of S -adenosylmethionine during the dark period. As a corollary the induction of melatonin biosynthesis following the administration of the β-adrenoreceptor agonist isoproterenol during the light period was accompanied by a marked decrease in the levels of S -adenosylmethionine in the pineal gland. The significance of the link between the nyctohemeral rhythms in the levels of S -adenosylmethionine and the biosynthesis of melatonin in the pineal gland is discussed in the context of the therapeutic efficacy of S -adenosylmethionine as an antidepressant. 相似文献
10.
Microdialysis of Melatonin in the Rat Pineal Gland: Methodology and Pharmacological Applications 总被引:1,自引:0,他引:1
Abstract: The present study describes the development of a new technique to measure melatonin contents in the pineal gland of freely moving rats, by means of on-line microdialysis. The transcerebral cannula was modified, and a sensitive assay of melatonin, using HPLC with fluori-metric detection, was set up. With this system it is possible to monitor the melatonin levels on-line in the pineal gland during day-and nighttime. The nightly increase in melatonin release was recorded. Tetrodotoxin had an inhibitory effect on nighttime levels, whereas even high concentrations did not alter the daytime level. From this we conclude that neuronal activity is necessary to synthesize melatonin and that during daytime no net neuronal activity is present. Melatonin levels could be greatly enhanced by systemic administration of the β-agonist isoprenaline (ISO). Also, local infusion of ISO or 8-bromoadenosine 3',5'-cyclic monophosphate, an analogue of the second messenger cyclic AMP, resulted in increased melatonin levels, demonstrating the presence of β-adrenergic receptors, coupled to a cyclic AMP-based second messenger system, on the pineal gland. Injection of phenylephrine had no effect on daytime levels. Only when administered during ISO-induced stimulation of melatonin release did it enhance this stimulated release. This proved the regulatory role of α1 -receptors on pinealocytes. The method presented is of special interest for investigating the innervation of the pineal gland and the biochemical processes that regulate the biosynthesis of melatonin. Also, for studies on the diurnal rhythms of melatonin release and factors that influence these rhythms in freely moving animals, this model will be of great value. 相似文献
11.
Two rabbit arylamine N-acetyltransferases (NAT1 and NAT2, EC 2.3.1.5) have been cloned and characterized recently in this laboratory. They catalyze the acetylation of primary arylamine and hydrazine drugs and other substrates in the liver, including sulfamethazine, p-aminosalicylic acid, and p-aminobenzoic acid. In the pineal gland, serotonin is metabolized to N-acetylserotonin by an unknown N-acetyl-transferase. Similarity of the liver enzymes and the pineal gland arylalkylamine N-acetyltransferase (AA-NAT) has been suggested, because pineal gland homogenates were shown to metabolize arylamine substrates as p-phenetidine, aniline, or phenylethylamine, and liver homogenates or partially purified liver enzyme preparations catalyzed the N-acetylation of serotonin. The present study was undertaken to elucidate the possible role of NAT1 or NAT2 in serotonin acetylation in the pineal gland. We transiently expressed rNAT1 and rNAT2 genes in COS cells, studied the kinetics of the enzymes produced with various substrates, and compared these data with activities of rabbit pineal glands and livers. These enzymatic studies were complemented with western blot analysis with antibodies against NAT1 and NAT2. Cross-hybridization of rNAT1 or rNAT2 to the gene for the pineal gland AA-NAT was tested by Southern blot studies of genomic rabbit DNA. Our results indicate that although NAT1 is expressed in the pineal gland, it is not involved in the physiologically important step of N-acetylation of serotonin. 相似文献
12.
Identification of Adenosine Receptor in Rat Pineal Gland: Evidence for A-2 Selectivity 总被引:1,自引:2,他引:1
Nicole Sarda Abdallah Gharib Denis Reynaud Ling Ou Henri Pacheco 《Journal of neurochemistry》1989,53(3):733-737
We have examined the binding of the adenosine agonist radioligands [3H]cyclohexyladenosine [( 3H]CHA), R-N6-[3H]phenylisopropyladenosine [( 3H]R-PIA), and 5'-N-ethylcarboxamido[3H]adenosine [( 3H]NECA) to membranes prepared from rat pineal gland. The results showed that the A-1-selective ligands (CHA and R-PIA) had less than or equal to 10% specific binding. By contrast, [3H]NECA, a nonselective A-1/A-2 ligand, gave 72% specific binding of the total binding. This specific binding was insensitive to cyclopentyladenosine (50 nM) or R-PIA (50 microM). To characterize this binding, we used the N-ethylmaleimide pretreatment method. Under these conditions, this binding was of high affinity with a KD of 51 +/- 10 nM and an apparent Bmax of 1,060 +/- 239 fmol/mg of protein. Specific binding was unaffected by the presence of MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM) (-25%), a result suggesting the involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. The rank of activity of adenosine analogues in displacing specific [3H]NECA binding was NECA greater than 2-chloroadenosine greater than S-adenosyl-L-homocysteine greater than CHA. Binding was also displaced by 3-isobutyl-1-methylxanthine (IC50 = 23.6 microM). These findings are consistent with the selective labeling by [3H]NECA of an A-2-type adenosine receptor in rat pineal membranes. 相似文献
13.
E. Maronde R. Middendorff R. Telgmann D. Müller †B. Hemmings ‡K. Taskén J. Olcese 《Journal of neurochemistry》1997,68(2):770-777
Abstract: We investigated the expression of regulatory (R) and catalytic (C) subunits of cyclic AMP-dependent protein kinase (cAK; ATP:protein phosphotransferase; EC 2.7.1.37) in the bovine pineal gland. In total RNA extracts of bovine pineal glands moderate levels of RIα/RIIβ and high levels of Cα and Cβ mRNA were found. We were able to detect a strong signal for RII and C subunit at the protein level, whereas RI was apparently absent. Probing sections of the intact bovine pineal gland with RI and RII antibodies stained only RII in pinealocytes. Pairs of cyclic AMP analogues complementing each other in activation of type II cAK, but not cAKI-directed analogue pairs, showed synergistic stimulation of melatonin synthesis. Moreover, melatonin synthesis stimulated by the physiological activator norepinephrine in pineal cell cultures was inhibited by cAK antagonists. Taken together these results show the presence of RII regulatory and both Cα and Cβ catalytic subunits and thus cAKII holoenzyme in the bovine pineal gland. The almost complete inhibition of norepinephrine-mediated melatonin synthesis by the cAK antagonists emphasizes the dominant role of cyclic AMP as the second messenger and cAK as the transducer in bovine pineal signal transduction. 相似文献
14.
Takeo Deguchi 《Journal of neurochemistry》1982,38(3):797-802
Abstract: The circadian rhythms of serotonin N -acetyltransferase activity in the pineal glands of infant and adult rats were compared. The nighttime increase of N -acetyltransferase activity in the pineals of infant rats was blocked by removal of superior cervical ganglion or by pretreatment with reserpine, l -propranolol, and cycloheximide. Injection of isoproterenol to infant rats markedly elevated pineal N -acetyltransferase activity. When the pineal glands of infant rats were organ-cultured, N -acetyltransferase activity spontaneously increased 7–12 h after the rats were killed. When infant rats were previously denervated or pretreated with reserpine and their pineals were cultured, this spontaneous elevation of N -acetyltransferase activity was abolished, indicating that the transient increase of the enzyme activity in organ culture was due to a liberation of catecholamine from degenerating nerve endings. Additional illumination until midnight prevented the nighttime increase of N -acetyltransferase activity in intact infant rats but not in blinded infant rats. These observations are taken to indicate that N -acetyltransferase rhythm in immature rat pineals is regulated by the sympathetic nerves in the same manner as in adult rat pineals, that the immature rat pineal does not contain a time-keeping system, and that there is no extraretinal light perception in infant rats as far as N -acetyltransferase rhythm is concerned. 相似文献
15.
The rat pineal gland is known to release melatonin in response to noradrenergic stimulation. Since vasopressin (VP)- and oxytocin (OT)-containing fibers innervate the pineal gland, the effects of VP and OT on melatonin release from perifused rat pineal glands were investigated. VP (10−7 M) and OT (10−6 M) decreased the basal melatonin secretion. No dose-dependent effect was observed. At high concentrations (10−5) these peptides potentiated the isoproterenol-induced increase of melatonin secretion. Below 10−5 M no potentiation was observed. Fragments of VP {[pGlu4,Cys6]VP(4–9)} and OT {[pGlu4,Cys6]OT(4–9)} did not display any effect on the isoproterenol-induced melatonin secretion. 相似文献
16.
17.
Complex circadian regulation of pineal melatonin and wheel-running in Syrian hamsters 总被引:5,自引:0,他引:5
J. A. Elliott L. Tamarkin 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1994,174(4):469-484
Circadian regulation of pineal melatonin content was studied in Syrian hamsters (Mesocricetus auratus), especially melatonin peak width and the temporal correlation to wheel-running activity. Melatonin was measured by radioimmunoassay in glands removed at different circadian times with respect to activity onset (= CT 12). Pineal melatonin peak width (h; for mean 125 pg/gland) and activity duration () were both 4–5 h longer after 12 or 27 weeks than after 5 or 6 days in continuous darkness (DD). Increased peak width was associated with a delay in the morning decline (M) of melatonin to baseline, correlated with a similar delay in wheel-running offset. In contrast, the evening rise (E) in melatonin occurred at approximately the same circadian phase regardless of the length of DD. Fifteen min light pulses produced similar phase-shifts in melatonin and activity. In a phase advance shift, M advanced at once, while E advanced only after several days of adjustment. Independent timing of shifts in the E and M components of the melatonin rhythm suggest that these events are controlled separately by at least two circadian oscillators whose mutual phase relationship determines melatonin peak width. This two-oscillator control of melatonin peak width is integral to the circadian mechanism of hamster photoperiodic time measurement.Abbreviations CT
circadian time
- DD
continuous dark
- L: D
light: dark cycle
- PMEL
pineal melatonin
- PRC
phase response curve
- RIA
radioimmunoassay; , duration (h) of the active phase of the circadian wheel-running rhythm; , free-running period 相似文献
18.
Denis Reynaud Abdallah Gharib Michel Lagarde Nicole Sarda 《Journal of neurochemistry》1990,55(4):1316-1321
We have examined the binding of the adenosine agonist radioligands [3N]N6-cyclohexyladenosine ([3H]CHA) and [3H]5'-N-ethylcarboxamidoadenosine ([3H]NECA) to membranes prepared from postmortem human pineal glands. The results showed that the A-1-specific ligand CHA did not bind to membranes. By contrast, [3H]NECA, a nonselective A-1/A-2 ligand, gave 68% specific binding of the total binding. This specific binding was nearly insensitive to the N-ethyl-maleimide pretreatment method. To characterize this binding, we used cyclopentyladenosine (50 nM). Under those conditions [3H]NECA binding at 30 degrees C was rapid and reversible; the KD determined from the kinetic studies was 141 nM. In postmortem human pineal gland, the rank order of potency of adenosine analogues and drugs competing with [3H]NECA showed the specificity for an A-2 receptor: NECA greater than 2-chloroadenosine greater than L-N6(2-phenylisopropyl)adenosine greater than 8-phenyltheophylline greater than 3-isobutyl-1-methylxanthine greater than caffeine. Guanylylimidodiphosphate (100 microM) induced a decrease in the affinity of [3H]NECA, a result suggesting the involvement of a G protein mechanism in the coupling of the adenosine receptor to other components of the receptor complex. Scatchard analysis revealed one class of binding sites for [3H]NECA with KD and Bmax ranging from 175 to 268 nM and 11.0 to 14.1 pmol/mg protein, respectively. The binding of [3H]NECA was not affected by age, sex, or postmortem delay. [3H]NECA should be a useful tool to assess brain A-2 receptor density in a variety of neuropsychiatric disorders. 相似文献
19.
Rapid Nocturnal Increase in Ovine Pineal N-Acetyltransferase Activity and Melatonin Synthesis: Effects of Cycloheximide 总被引:1,自引:2,他引:1
M. A. Aryan Namboodiri D. Sugden D. C. Klein R. Grady Jr. I. N. Mefford 《Journal of neurochemistry》1985,45(3):832-835
Thirty minutes after the onset of darkness, ovine pineal arylalkylamine N-acetyltransferase, N-acetylserotonin, and melatonin increase 5- to 10-fold. No significant changes in hydroxyindole-O-methyltransferase, 5-hydroxytryptamine, 5-hydroxyindoleacetic acid, 5-hydroxytryptophol, 5-methoxyindoleacetic acid, and 5-methoxytryptophol are detected at this time. Administration of cycloheximide inhibits the rise in N-acetyltransferase and N-acetylserotonin, but not melatonin. Unexpectedly, 5-methoxytryptophol increases after cycloheximide treatment. Taken together, these results, although consistent in part with a role for serotonin N-acetylation in the regulation of melatonin synthesis in sheep, indicate that an N-acetyltransferase-independent mechanism may also be involved. 相似文献
20.
V. Bolliet M. A. Ali F. -J. Lapointe J. Falcón 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1996,165(8):677-683
The rhythmic production of melatonin is governed by intrapineal oscillators in all fish species so far investigated except the rainbow trout. To determine whether the latter represents an exception among fish, we measured in vitro melatonin secretion in pineal organs of nine wild freshwater and six marine teleost species cultured at constant temperature and under different photic conditions. The results demonstrate that pineal organs of all species maintain a rhythmic secretion of melatonin under light:dark cycles and complete darkness, and strongly suggest that most fish possess endogenous intrapineal oscillators driving the rhythm of melatonin production, with the exception of the rainbow trout.Abbreviations
LD
light:dark
-
DD
dark:dark
-
NAT
N-acetyltransferase
-
RIA
radioimmunoassay 相似文献