首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objectives of the investigation were to assess hypersomnia, which progressively appeared in a young patient after a pinealectomy, chemotherapy, and radiotherapy for a typical germinoma, as well as the potential benefit of melatonin administration in the absence of its endogenous secretion. 24 h ambulatory polysomnography and the Multiple Sleep Latency Test (MSLT) were performed; in addition, daily plasma melatonin, cortisol, growth hormone, prolactin, and rectal temperature profiles were determined before and during melatonin treatment (one 2 mg capsule given nightly at 21:00 h for 4 weeks). MSLT showed abnormal sleep latency and two REM sleep onsets. Nighttime total sleep duration was lengthened, mainly as a consequence of an increased REM sleep duration. These parameters were slightly modified by melatonin replacement. Plasma melatonin levels, which were constantly nil in the basal condition, were increased to supraphysiological values with melatonin treatment. The plasma cortisol profile showed nycthemeral variation within the normal range, and the growth hormone profile showed supplementary diurnal peaks. Melatonin treatment did not modify the secretion of either hormone. The plasma prolactin profile did not display a physiological nocturnal increase in the basal condition; however, it did during melatonin treatment, with the rise coinciding with the nocturnal peak of melatonin concentration. A 24 h temperature rhythm of normal amplitude was persistent, though the mean level was decreased and the rhythm was dampened during melatonin treatment. The role of radiotherapy on the studied parameters cannot be excluded; the findings of this case study suggest that the observed hypersomnia is not the result of melatonin deficiency alone. Overall, melatonin treatment was well tolerated, but the benefit on the sleep abnormality, especially on daytime REM sleep, was minor, requiring the re-introduction of modafinil treatment.  相似文献   

2.
Ghrelin, an endogenous ligand of the growth hormone (GH) secretagogue (GHS) receptor, stimulates GH release, appetite, and weight gain in humans and rodents. Synthetic GHSs modulate sleep electroencephalogram (EEG) and nocturnal hormone secretion. We studied the effect of 4 x 50 microg of ghrelin administered hourly as intravenous boluses between 2200 and 0100 on sleep EEG and the secretion of plasma GH, ACTH, cortisol, prolactin, and leptin in humans (n = 7). After ghrelin administration, slow-wave sleep was increased during the total night and accumulated delta-wave activity was enhanced during the second half of the night. Rapid-eye-movement (REM) sleep was reduced during the second third of the night, whereas all other sleep EEG variables remained unchanged. Furthermore, GH and prolactin plasma levels were enhanced throughout the night, and cortisol levels increased during the first part of the night (2200-0300). The response of GH to ghrelin was most distinct after the first injection and lowest after the fourth injection. In contrast, cortisol showed an inverse pattern of response. Leptin levels did not differ between groups. Our data show a distinct action of exogenous ghrelin on sleep EEG and nocturnal hormone secretion. We suggest that ghrelin is an endogenous sleep-promoting factor. This role appears to be complementary to the already described effects of the peptide in the regulation of energy balance. Furthermore, ghrelin appears to be a common stimulus of the somatotropic and hypothalamo-pituitary-adrenocortical systems. It appears that ghrelin is a sleep-promoting factor in humans.  相似文献   

3.
Patients with human African trypanosomiasis (HAT, sleeping sickness), due to the inoculation of Trypanosoma brucei gambiense or rhodesiense by the tsetse fly, are "sleepy by day and restless by night." The first 24 h polysomnographic recording (electroencephalogram [EEG], electromyogram [EMG], electrooculogram [EOG]), showing a disappearance of the 24 h rhythmicity of sleep and wakefulness, was performed in 1988. Thereafter, our team recorded 18 patients and 6 control volunteers at bed rest during 24 h sessions. Blood samples were taken hourly from 8 of the patients through a venous catheter and every 10 minutes from the remaining 10 patients. Plasma cortisol, prolactin, growth hormone (GH), melatonin, and plasma renin activity were analyzed. No disruptions of the circadian rhythms of sleep and wakefulness were described in the 6 healthy African subjects, and there also were no disturbances of 24 h hormone profiles. The patients experienced a dysregulation of the circadian rhythmicity of sleep and wakefulness that was proportional to the severity of the disease. Sleep onset rapid eye movement (REM) episodes were more frequent in the most severely sick patients, who also showed major disruptions in the 24 h plasma hormonal profiles, with intermediate profiles being observed at earlier stages of the sickness. However, the relationship between hormonal secretions and the states of vigilance persisted. Contrary to the other hormones, melatonin secretion remained undisturbed. These findings indicate that, at the stage of meningoencephalitis, HAT represents a dysregulation of the sleep-wake cycle and sleep structure, rather than a hypersomnia; this dysregulation is proportional to the degree of severity of the clinical and biological symptoms. It is accompanied by a circadian dysrhythmia of hormonal secretions, although the relationship between hormone pulses and sleep states is preserved. We therefore favor the involvement of the serotonergic raphe nuclei-suprachiasmatic nuclei liaison in the reversible disturbance of the circadian rhythms of the sleep-wake cycle and of hormonal secretions.  相似文献   

4.
Seasonal changes in nocturnal prolactin secretion and their relationship with melatonin secretion were monitored in wild (Mouflon, Ovis gmelini musimon) and domesticated sheep (breed Manchega, Ovis aries). Two groups of eleven adult females each, were maintained outdoors under natural photoperiod. Plasma concentrations of prolactin and melatonin were determined during the summer and winter solstices and the autumn and spring equinoxes. Blood samples were collected every 3h during the night hours, and 1h before and after the onset of darkness and sunrise. Maximum mean plasma concentrations of prolactin during the dark-phase in Mouflons were observed in the summer solstice, (P<0.001) and in the summer solstice and spring equinox in Manchega ewes (P<0.001). Mean plasma concentrations of prolactin were higher in the wild species (P<0.001) during the summer solstice. In contrast, during the spring equinox, mean levels of prolactin were higher in Manchega ewes than in Mouflons (P<0.05). Plasma prolactin concentrations showed a nocturnal rhythm in both breeds, with seasonal variations (P<0.001). The increase in plasma melatonin levels during the first hour after sunset was accompanied to increasing concentrations of PRL 1h after the onset of darkness, only in the autumn and spring equinox for the Mouflon, and in the summer solstice and spring equinox for the Manchega ewes. In Mouflons, the fall of plasma PRL concentrations about the middle dark-phase in all the periods studied, coincided with high levels of melatonin. A similar relation was observed in Manchega ewes only in the winter solstice and spring equinox. The current study shows that the nocturnal rhythm of prolactin secretion exhibits seasonal variation; differences in the patterns of prolactin secretion between Mouflon and Manchega sheep are taken to represent the effects of genotype.  相似文献   

5.
Aging is associated with a dramatic decrease in sleep intensity and continuity. The selective GABA(A) receptor agonist gaboxadol has been shown to increase non-REM sleep and the duration of the non-REM episodes in rats and sleep efficiency in young subjects and to enhance low-frequency activity in the electroencephalogram (EEG) within non-REM sleep in both rats and humans. In this double-blind, placebo-controlled study, we investigated the influence of an oral dose of 15 mg of gaboxadol on nocturnal sleep and hormone secretion (ACTH, cortisol, prolactin, growth hormone) in 10 healthy elderly subjects (6 women). Compared with placebo, gaboxadol did not affect endocrine activity but significantly reduced perceived sleep latency, elevated self-estimated total sleep time, and increased sleep efficiency by decreasing intermittent wakefulness and powerfully augmented low-frequency activity in the EEG within non-REM sleep. These findings indicate that gaboxadol is able to increase sleep consolidation and non-REM sleep intensity, without disrupting REM sleep, in elderly individuals and that these effects are not mediated by a modulation of hormone secretion.  相似文献   

6.
Bogdan A  Bouchareb B  Touitou Y 《Life sciences》2001,68(14):1607-1615
Muslims must refrain from eating, drinking, smoking, and sexual relations from sunrise to sunset during the month of Ramadan. Serum concentrations of melatonin, steroid hormones (cortisol, testosterone), pituitary hormones (prolactin, LH, FSH, GH, TSH) and thyroid hormones (free thyroxin and free triiodothyronine) were documented around the clock at six 4-hourly intervals before Ramadan began and on the twenty-third day of Ramadan (daytime fasting). Time series were analysed with repeated measures ANOVA. Statistically significant differences were found in some variables: the nocturnal peak of melatonin was diminished and may have been delayed; there was a shift in the onset of cortisol and testosterone secretion; the evening peak of prolactin was enhanced, FSH and GH rhythmic patterns were affected little or not at all by Ramadan fasting and only the serum TSH rhythm was blunted over the test time span. These data show that daytime fasting, modifications in sleep schedule and psychological and social habits during Ramadan induce changes in the rhythmic pattern of a number of hormonal variables.  相似文献   

7.
We studied the circadian rhythm of plasma melatonin, growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH), and Cortisol in 52 mentally healthy old subjects, 35 old demented patients, and 22 clinically healthy young controls. When compared to young controls, the circadian profile of plasma melatonin of old subjects, both demented or not, was clearly flattened, particularly during the night. The selective impairment of nocturnal melatonin secretion was significantly related to both the age and the severity of mental impairment (Mini Mental State Examination [MMSE] score). The PRL and GH circadian profiles were similar in the three groups during the day, but a significant lowering of the values recorded during the night occurred with aging. The impairment of the nocturnal secretion was related to the subjects' age and, for the GH secretory pattern only, also to the MMSE score. The ACTH circadian profile was similar in the three groups studied, even when old subjects exhibited higher ACTH levels throughout the 24h cycle, compared to young controls. Significantly higher Cortisol values at evening- and nighttime occurred in elderly subjects and particularly in the demented group. Both the mean levels and the nadir values of plasma Cortisol were positively related to age and negatively to MMSE score. In order to verify the sensitivity of the hypothalamo-pituitary-adrenal (HPA) axis to the steroid feedback, the circadian profile of plasma Cortisol was evaluated also after dexamethasone (DXM) administration (1 mg at 23:00h); the sensitivity of the HPA axis was significantly impaired in old subjects and particularly in the demented ones. These findings suggest that the neuroendocrine alterations already present in physiological aging, due to both anatomical damages and unbalanced central neurotransmitters, are enhanced in senile dementia. (Chronobiology International, 14(4), 385–396, 1997)  相似文献   

8.
Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.  相似文献   

9.
School start time influences sleep parameters. Differences between circadian sleep parameters on weekends and weekdays have been associated with obesity, sleep, and psychiatric disorders. Moreover, circadian rhythm dysregulation affects the secretion of some hormones, such as melatonin and cortisol. In the current study, we investigate the effect of school start time on cortisol and melatonin levels in a community sample of Brazilian children and adolescents. This was a cross-sectional study of 454 students (mean age, 12.81 ± 2.56 years; 58.6% female). From this sample, 80 participants were randomly selected for saliva collection to measure melatonin and cortisol levels. Circadian sleep parameters were assessed by self-reported sleep and wake up schedules and the Morningness–Eveningness Questionnaire. The outcomes, salivary melatonin and cortisol levels, were measured in morning, afternoon and night saliva samples, and behavior problems were assessed using the Child Behavior Checklist (CBCL). The main results revealed that morning school start time decreased the secretion of melatonin. Morning melatonin levels were significantly positively correlated with the sleep midpoint on weekdays and on weekends. Afternoon melatonin levels were positively correlated with the sleep midpoint on weekends in the morning school students. Conversely, in the afternoon school students, night melatonin levels were negatively correlated with the sleep midpoint on weekdays. Cortisol secretion did not correlate with circadian sleep parameters in any of the school time groups. In conclusion, school start time influences melatonin secretion, which correlated with circadian sleep parameters. This correlation depends on the presence of psychiatric symptoms. Our findings emphasize the importance of drawing attention to the influence of school start time on the circadian rhythm of children and adolescents.  相似文献   

10.
The effects of low physiological doses of ACTH on nocturnal plasma cortisol patterns were investigated in six male subjects. Concomitant sleep EEG recordings were analysed in relation to the cortisol level. 250 ng ACTH1-24 (Synacthène), injected through an indwelling catheter at a period of low adreno-cortical activity (2400 h), induced a cortisol peak followed by a four to five-hour period without any cortisol secretion. The same dose of ACTH injected at 0430 h, when cortisol secretory activity was high, did not entirely abolish endogenous secretion, which was diminished for a shorter time (2.5 hr). The ACTH-provoked cortisol peaks of comparable size to endogenous secretory peaks, can suppress cortisol secretion for several hours. This suppressive capacity depends on timing in relation to high or low secretory activity periods. However, spontaneous cortisol peaks have no appreciable effect on further secretory episodes. This difference in suppressive capacities suggests that the 24 hr cortisol rhythm is regulated independently of such feedback mechanisms.  相似文献   

11.
The present study examines the ovulatory activity of wild and domesticated ewes subjected to either a constant photoperiod of long days (16L:8D) or natural changes in daily photoperiod for 16 mo. The aim was to determine whether an endogenous reproductive rhythm controls seasonal reproductive activity in these sheep, and how the photoperiod might affect this. The effects of long-day photoperiods on long-term changes in prolactin and melatonin secretion were also evaluated. The two species showed changes in reproductive activity under the constant photoperiod conditions, suggesting the existence of an endogenous rhythm of reproduction. This rhythm was differently expressed in the two types of ewe (P < 0.05), with the domestic animals exhibiting much greater sensitivity to the effects of long days. A circannual rhythm of plasma prolactin concentration was also seen in both species and under both photoperiod conditions, although in both species the amplitude was always lower in the long-day animals (P < 0.01). The duration of the nocturnal melatonin plasma concentrations reflected the duration of darkness in both species and treatments. The peak melatonin concentration did not differ between seasons either under natural or long-day photoperiods.  相似文献   

12.
Exogenous melatonin (0.5-10 mg) has been shown to entrain the free-running circadian rhythms of some blind subjects. The aim of this study was to assess further the entraining effects of a daily dose of 0.5 mg melatonin on the cortisol rhythm and its acute effects on subjective sleep in blind subjects with free-running 6-sulphatoxymelatonin (aMT6s) rhythms (circadian period [tau] 24.23-24.95 h). Ten subjects (9 males) were studied, aged 32 to 65 years, with no conscious light perception (NPL). In a placebo-controlled, single-blind design, subjects received 0.5 mg melatonin or placebo p.o. daily at 2100 h (treatment duration 26-81 days depending on individuals' circadian period). Subjective sleep was assessed from daily sleep and nap diaries. Urinary cortisol and aMT6s were assessed for 24 to 48 h weekly and measured by radioimmunoassay. Seven subjects exhibited an entrained or shortened cortisol period during melatonin treatment. Of these, 4 subjects entrained with a period indistinguishable from 24 h, 2 subjects continued to free run for up to 25 days during melatonin treatment before their cortisol rhythm became entrained, and 1 subject appeared to exhibit a shortened cortisol period throughout melatonin treatment. The subjects who entrained within 7 days did so when melatonin treatment commenced in the phase advance portion of the melatonin PRC (CT6-18). When melatonin treatment ceased, cortisol and aMT6s rhythms free ran at a similar period to before treatment. Three subjects failed to entrain with initial melatonin treatment commencing in the phase delay portion of the PRC. During melatonin treatment, there was a significant increase in nighttime sleep duration and a reduction in the number and duration of daytime naps. The positive effect of melatonin on sleep may be partly due to its acute soporific properties. The findings demonstrate that a daily dose of 0.5 mg melatonin is effective at entraining the free-running circadian systems in most of the blind subjects studied, and that circadian time (CT) of administration of melatonin may be important in determining whether a subject entrains to melatonin treatment. Optimal treatment with melatonin for this non-24-h sleep disorder should correct the underlying circadian disorder (to entrain the sleep-wake cycle) in addition to improving sleep acutely.  相似文献   

13.
Calcium antagonists have been shown to influence some endocrinological processes in mammals. The use of calcium channel blockers in clinical practice is well documented. The current study monitored nocturnal melatonin, prolactin, and cortisol levels in 19 healthy volunteers before and after administration of calcium channel blockers. The effect of nifedipine was tested in 9 subjects, while diltiazem was administered in 10 men. The nocturnal profile of the given parameters was studied between 23:00 and 05:00 h. At midnight (zero time), the participants were given placebo, nifedipine (in a sublingual dose of 20 mg) or diltiazem (in a single dose of 90 mg). The hypothesis that calcium channel blockers decrease nocturnal melatonin secretion has not been confirmed. The mean nocturnal levels of melatonin between 01:00 and 05:00 h were: 78.1+/-8.8 (control study) vs. 82.4+/-10.2 ng/l (nifedipine study) and 73.0+/-5.3 ng/l (control study) vs. 75.1+/-5.1 ng/l (diltiazem study). In conclusion, the calcium channel blockers used in this study do not alter the nocturnal melatonin secretory process in healthy men.  相似文献   

14.
Neuro-endocrine hormone secretion is characterized by circadian rhythmicity. Melatonin, GRH and GH are secreted during the night, CRH and ACTH secretion peak in the morning, determining the circadian rhythm of cortisol secretion, TRH and TSH show circadian variations with higher levels at night. Thyroxine levels do not change with clear circadian rhythmicity. In this paper we have considered a possible influence of cortisol and melatonin on hypothalamic-pituitary-thyroid axis function in humans. Melatonin, cortisol, TRH, TSH and FT4 serum levels were determined in blood samples obtained every four hours for 24 hours from ten healthy males, aged 36-51 years. We correlated hormone serum levels at each sampling time and evaluated the presence of circadian rhythmicity of hormone secretion. In the activity phase (06:00 h-10:00 h-14:00 h) cortisol correlated negatively with FT4, TSH correlated positively with TRH, TRH correlated positively with FT4 and melatonin correlated positively with TSH. In the resting phase (18:00 h-22:00 h-02:00 h) TRH correlated positively with FT4, melatonin correlated negatively with FT4, TSH correlated negatively with FT4, cortisol correlated positively with FT4 and TSH correlated positively with TRH. A clear circadian rhythm was validated for the time-qualified changes of melatonin and TSH secretion (with acrophase during the night), for cortisol serum levels (with acrophase in the morning), but not for TRH and FT4 serum level changes. In conclusion, the hypothalamic-pituitary-thyroid axis function may be modulated by cortisol and melatonin serum levels and by their circadian rhythmicity of variation.  相似文献   

15.
Pharmacological doses of melatonin—low (0.5 mg/kg body wt.) and high (1.0 mg/kg body wt.) doses were administered chronically for 45 days to Wistar rats, and 24 h rhythms of adrenocorticotrophic hormone, cortisol, growth hormone, prolactin and melatonin were studied under semi-natural conditions. Exogenous melatonin administration caused delays in the acrophases of growth hormone and melatonin rhythm itself, whereas advances in the acrophases of adrenocorticotrophic hormone, cortisol and prolactin were observed, thus indicating that chronic administration of melatonin could alter the characteristics of endocrine rhythms. Alterations in the amplitude and mesor values of these endocrine rhythms were also observed during melatonin administration. Modulation of melatonin rhythmicity (due to exogenous administration) could influence the hormonal rhythms as a modulated internal zeitgeber and could simulate/mimic the conditions of altered photoperiod in the animal; this could be the reason for altered acrophase values in the melatonin treated groups. Significant dose-dependent effects of melatonin were absent in the present study. It remains to be proven how exogenous administration of melatonin could influence the hormonal rhythms investigated in the present study.  相似文献   

16.
The purpose of this study was to examine whether low frequency magnetic field (MF) influences nighttime secretion of hormones, particularly melatonin. Ten healthy males stayed in the experimental room (2.7 m cube with 3 axis Merritt coils) on two separate nights. On one night, subjects were exposed to linearly polarized 50 Hz, 20 microT sinusoidal MF with the third (30%) and the fifth (10%) harmonics and repetitive transient waves (1 burst/s of 1 kHz waves, exponentially attenuated with a duration of 50 ms; initially 100 microT peak), and the other night was for blind control. During the nights (2000-0800 h, including sleeping time, 2300-0700 h), blood samples were collected from the subjects at 1 h intervals for determining the levels of plasma hormones (melatonin, growth hormone (GH), cortisol, prolactin) and at 10 min intervals from 2200 to 0200 h for observing the GH surge induced by sleep. Statistical analyses revealed no significant difference between the 2 nights in the profiles of the four hormones, and the result suggested that extremely low frequency (ELF) or intermediate frequency (IF) MF to which humans are exposed residentially has no acute effect on nighttime secretion of hormones, particularly melatonin.  相似文献   

17.
Exposure to prolonged bed rest is known to induce changes in the renin-angiotensin-aldosterone system (RAAS) by way of posture, sodium and potassium balance, and stress, which may have serious consequences for patients. We focused on the diurnal variation of the RAAS by investigating changes in the levels of plasma renin activity (PRA) and aldosterone; for comparison to markers of the intrinsic pacemaker and to stress, we measured melatonin and cortisol. PRA, aldosterone, melatonin, and cortisol were measured hourly in 10 normal subjects with standardized sleep patterns, posture, and diet at baseline and after 11 days of prolonged bed rest conducted under a light-dark cycle. Circadian characteristics of hormone secretion patterns were estimated by multiple harmonic regression with excellent goodness-of-fit measures. Variability in the melatonin and cortisol patterns across subjects was minimal. Even for pulsatile hormones, this technique successfully estimated the acrophase, which was the salient feature. Baseline hormone peak times started with melatonin near the middle of the sleep period, followed by PRA, then aldosterone, and then cortisol around wake time. Prolonged bed rest did not induce significant changes in any timing characteristic of the secretion patterns. Baseline and prolonged bed rest peak times for melatonin and cortisol and amplitude characteristics for all hormones were highly correlated, indicating consistency within individuals. These data provide strong evidence that prolonged bed rest of 11 days' duration does not disrupt either the timing characteristics of the RAAS or the intrinsic pacemaker.  相似文献   

18.
Appearance of a nocturnal peak of leptin secretion in the pubertal rat   总被引:4,自引:0,他引:4  
Whether leptin is involved in the timing of puberty remains highly controversial in the rat. Daytime leptin secretion shows little change during the transition into adulthood. Because leptin exhibits a diurnal variation in the adult, it is possible that the ontogeny of such a rhythm provides important information for the timing of puberty. To begin to evaluate this hypothesis, we determined the development of the diurnal leptin secretion in the rat. The young females were raised in a light-controlled environment (12L, 0700 h light on). A cannula was placed in the right atrium on the previous day, and blood samples were collected every 4 h on Days 21, 24, 28, 32, 36 (1 day after vaginal opening), and 48 (adult, diestrus of estrous cycle). In addition to vaginal opening, plasma prolactin levels were determined as an endocrine index of puberty. Changes in food intake were monitored because nocturnal food intake has been considered to be a synchronizer for the leptin rhythm. This pattern of food intake was clearly evident throughout the ages studied. By contrast, there was no leptin rhythm at 21 and 24 days of age. Beginning at 28 days, leptin secretion exhibited a significant nocturnal peak (2300 h); this nocturnal peak increased in amplitude at 32 and 36 days and was still apparent in the cycling adult at Day 48. Plasma prolactin did not exhibit a diurnal rhythm but it increased from Days 32 to 48. The present findings indicate that in the rat, both the appearance of the nocturnal leptin rhythm and the nocturnal increase in circulating leptin levels during development carry information for timing the onset of puberty.  相似文献   

19.
Melatonin reduces locomotor activity and circulating cortisol in goldfish   总被引:1,自引:0,他引:1  
The present study focused on the effects of a subchronic melatonin treatment on locomotor activity and cortisol plasma levels in goldfish. We compared two different administration routes: peripheral (10 μg/g body weight) versus central (1 μg/μl) injections of melatonin for 7 or 4 days, respectively. Daily locomotor activity, including both diurnal and nocturnal activities, food anticipatory activity and circulating cortisol at 11:00 (under 24 h of food deprivation and 17 h postinjection) were significantly reduced after repeated intraperitoneal injections with melatonin for 7 days, but not after intracerebroventricular treatment. Taking in mind the anoretic effect of melatonin in this species, we investigated if such feeding reduction is directly responsible for the reduction in motor activity induced by melatonin treatment. Food restriction (50%) for 10 days did not significantly modify either daily locomotor activity or plasma cortisol levels in goldfish, indicating that the peripheral action of melatonin diminishing locomotor activity in goldfish is not a direct consequence of its anoretic action. In summary, our results indicate that, as previously described in other vertebrate species, melatonin can regulate locomotor activity and cortisol levels in goldfish, suggesting a sedative effect of this hormone in this teleost.  相似文献   

20.
Melatonin signals time of day and time of year in mammals by virtue of its pattern of secretion, which defines 'biological night.' It is supremely important for research on the physiology and pathology of the human biological clock. Light suppresses melatonin secretion at night using pathways involved in circadian photoreception. The melatonin rhythm (as evidenced by its profile in plasma, saliva, or its major metabolite, 6-sulphatoxymelatonin [aMT6s] in urine) is the best peripheral index of the timing of the human circadian pacemaker. Light suppression and phase-shifting of the melatonin 24 h profile enables the characterization of human circadian photoreception, and circulating concentrations of the hormone are used to investigate the general properties of the human circadian system in health and disease. Suppression of melatonin by light at night has been invoked as a possible influence on major disease risk as there is increasing evidence for its oncostatic effects. Exogenous melatonin acts as a 'chronobiotic.' Acutely, it increases sleep propensity during 'biological day.' These properties have led to successful treatments for serveal circadian rhythm disorders. Endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. The future holds much promise for melatonin as a research tool and as a therapy for various conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号