首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shell damage and parasitic infections are frequent in gastropods, influencing key snail host life‐history traits such as survival, growth, and reproduction. However, their interactions and potential effects on hosts and parasites have never been tested. Host–parasite interactions are particularly interesting in the context of the recently discovered division of labor in trematodes infecting marine snails. Some species have colonies consisting of two different castes present at varying ratios; reproductive members and nonreproductive soldiers specialized in defending the colony. We assessed snail host survival, growth, and shell regeneration in interaction with infections by two trematode species, Philophthalmus sp. and Maritrema novaezealandense, following damage to the shell in the New Zealand mud snail Zeacumantus subcarinatus. We concomitantly assessed caste‐ratio adjustment between nonreproductive soldiers and reproductive members in colonies of the trematode Philophthalmus sp. in response to interspecific competition and shell damage to its snail host. Shell damage, but not parasitic infection, significantly increased snail mortality, likely due to secondary infections by pathogens. However, trematode infection and shell damage did not negatively affect shell regeneration or growth in Z. subcarinatus; infected snails actually produced more new shell than their uninfected counterparts. Both interspecific competition and shell damage to the snail host induced caste‐ratio adjustment in Philophthalmus sp. colonies. The proportion of nonreproductive soldiers increased in response to interspecific competition and host shell damage, likely to defend the parasite colony and potentially the snail host against increasing threats. These results indicate that secondary infections by pathogens following shell damage to snails both significantly increased snail mortality and induced caste‐ratio adjustments in parasites. This is the first evidence that parasites with a division of labor may be able to produce nonreproductive soldiers according to environmental factors other than interspecific competition with other parasites.  相似文献   

2.
Using field surveys and experimental infections, we investigated the influence of a trematode parasite on life history traits of adult Lymnaea elodes snails. We found that parasitism significantly affected the growth, fecundity, and survival of host snails. Within five of the six natural L. elodes populations we sampled, shell length of echinostome-infected hosts was significantly greater than for uninfected conspecifics. Furthermore, we show that gigantism occurs among experimentally infected snails due to an accelerated growth rate and size-selective mortality following an Echinostoma revolutum infection. The fecundity of infected snails sharply decreased beginning at 3 weeks post exposure (PE) and all egg production eventually ceased for most hosts by 5–6 weeks PE. Energy constraints, imposed by parasite development, alter the host energy budget. Early in the infection, parasite depletion of host energy reserves reduces host reproduction, but sufficient resources remain to allow accelerated host growth. Mortality was increased among host snails at two distinct stages: shortly after exposure and several weeks after cercariae were first released. We did not observe tissue degradation in snails during the first 4 weeks after exposure to the parasite, but destruction of host tissues was noted among snails dying later in the infection. Received: 5 September 1997 / Accepted: 19 November 1997  相似文献   

3.
Parasitism can affect size in gastropods by altering the host's growth rate, but other morphological effects of parasitism have rarely been examined. In this study, the relationship between variation in host morphology and parasitism was examined in a population of the freshwater snail Elimia livescens. Differences were found in the morphology of snails infected with the digenean Proterometra macrostoma and uninfected snails. In order to differentiate between 2 hypotheses to explain these differences in morphology, snails were experimentally infected in the laboratory and several morphological traits were measured after 180 days. One hypothesis suggests that parasite-induced changes in shell development explain differences in morphology between infected and uninfected snails. The other hypothesis suggests that selective mortality of infected hosts explains the difference. In the experiment, differences were found between infected snails and uninfected snails in overall size but not in any measurements of shape. The short duration of the experiment relative to the duration of most infections may account for why field-infected snails differed in shape but experimentally infected snails did not. Parasite-induced changes in growth rate are the most likely explanation for the larger size of infected snails relative to uninfected snails.  相似文献   

4.
1. Few studies have directly addressed the role played by parasites in the structure and function of ecosystems. Parasites influence the behaviour, reproduction and overall fitness of their hosts, but have been usually overlooked in community and ecosystem‐level studies. We investigated the effects of trematode parasites on snail–periphyton interactions. 2. Physa  acuta (Gastropoda: Pulmonata) snails infected with the trematode Posthodiplostomum minimum (often >30% of within‐shell biomass) grazed more rapidly than uninfected snails. Trematode effects on snail grazing indirectly affected the standing stock and community structure of periphyton. Populations of snails with 50% infected individuals reduced algal biomass by 20% more than populations with lesser (10% or 0%) infection rates. 3. The alga Cladophora glomerata dominated periphyton communities grazed by snail populations with 50% infection rates, whereas diatoms and blue–green algal taxa dominated when grazed by snail populations with lower infection rates. 4. Thus, trematodes indirectly affected periphyton communities by altering host snail behaviour, a trait‐mediated indirect effect. These results indicate that trematodes can indirectly influence benthic community structure beyond simple population fitness, with possible related effects on ecosystem function.  相似文献   

5.
The periwinkle, Littorina sitkana, is found throughout the intertidal zone, often in isolated subpopulations. The majority of trematode parasites use snails as intermediate hosts, and decreased survivorship is often observed in snails infected with trematodes. Sampling L. sitkana from four sites in Barkley Sound, British Columbia, Canada, we test the effects of parasitic infection on snail survival using maximum likelihood and Bayesian approaches using the software MARK and WinBUGS. We found that survival of periwinkles and trematode community composition differed among sites, but survival and trematode prevalence were uncorrelated. WinBUGS performed better than MARK in two ways: (1) by allowing the use of information on known mortality, thus preventing survival overestimation; and (2) by giving more stable estimates while testing the effect of body size on snail survival. Our results suggest that snail survival depends heavily on local environmental factors that may vary greatly within a small geographical region. These findings are important because the majority of experimental studies on survival are done on snails from a single location.  相似文献   

6.
Belden LK  Wojdak JM 《Oecologia》2011,166(4):1077-1086
Predators can have important impacts on host–parasite dynamics. For many directly transmitted parasites, predators can reduce transmission by removing the most heavily infected individuals from the population. Less is known about how predators might influence parasite dynamics in systems where the parasite relies on vectors or multiple host species to complete their life cycles. Digenetic trematodes are parasitic flatworms with complex life cycles typically involving three host species. They are common parasites in freshwater systems containing aquatic snails, which serve as obligate first intermediate hosts, and multiple trematode species use amphibians as second intermediate hosts. We experimentally examined the impact of predatory salamanders (Ambystoma jeffersonianum) and trematode parasites (Echinostoma trivolvis and Ribeiroia ondatrae) on short-term survival of wood frog tadpoles (Rana sylvatica) in 150-L outdoor pools. Two trematode species were used in experiments because field surveys indicated the presence of both species at our primary study site. Parasites and predators both significantly reduced tadpole survival in outdoor pools; after 6 days, tadpole survival was reduced from 100% in control pools to a mean of 46% in pools containing just parasites and a mean of 49% in pools containing just predators. In pools containing both infected snails and predators, tadpole survival was further reduced to a mean of 5%, a clear risk-enhancement or synergism. These dramatic results suggest that predators may alter transmission dynamics of trematodes in natural systems, and that a complete understanding of host–parasite interactions requires studying these interactions within the ecological framework of community interactions.  相似文献   

7.
Host-parasite interactions that result in host castration are evolutionarily similar to predator-prey interactions because both interactions terminate reproduction for the host or prey. Yet, host-parasite interactions differ from predator-prey interactions in that infected hosts remain alive and potentially can make adjustments to their life-history strategy before castration is complete. Here we exposed juvenile snails (Potamopyrgus antipodarum) to infection by a digenetic trematode (Microphallus sp.) in order to determine whether: (1) pre-reproductive individuals could be infected, (2) individuals that were exposed to infection shifted resources to early reproduction (fecundity compensation), and (3) infected individuals exhibit altered growth rates relative to uninfected individuals. We found that juveniles are susceptible to infection; hence P. antipodarum could be selected for earlier maturation in populations where the risk of infection is high. We also found that fecundity compensation does not occur in this snail. Finally, we found that Microphallus-infected snails exhibit altered growth rates; individuals infected as juveniles have lower growth rates and are smaller than uninfected snails. These results suggest that growth is altered by infection of a trematode parasite but reproduction in uninfected snails is not induced by exposure to trematode eggs. Received: 11 January 1998 / Accepted: 19 May 1998  相似文献   

8.
To estimate isotopic changes caused by trematode parasites within a host, we investigated changes in the carbon and nitrogen isotope ratios of the freshwater snail Lymnaea stagnalis infected by trematode larvae. We measured carbon and nitrogen stable isotopes within the foot, gonad, and hepatopancreas of both infected and uninfected snails. There was no significant difference in the delta13C and delta15N values of foot and gonad between infected and uninfected snails; thus, trematode parasite infections may not cause changes in snail diets. However, in the hepatopancreas, delta15N values were significantly higher in infected than in uninfected snails. The 15N enrichment in the hepatopancreas of infected snails is caused by the higher 15N ratio in parasite tissues. Using an isotope-mixing model, we roughly estimated that the parasites in the hepatopancreas represented from 0.8 to 3.4% of the total snail biomass, including the shell.  相似文献   

9.
Host condition as a constraint for parasite reproduction   总被引:2,自引:0,他引:2  
Environmental stress has been suggested to increase host susceptibility to infections and reduce host ability to resist parasite growth and reproduction, thus benefiting parasites. This prediction stems from expected costs of immune defence; hosts in poor condition should have less resources to be allocated to immune function. However, the alternative hypothesis for response to environmental stress is that hosts in poor condition provide less resources for parasites and/or suffer higher mortality, leading to reduced parasite growth, reproduction and survival. We contrasted these alternative hypotheses in a trematode–snail ( Diplostomum spathaceum – Lymnaea stagnalis ) system by asking: (1) how host condition affects parasite reproduction (amount and quality of produced transmission stages) and (2) how host condition affects the survival of infected host individuals. We experimentally manipulated host condition by starving the snails, and found that parasites produced fewer and poorer quality transmission stages in stressed hosts. Furthermore, starvation increased snail mortality. These findings indicate that in well-established trematode infections, reduced ability of immune allocation has no effect on host exploitation by parasites. Instead, deteriorating resources for the snail host can directly limit the amount of resources available for the parasite. This, together with increased host mortality, may have negative effects on parasite populations in the wild.  相似文献   

10.
We have investigated the influence of Microphallus papillorobustus (Trematoda) on the reproductive biology and mating patterns of its intermediate host Gammarus insensibilis (Amphipoda). Infected Gammarus species show altered behaviour which renders them more susceptible to predation by Charadriiform birds, the parasite's definitive hosts. In a natural population of G. insensibilis, mean parasite intensity was higher for unpaired individuals than for paired individuals. Fecundity was reduced in infected amphipods. Size-assortative pairing was significant, although infected males were found with smaller females compared to uninfected males of the same size. There was also a positive assortative pairing by parasitic prevalence. Vertical segregation between infected and uninfected individuals, male-male competition for access to uninfected females, and female choice may explain assortative mating for prevalence. This study provides the first empirical evidence that parasites can have a direct effect on patterns of mating in gammarids.  相似文献   

11.
Invasive species can indirectly affect native species by modifying parasite–host dynamics and disease occurrence. This scenario applies to European coastal waters where the invasive Pacific oyster (Magallana gigas) co-introduced the parasitic copepod Mytilicola orientalis that spills over to native blue mussels (Mytilus edulis) and other native bivalves. In this study, we investigated the impact of M. orientalis infections on blue mussels by conducting laboratory experiments using controlled infections with larval stages of the parasitic copepod. As the impact of infections is likely to depend on the mussels’ food availability, we also tested whether potential adverse effects of infection on mussels intensify under low food conditions. Blue mussels that were experimentally infected with juvenile M. orientalis had a significantly lower body condition (11–13%) compared with uninfected mussels after nine weeks of infection. However, naturally infected mussels from a mixed mussel and oyster bed did not significantly differ in body condition compared with uninfected mussels. Contrary to effects on mussel condition, we did not find an effect of experimental infections on clearance rates, shell growth or survival of blue mussels and no clear sign of exacerbating effects of food limitation. Our study illustrates that invasive species can indirectly affect native species via parasite co-introductions and parasite spillover. The results of this study call for the integration of such parasite-mediated indirect effects of invasions in impact assessments of invasive species.  相似文献   

12.
The frequent co-occurrence of two or more genotypes of the same parasite species in the same individual hosts has often been predicted to select for higher levels of virulence. Thus, if parasites can adjust their level of host exploitation in response to competition for resources, mixed-clone infections should have more profound impacts on the host. Trematode parasites are known to induce a wide range of modifications in the morphology (size, shell shape or ornamentation) of their snail intermediate host. Still, whether mixed-clone trematode infections have additive effects on the phenotypic alterations of the host remains to be tested. Here, we used the snail Potamopyrgus antipodarum-infected by the trematode Coitocaecum parvum to test for both the general effect of the parasite on host phenotype and possible increased host exploitation in multi-clone infections. Significant differences in size, shell shape and spinosity were found between infected and uninfected snails, and we determined that one quarter of naturally infected snails supported mixed-clone infections of C. parvum. From the parasite perspective, this meant that almost half of the clones identified in this study shared their snail host with at least one other clone. Intra-host competition may be intense, with each clone in a mixed-clone infection experiencing major reductions in volume and number of sporocysts (and consequently multiplication rate and cercarial production) compared with single-clone infections. However, there was no significant difference in the intensity of host phenotype modifications between single and multiple-clone infections. These results demonstrate that competition between parasite genotypes may be strong, and suggest that the frequency of mixed-clone infections in this system may have selected for an increased level of host exploitation in the parasite population, such that a single-clone is associated with a high degree of host phenotypic alteration.  相似文献   

13.
Evolutionary biology has yet to reconcile the ubiquity of sex with its costs relative to asexual reproduction. Here, we test the hypothesis that coevolving parasites maintain sex in their hosts. Specifically, we examined the distributions of sexual reproduction and susceptibility to local parasites within a single population of freshwater snails (Potamopyrgus antipodarum). Susceptibility to local trematode parasites (Microphallus sp.) is a relative measure of the strength of coevolutionary selection in this system. Thus, if coevolving parasites maintain sex, sexual snails should be common where susceptibility is high. We tested this prediction in a mixed population of sexual and asexual snails by measuring the susceptibility of snails from multiple sites in a lake. Consistent with the prediction, the frequency of sexual snails was tightly and positively correlated with susceptibility to local parasites. Strikingly, in just two years, asexual females increased in frequency at sites where susceptibility declined. We also found that the frequency of sexual females covaries more strongly with susceptibility than with the prevalence of Microphallus infection in the field. In linking susceptibility to the frequency of sexual hosts, our results directly implicate spatial variation in coevolutionary selection in driving the geographic mosaic of sex.  相似文献   

14.
Summary This laboratory study examined the influence of parasitic infection by larval trematodes on the survival of extreme environmental conditions by the salt marsh snail, Cerithidea californica. Experimental treatments simulated the durations, combinations, and levels of potentially lethal environmental extremes to which the snail is exposed in its natural habitat, as determined from long-term field measurements. No significant difference was found in the rates of mortality suffered by infected and uninfected snails when exposed to simulated natural extremes of water temperature, water salinity, or exposure in air. Exposure to low levels of dissolved oxygen was the only treatment that caused differential mortality: infected snails died at higher rates than uninfected. This differential mortality was accentuated by high water temperature, and varied with the species of infecting parasite. The potential impact of this interaction between parasitism and anoxia on snail survival and population dynamics is discussed.  相似文献   

15.
Parasites can induce alterations in host phenotypes in order to enhance their own survival and transmission. Parasites of social insects might not only benefit from altering their individual hosts, but also from inducing changes in uninfected group members. Temnothorax nylanderi ant workers infected with the tapeworm Anomotaenia brevis are known to be chemically distinct from nest-mates and do not contribute to colony fitness, but are tolerated in their colonies and well cared for. Here, we investigated how tapeworm- infected workers affect colony aggression by manipulating their presence in ant colonies and analysing whether their absence or presence resulted in behavioural alterations in their nest-mates. We report a parasite-induced shift in colony aggression, shown by lower aggression of uninfected nest-mates from parasitized colonies towards conspecifics, potentially explaining the tolerance towards infected ants. We also demonstrate that tapeworm-infected workers showed a reduced flight response and higher survival, while their presence caused a decrease in survival of uninfected nest-mates. This anomalous behaviour of infected ants, coupled with their increased survival, could facilitate the parasites'' transmission to its definitive hosts, woodpeckers. We conclude that parasites exploiting individuals that are part of a society not only induce phenotypic changes within their individual hosts, but in uninfected group members as well.  相似文献   

16.
By modifying the behaviour and morphology of hosts, parasites may strongly impact host individuals, populations and communities. We examined the effects of a common trematode parasite on its snail host, Batillaria cumingi (Batillariidae). This widespread snail is usually the most abundant invertebrate in salt marshes and mudflats of the northeastern coast of Asia. More than half (52.6%, n=1360) of the snails in our study were infected. We found that snails living in the lower intertidal zone were markedly larger and exhibited different shell morphology than those in the upper intertidal zone. The large morphotypes in the lower tidal zone were all infected by the trematode, Cercaria batillariae (Heterophyidae). We used a transplant experiment, a mark-and-recapture experiment and stable carbon isotope ratios to reveal that snails infected by the trematode move to the lower intertidal zone, resume growth after maturation and consume different resources. By simultaneously changing the morphology and behaviour of individual hosts, this parasite alters the demographics and potentially modifies resource use of the snail population. Since trematodes are common and often abundant in marine and freshwater habitats throughout the world, their effects potentially alter food webs in many systems.  相似文献   

17.
Health impact of blood parasites in breeding great tits   总被引:5,自引:0,他引:5  
Indrek Ots  Peeter Hõrak 《Oecologia》1998,116(4):441-448
Hypotheses of hemoparasite-mediated sexual selection and reproductive costs rely on the assumption that avian blood parasite infections are harmful to their hosts. To test the validity of this assumption, we examined the health impact of Haemoproteus blood parasites on their great tit (Parus major) host. We hypothesised that if blood parasites impose any serious health impact on their avian hosts, then infected individuals must differ from uninfected ones in respect to hemato-serological general health and immune parameters. A 3-year study of two great tit populations, breeding in contrasting (urban and rural) habitats in south-east Estonia, revealed that Haemoproteus blood parasites affected the health state of their avian hosts. Infected individuals had elevated lymphocyte hemoconcentration and plasma gamma-globulin levels, indicating that both cell-mediated and humoral immune response mechanisms are involved in host defence. The effect of parasites on cell-mediated immunity was both age- and sex-specific, as infection status affected peripheral blood lymphocyte counts only in males, and among these, the magnitude of response was greater in old individuals than yearlings. Heterophile hemoconcentration and plasma albumin levels were not affected by infection status, suggesting that blood stages of Haemoproteus infection do not cause a severe inflammatory response. Parasitism was not related to hematocrit values, indicating that Haemoproteus infection does not cause anemia. In two years, infected individuals were heavier than uninfected ones in the urban but not in the rural study area. This suggests, that under certain circumstances (possibly related to reproductive tactics), breeding great tits may avoid losing body mass in order to save resources for an anti-parasite immune response. Received: 16 February 1998 / Accepted: 22 May 1998  相似文献   

18.
Why should the hosts of brood parasites accept and raise parasitic offspring that differ dramatically in appearance from their own? There are two solutions to this evolutionary enigma. (1) Hosts may not yet have evolved the capability to discriminate against the parasite, or (2) parasite-host systems have reached an evolutionary equilibrium. Avian brood parasites may either gain renesting opportunities or force their hosts to raise parasitic offspring by destroying or preying upon host eggs or nestlings following host ejection of parasite offspring. These hypotheses may explain why hosts do not remove parasite offspring because only then will hosts avoid clutch destruction by the cuckoo. Here we show experimentally that if the egg of the parasitic great spotted cuckoo Clamator glandarius is removed from nests of its magpie Pica pica host, nests suffer significantly higher predation rates than control nests in which parasite eggs have not been removed. Using plasticine model eggs resembling those of magpies and observations of parasites, we also confirm that great spotted cuckoos that have laid an ejected egg are indeed responsible for destruction of magpie nests with experimentally ejected parasite eggs. Cuckoos benefit from destroying host offspring because they thereby induce some magpies to renest and subsequently accept a cuckoo egg.  相似文献   

19.
Climate change stressors will place different selective pressures on both parasites and their hosts, forcing individuals to modify their life‐history strategies and altering the distribution and prevalence of disease. Few studies have investigated whether parasites are able to respond to host stress and respond by varying their reproductive schedules. Additionally, multiple environmental stressors can limit the ability of a host to respond adaptively to parasite infection. This study compared both host and parasite life‐history parameters in unstressed and drought‐stressed environments using the human parasite, Schistosoma mansoni, in its freshwater snail intermediate host. Snail hosts infected with the parasite demonstrated a significant reproductive burst during the prepatent period (fecundity compensation), but that response was absent in a drought‐stressed environment. This is the first report of the elimination of host fecundity compensation to parasitism when exposed to additional environmental stress. More surprisingly, we found that infections in drought‐stressed snails had significantly higher parasite reproductive outputs than infections in unstressed snails. The finding suggests that climate change may alter the infection dynamics of this human parasite.  相似文献   

20.
The level of host exploitation is expected, under theory, to be selected to maximise (subject to constraints) the lifetime reproductive success of the parasite. Here we studied the effect of two castrating trematode species on their intermediate snail host, Potamopyrgus antipodarum. One of the trematode species, Microphallus sp., encysts in the snail host and the encysted larvae “hatch” following ingestion of infected snails by birds. The other species, Notocotylus gippyensis, by contrast, releases swimming larvae; ingestion of the snail host is not required for, and does not aid, transmission to the final host. We isolated field-collected snails for 3 months in the laboratory, and followed the survival of infected and uninfected snails under two conditions: not fed and fed ad libitum. Mortality of the infected hosts was higher than mortality of the uninfected ones, but the response to starvation treatment was parasite species specific. N. gippyensis induced significantly higher mortality in starved snails than did Microphallus. Based on these results, we suggest that host exploitation by different species of trematodes may depend on the type of transmission. Encysting in the snail host may select for a reduced rate of host exploitation so as to increase the probability of transmission to the final host. Received: 29 July 1998 / Accepted: 1 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号