首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We localized melatonin binding sites in different brain regions (optic tectum, telencephalon, cerebellum, hypothalamus, olfactory bulbs, and medulla oblongata) of Senegal sole, a species of aquaculture interest, and checked day/night changes in density (B(max)) at mid-light (ZT06) and mid-dark (ZT18). Plasma melatonin was measured using a radioimmunoassay, while binding assays were performed using 2-[(125)I]iodomelatonin as a radioligand. Plasma melatonin concentrations were significantly lower at mid-light (189.5+/-46 pg/ml) than mid-dark (455.5+/-163 pg/ml). Values of B(max) were statistically significantly higher in the optic tectum (5.6+/-0.6 and 12.3+/-1 fmol/mg prot, at mid-light and mid-dark, respectively) and in the cerebellum (7.7+/-1.1 and 10.6+/-1.3 fmol/mg prot, at mid-light and mid-dark, respectively). Significant day/night differences were only observed in these two tissues. These results show for the first time the distribution of melatonin binding sites within the brain of a flatfish species and their lack of down-regulation.  相似文献   

2.
Light is the most important synchronizer of melatonin rhythms in fish. This paper studies the influence of the characteristics of light on plasma melatonin rhythms in sole. The results revealed that under long‐term exposure to constant light conditions (LL or DD), the total 24 h melatonin production was significantly higher than under LD, but LL and DD conditions influenced the rhythms differently. Under LL, melatonin remained at around 224 pg/ml throughout the 24 h, while under DD a significant elevation (363.6 pg/ml) was observed around the subjective evening. Exposure to 1 h light pulses at MD (mid‐dark) inhibited melatonin production depending on light intensity (3.3, 5.3, 10.3, and 51.9 µW/cm2). The light threshold required to reduce nocturnal plasma melatonin to ML (mid‐light) values was 5.3 µW/cm2. Melatonin inhibition by light also depended on the wavelength of the light pulses: while a deep red light (λ>600 nm) failed to reduce plasma melatonin significantly, far violet light (λmax=368 nm) decreased indoleamine's concentration to ML values. These results suggest that dim light at night (e.g., moonlight) may be perceived and hence affect melatonin rhythms, encouraging synchronization to the lunar cycle. On the other hand, deep red light does not seem to inhibit nocturnal melatonin production, and so it may be used safely during sampling at night.  相似文献   

3.
Sea bass is an euryhaline fish that lives in a wide range of salinities and migrates seasonally from lagoons to the open sea. However, to date, the influence of water salinity on sea bass melatonin levels has not been reported. Here, we evaluated the differences in plasma and tissue melatonin contents and melatonin binding sites in sea bass under four different salinity levels: seawater (36‰), isotonic water (15‰), brackish water (4‰) and freshwater (0‰). The melatonin content was evaluated in plasma, whole brain, gills, intestine and kidney, while melatonin binding sites were analyzed in different brain regions and in the neural retina. Plasma melatonin levels at mid-dark varied, the lowest value occurring in seawater (102 pg/mL), and the highest in freshwater (151 pg/mL). In gills and intestine, however, the highest melatonin values were found in the seawater group (209 and 627 pg/g tissue, respectively). Melatonin binding sites in the brain also varied with salinity, with the highest density observed at the lower salinities in the optic tectum, cerebellum and hypothalamus (30.3, 13.0, and 8.0 fmol/mg protein, respectively). Melatonin binding sites in the retina showed a similar pattern, with the highest values being observed in freshwater. Taken together, these results reveal that salinity influences melatonin production and modifies the density of binding sites, which suggests that this hormone could play a role in timing seasonal events in sea bass, including those linked to fish migration between waters of different salinities for reproduction and spawning.  相似文献   

4.
Melatonin production by the pineal organ is influenced by light intensity, as has been described in most vertebrate species, in which melatonin is considered a synchronizer of circadian rhythms. In tench, strict nocturnal activity rhythms have been described, although the role of melatonin has not been clarified. In this study we investigated daily activity and melatonin rhythms under 12∶12 light‐dark (LD) conditions with two different light intensities (58.6 and 1,091 µW/cm2), and the effect of 1 h broad spectrum white light pulses of different intensities (3.3, 5.3, 10.5, 1,091.4 µW/cm2) applied at middarkness (MD) on nocturnal circulating melatonin. The results showed that plasma melatonin in tench under LD 12∶12 and high light conditions displayed rhythmic variation, where values at MD (255.8±65.9 pg/ml) were higher than at midlight (ML) (70.7±31.9 pg/ml). Such a difference between MD and ML values was reduced in animals exposed to LD 12∶12 and low light intensity. The application of 1 h light pulses at MD lowered plasma melatonin to 111.6±3.2 pg/ml (in the 3.3–10.5 µW/cm2 range) and to 61.8±18.3 pg/ml (with the 1,091.4 µW/cm2 light pulse) and totally suppressed nocturnal locomotor activity. These results show that melatonin rhythms persisted in tench exposed to low light intensity although the amplitude of the rhythm is affected. In addition, it was observed that light pulses applied at MD affected plasma melatonin content and locomotor activity. Such a low threshold suggests that the melatonin system is capable of transducing light even under dim conditions, which may be used by this nocturnal fish to synchronize to weak night light signals (e.g., moonlight cycles).  相似文献   

5.
Activation and inhibition of muscarinic cholinoceptors by atropine and carbachol are shown to exert allosteric effects on the binding of specific nonselective α2-adrenoceptor antagonist [3H]RX821002 in rat brain cortex membranes. The ligand-receptor interaction for α2-adrenoceptors corresponded to the model suggesting the presence of one homogeneous pool of receptors with two specific binding sites. The parameters of the [3H]RX821002 binding were as follows: [3H]RX821002 -K d = 1.94 ± 0.08 nM, B max = 13.4 ± 1.8 fmol/mg protein, n = 2. The inhibition of muscarinic cholinoceptors by atropine induced an increase of affinity (K d = 1.36 ± 0.12 nM) and a decrease of the α2-adrenoceptor density (B max = 10.18 ± 0.48 fmol/mg protein). The muscarinic cholinoceptor agonist carbachol induced an increase of the affinity (K d = 1.56 ± 0.05 nM) and quantity of binding sites (B max = 16.61 ± 0.29 fmol/mg protein). As a result, under the influence of atropine and carbachol, the efficiency of binding (E = B max/2K d) increased from 3.50 ± 0.40 to 5.60 ± 0.79 and 6.86 ± 0.20 fmol/mg protein/nM, respectively. The data suggest that α2-adrenoceptors exist in rat brain cortex as homodimers.  相似文献   

6.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

7.
Retinular photoreceptors are structures involved in the expression and synchronization of the circadian rhythm of sensitivity to light in crayfish. To determine whether melatonin possesses a differential effect upon the receptor potential (RP) amplitude of retinular photoreceptors circadian time (CT)-dependent, we conducted experiments by means of applying melatonin every 2 h during a 24-hour cycle. Melatonin with 100 nM increased RP amplitude during subjective day to a greater degree than during subjective night. To determine whether MT2 melatonin receptors regulate the melatonin-produced effect, we carried out two experiments, circadian times (CTs) 6 and 18, which included the following: (1) application of the MT2 receptor selective agonist 8-M-PDOT and antagonist DH97, and (2) the specific binding of [125I]-melatonin in eyestalk membranes. The amount of 10 nM of 8-M-PDOT increased RP amplitude in a similar manner to melatonin, and 1 nM DH97 abolished the increase produced by melatonin and 8-M-PDOT. Binding of [125I]-melatonin was saturable and specific. Scatchard analysis revealed an affinity constant (Kd) of 1.1 nM and a total number of binding sites (Bmax) of 6 fmol/mg protein at CT 6, and a Kd of 1.46 nM and Bmax of 7 fmol/mg protein at CT 18. Our results indicate that melatonin increased RP amplitude of crayfish retinular photoreceptors through MT2-like melatonin receptors. These data support the idea that melatonin is a signal of darkness for the circadian system in crayfish retinular cells.  相似文献   

8.
Inhibitory and stimulatory adenosine receptors have been identified and characterized in both membranes and intact rat C6 glioma cells. In membranes, saturation experiment performed with [3H]DPCPX, selective A1R antagonist, revealed a single binding site with a K D = 9.4 ± 1.4 nM and B max = 62.7 ± 8.6 fmol/mg protein. Binding of [3H]DPCPX in intact cell revealed a K D = 17.7 ± 1.3 nM and B max = 567.1 ± 26.5 fmol/mg protein. On the other hand, [3H]ZM241385 binding experiments revealed a single binding site population of receptors with K D = 16.5 ± 1.3 nM and B max = 358.9 ± 52.4 fmol/mg protein in intact cells, and K D = 4.7 ± 0.6 nM and B max = 74.3 ± 7.9 fmol/mg protein in plasma membranes, suggesting the presence of A2A receptor in C6 cells. A1, A2A, A2B and A3 adenosine receptors were detected by Western-blotting and immunocytochemistry, and their mRNAs quantified by real time PCR assays. Giα and Gsα proteins were also detected by Western-blotting and RT-PCR assays. Furthermore, selective A1R agonists inhibited forskolin- and GTP-stimulated adenylyl cyclase activity and CGS 21680 and NECA stimulated this enzymatic activity in C6 cells. These results suggest that C6 glioma cells endogenously express A1 and A2 receptors functionally coupled to adenylyl cyclase inhibition and stimulation, respectively, and suggest these cells as a model to study the role of adenosine receptors in tumoral cells.  相似文献   

9.
The influence of β-adrenoceptor activation and inhibition by isoprenaline and propranolol on the specific binding of nonselective α1- and α2-adrenoceptor antagonists [3H]prazosin and [3H]RX821002 in rat cerebral cortex subcellular membrane fractions was studied. It was established that for the α1- and α2-adrenoceptors the ligand–receptor interaction corresponds to the model of one affinity pool of receptors and binding of two ligand molecules by one dimer receptor. The parameters of [3H]prazosin binding to α1-adrenoceptors were: K d = 1.85 ± 0.16 nM, B max = 31.14 ± 0.35 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.57 ± 0.27 nM, B max = 7.2 ± 1.6 fmol/mg protein, n = 2. When β-adrenoceptors were activated by isoprenaline, the binding of radiolabelled ligands with α1- and α2-adrenoceptors occurred according to the same model. The affinity to [3H]prazosin and the concentration of active α1-adrenoceptors increased by 27% (K d = 1.36 ± 0.03 nM) and 84% (B max = 57.37 ± 0.28 fmol/mg protein), respectively. The affinity of α2-adrenoceptors to [3H]RX821002 decreased by 56% (K d = 3.55 ± 0.02 nM), and the concentration of active receptors increased by 69% (B max = 12.24 ± 0.06 fmol/mg protein). Propranolol alters the binding character of both ligands. For [3H]prazosin and [3H]RX821002, two pools of receptors were detected with the following parameters: K d1 = 1.13 ± 0.09, K d2 = 6.07 ± 1.06 nM, B m1 = 11.36 ± 1.77, Bm2 = 51.09 ± 0.41 fmol/mg protein, n = 2 and K d1 = 0.61 ± 0.02, K d2 = 3.41 ± 0.13 nM, B m1 = 1.88 ± 0.028, B m2 = 9.27 ± 0.08 fmol/mg protein, n = 2, respectively. The concentration of active receptors (B max) increased twofold for both ligands. It was suggested that α1- and α2-adrenoceptors in rat cerebral cortex subcellular membrane fractions exist as dimers. A modulating influence of isoprenaline and propranolol on the specific binding of the antagonists to α1- and α2- adrenoceptors was revealed, which was manifested in the activating effect on the [3H]prazosin binding parameters, in the inhibitory effect on the [3H]RX821002 binding parameters, and in a change of the general character of binding for both ligands.  相似文献   

10.
The effects of activation and inhibition of serotonin receptors by serotonin (5-HT) and mianserin on the specific nonselective α1-antagonist [3H]prazosine binding in rat cerebral cortex membranes was studied. It was shown that the ligand-receptor interaction of α1-adrenoceptors corresponded to the model suggesting the presence of one pool of receptors and the binding of two ligand molecules to the receptor. The parameters of [3H]prazosine binding to α1-adrenoceptors were as follows: K d =1.85 ± 0.16 nM, B max = 31.1 ± 0.3 fmol/mg protein, n = 2. In case of activation of 5HT-receptors by serotonin, the character of ligand binding was different: two pools of receptors were detected with the parameters K d1 = 0.61 ± 0.04, K d2 = 3.82 ± 0.15 nM, B m1 = 6.6 ± 0.7, B m2 = 25.6 ± 0.4 fmol/mg protein, n = 2. The sensitivity of the high-affinity pool increased threefold and the sensitivity of the low-affinity pool decreased twofold as compared to the control. The value of maximal reaction (B max) did not change. In the case of inhibition of 5HT-receptors by mianserin, radioactive ligand is bound to α1-adrenoceptors according to the same model as in the control conditions. The affinity of α1-adrenoceptors to [3H]prazosine decreases twofold and the concentration increases (K d = 3.97 ± 0.12 nM, B max = 40.0 ± 0.5 fmol/mg protein). The data suggest that α1-adrenoceptors in rat cerebral cortex exist as a dimer. The modulatory effects of serotonin and mianserin on the specific binding of [3H]prazosine to α1-adrenoceptors was detected, manifesting itself as changes in the binding parameters and in the general character of ligand-receptor interactions.  相似文献   

11.
Light plays a key role in the development of biological rhythms in fish. Previous research on Senegal sole has revealed that both spawning rhythms and larval development are strongly influenced by lighting conditions. However, hatching rhythms and the effect of light during incubation are as yet unexplored. Therefore, the aim of this study was to investigate the impact of the light spectrum and photoperiod on Solea senegalensis eggs and larvae until day 7 post hatching (dph). To this end, eggs were collected immediately after spawning during the night and exposed to continuous light (LL), continuous darkness (DD), or light-dark (LD) 12L:12D cycles of white light (LDW), blue light (LDB; λpeak?=?463?nm), or red light (LDR; λpeak?=?685?nm). Eggs exposed to LDB had the highest hatching rate (94.5%?±?1.9%), whereas LDR and DD showed the lowest hatching rate (54.4%?±?3.9% and 48.4%?±?4.2%, respectively). Under LD conditions, the hatching rhythm peaked by the end of the dark phase, but was advanced in LDB (zeitgeber time 8 [ZT8]; ZT0 representing the onset of darkness) in relation to LDW and LDR (ZT11). Under DD conditions, the same rhythm persisted, although with lower amplitude, whereas under LL the hatching rhythm split into two peaks (ZT8 and ZT13). From dph 4 onwards, larvae under LDB showed the best growth and quickest development (advanced eye pigmentation, mouth opening, and pectoral fins), whereas larvae under LDR and DD had the poorest performance. These results reveal that developmental rhythms at the egg stage are tightly controlled by light characteristics, underlining the importance of reproducing their natural underwater photoenvironment (LD cycles of blue wavelengths) during incubation and early larvae development of fish. (Author correspondence: )  相似文献   

12.
The influence of isoprenaline- and propranolole-induced activation and inhibition of β-adrenoreceptors on the specific nonselective α2-antagonist [3H]RX821002 binding was studied on rat cerebral cortex subcellular membrane fractions. It was shown that the ligand-receptor interaction for α2-adrenoreceptors corresponded to the model that assumed the presence of one receptor pool and binding of two ligand molecules to a receptor dimer. The following parameters were determined for [3H]RX821002 binding to α2-adrenoreceptors: K d1 = 1.57 ± 0.27 nM, B max = 7.24 ± 1.63 fmol/mg of protein, n = 2. In the case of isoprenaline-induced activation of β-adrenoreceptors the binding of radiolabeled ligand to α2-adrenoreceptors was described by the same model. The affinity of α2-adrenoreceptors for [3H]RX821002 decreased more than twofold (K d = 3.55 ± 0.02 nM) and the quantity of active receptors increased by 69% (B max = 12.24 ± 0.06 fmol/mg of protein). Propranolole changed the model of ligand binding, and two pools of receptors were detected with the following parameters: K d1 = 0.61 ± 0.02 nM, K d2 = 3.41 ± 0.13 nM, B ml = 1.88 ± 0.028 fmol/mg of protein, B m2 = 9.27 ± 0.08 fmol/mg of protein, n = 2. The data suggest that α2-adrenoreceptors in subcellular membrane fractions from rat cerebral cortex exist in dimeric form. Isoprenaline and propranolole exhibit modulating effect on the specific antagonist binding to α2-adrenoreceptors, which results in the inhibition and alteration of [3H]RX821002 binding parameters.  相似文献   

13.
Vitamin B12 has been reported to improve sleep-wake rhythm disorders. Although the mechanism is still unclear, a change in the sensitivity of the circadian clock system to photic input is thought to be a possible mechanism of the effect. In this study, the effect of the vitamin B12 on the circadian aspect of the electroretinogram (ERG) and serum melatonin level was analyzed in rats. Vitamin B12, α-(5,6-dimethylbenzimidazolyl)-co-methyl-cobamide was daily administrated subcutaneously for 8 weeks to adult male Wister rats in the experimental group, and saline was given to the control group. The ERGs were recorded under dark adaptation during the night and day, and under light adaptation (0.1 lux) during the night. Blood was drawn before and after ERG recording. The amplitudes of the a-wave, fc-wave, and trough-to-peak of both waves and latencies of ERG were analyzed following various exposures to stimuli of light intensity. These parameters in the group treated with vitamin B12 showed similar characteristics to the control group, and no significant difference was observed between the two groups. The melatonin levels of both groups before the measurement of ERG were similar under each measurement condition. The elevated serum melatonin concentration in the control group under dark adaptation at night was suppressed after the series of 10-msec light stimuli used for measurement of ERG. However, this suppressing effect of light pulses on melatonin level was significantly inhibited in the group treated with vitamin B12. Under light adaptation during the night and under dark adaptation during the day, melatonin levels after the measurement of ERG were not different between the groups. From these results, it is suggested that vitamin B12 is effective in suppressing melatonin rhythm disturbances introduced by transient light stimulation, and it affects the site more central than the retinal level. (Chronobiology International, 14(6), 549–560, 1997)  相似文献   

14.
Abstract: High-affinity μ-opioid receptors have been solubilized from rat brain membranes. In most experiments, rats were treated for 14 days with naltrexone to increase the density of opioid receptors in brain membranes. Occupancy of the membrane-associated receptors with morphine during solubilization in the detergent 3-[(3-cholamidopropyl)dimethyl]-1-propane sulfonate appeared to stabilize the μ-opioid receptor. After removal of free morphine by Sephadex G50 chromatography and adjustment of the 3-[(3-cholamidopropyl)dimethyl]-1-propane sulfonate concentration to 3 mM, the solubilized opioid receptor bound [3H][d -Ala2,N-Me-Phe4,Gly-ol5]-enkephalin ([3H]DAMGO), a μ-selective opioid agonist, with high affinity (KD = 1.90 ± 0.93 nM; Bmax = 629 ± 162 fmol/mg of protein). Of the membrane-associated [3H]-DAMGO binding sites, 29 ± 7% were recovered in the solubilized fraction. Specific [3H]DAMGO binding was completely abolished in the presence of 10 µM guanosine 5′-O-(3-thiotriphosphate). The solubilized receptor also bound [3H]diprenorphine, a nonselective opioid antagonist, with high affinity (KD = 1.4 ± 0.39 nM, Bmax = 920 ± 154 fmol/mg of protein). Guanosine 5′-O-(3-thiotriphosphate) did not diminish [3H]diprenorphine binding. DAMGO at concentrations between 1 nM and 1 µM competed with [3H]diprenorphine for the solubilized binding sites; in contrast, [d -Pen2,d -Pen5]-enkephalin, a δ-selective opioid agonist, and U50488H, a κ-selective opioid agonist, failed to compete with [3H]diprenorphine for the solubilized binding sites at concentrations of <1 µM. In the absence of guanine nucleotides, the DAMGO displacement curve for [3H]diprenorphine binding sites better fit a two-site than a one-site model with KDhigh = 2.17 ± 1.5 nM, Bmax = 648 ± 110 fmol/mg of protein and KDlow = 468 ± 63 nM, Bmax = 253 ± 84 fmol/mg of protein. In the presence of 10 µM guanosine 5′-O-(3-thiotriphosphate), the DAMGO displacement curve better fit a one- than a two-site model with KD = 815 ± 33 nM, Bmax = 965 ± 124 fmol/mg of protein.  相似文献   

15.
The binding of specific nonselective α1- and α2-adrenoceptor antagonists [3H]prazosine and [3H]RX821002 has been studied on rat cerebral cortex synaptosomal membranes. It is shown that for α1-adrenoceptors the ligand-receptor interaction corresponds to the model assuming the presence of one pool of receptors and binding of two ligand molecules to the receptor. The parameters of [3H]prazosine binding to α1-adrenoceptors were: K d= 1.56 ± 0.17 nM, B max = 30.25 ± 1.78 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.94 ± 0.08 nM, B max = 12.77 ± 3.17 fmol/mg protein, n = 2. For α2 -adrenoceptors the ligand-receptor interaction corresponded to the same model. For α1 - and α2-adrenoceptor antagonists the dissociation constants (K d) are approximately equal (1.56 ± 0.17 and 1.94 ± 0.08 nM, respectively), but the concentration of α2-adrenoceptors is two times lower than that of α1-adrenoceptors ( 12.77 ± 3.17 and 30.25 ± 1.78 fmol/mg protein, respectively). The efficiency (E = B max/2K d) of the ligand binding to α1-adrenoceptors is 2.3 times higher than that to α2-adrenoceptors (7.46 ± 1.32 and 3.29 ± 0.68 fmol/mg protein/nM, respectively. The data suggest that α1- and α2 -adrenoceptors in rat cerebral cortex exist as dimers.  相似文献   

16.
Abstract

Mesenteric artery smooth muscle cells were grown in culture media containing high, normal, or low concentrations of potassium to study the effects on angiotensin II (Ang II) receptor regulation. Cell growth was similar among cells grown in the different culture media. Cells grown in high potassium media (K=5.8 mEq/L) had an equilibrium dissociation constant, Kd, of 1.59 ± 0.2 nM, whereas those grown in normal potassium media (K=4.1 mEq/L) had a Kd of 1.79 ± 0.2 nM and those grown in a low potassium media (K=2.9 mEq/L) had a Kd of 1.19 ± 0.12 nM (not significantly different, NS). Binding capacity of smooth muscle cells grown in high potassium media was 81 ± 16.7 fmol/mg prot, 95.1 ± 12.4 fmol/mg prot in those grown in normal potassium media and those grown in low potassium media 86.4 ± 24.1 fmol/mg prot (NS). Binding of radiolabelled Ang II was reduced by approximately 70% in cells exposed to unlabelled Ang II for 30 or 60 minutes. However, this effect of exposure to Ang II to reduce subsequent binding of Ang II was identical in cells grown in high and low potassium medium. Therefore, we were unable to identify a direct effect of low potassium to induce changes in Ang II receptor binding affinity or binding capacity. Previously observed changes in these Ang II binding parameters in potassium-depleted rats was probably a consequence of other factors which were simultaneously altered by potassium deficiency.  相似文献   

17.
Receptor binding of imipramine in human platelets was assessed by filtration through glassfiber filters and by equilibrium dialysis. Both methods yield drug-receptor dissociation constants of similar magnitude (10?9m) to literature values. However, the density of binding sites (Bmax) was fivefold lower by filtration (473 ± 92 fmol/mg protein) compared to equilibrium dialysis (2652 ± 765 fmol/mg protein). Dialysis allows direct assessment of free imipramine and avoids drug loss during the separation step of the filtration assay. Additional advantages were found for computer nonlinear regression analysis of untransformed data to eliminate errors owing to linear transformation in the Scatchard analysis and for simultaneous quantitation of nonspecific and total drug binding.  相似文献   

18.
Night shift work is associated with a myriad of health and safety risks. Phase‐shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a “snapshot” of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (~3500 lux; ~1100 µW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths—especially short wavelengths (“blue‐blockers”)—while traveling home after the shifts, and sleep in the dark (08:30–15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24±0.8 h (mean±SD) at baseline and 7:36±1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00±1.2 h at baseline and drifted to 4:36±1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

19.
The influence of activation and inhibition of serotonin receptors by serotonin (5HT) and miancerin on binding of specific nonselective α2-antagonist [3H]RX821002 in rat cerebral cortex membranes was studied. It was shown that the ligand-receptor interaction for α2-adrenoceptors corresponded to the model suggesting the presence of one pool of receptors and binding of two ligand molecules to the receptor. The parameters of the [3H]RX821002 binding to α2-adrenoceptors were as follows: K d = 1.57 ± 0.276 nM, B max = 7.24 ± 1.63 fmol/mg protein, n = 2. In the case of activation of 5HT-receptors by serotonin, the character of ligand binding was different: two pools of receptors were detected with the parameters K d1 = 0.82 ± 0.06; K d2 = 2.65 ± 0.22 nM; B m1 = 1.65 ± 0.23; B m2 = 4.20 ± 0.11 fmol/mg protein; n = 2. The affinity of high-affinity receptors increased twofold and the affininty of low-affinity receptors decreased by 69% as compared to control values. The concentration of high-affinity receptors decreased 4.4-fold, and of low-affinity, 1.7-fold. The value of maximal reaction (B max) decreased by 20%. In the case of miancerin-induced inhibition of 5HT-receptors the character of ligand binding also changed; two pools of receptors were detected with the following parameters: K d1 = 0.48 ± 0.09; K d2 = 3.79 ± 0.71 nM; B 1 = 0.63 ± 0.17; B 2 = 4.75 ± 0.21 fmol/mg protein; n = 2. The affinity of high-affinity receptors pool increased by 70% and that of low-affinity receptors decreased by 76% as compared to control values. The concentration of active high-affinity and low-affinity α2-adrenoceptors decreased by 70% and 141%, respectively. The total amount of the receptors (B max) decreased by 26%. The data suggest that α2-adrenoceptors in rat cerebral cortex exist as dimers. Modulatory effects of serotonin and miancerin on specific antagonist binding to α2-adrenoceptors may be accomplished by altering the character and binding parameters of the nonselective α2-antagonist [3H]RX821002.  相似文献   

20.
Chronically catheterised, free swimming flounder (Platichthys flesus) have been used in experiments examining the day-night variations in circulating levels of melatonin (Mel) and arginine vasotocin (AVT). Under normal photoperiod (16 h light/8 h dark) serial blood samples taken from individual fish demonstrated a Mel rhythm with daytime levels at 09.00 and 15.00 h (238+/-14 and 179+/-12 fmol x ml(-1), respectively) lower than those at 23.00 h (1920+/-128 fmol x ml(-1)). Maintenance of fish in 24-h light abolished the light/dark Mel rhythm and circulating levels were comparable to those measured during the day in fish under normal photoperiod illumination. In fish maintained under 24 h dark, although a daily rhythm was still apparent, at the time when it would be normally dark, plasma Mel concentration was reduced and at times when it would be normally light, levels were higher than in fish maintained under normal light/dark illumination. Plasma AVT concentrations were higher in fish during the day (4.4+/-0.8 fmol x ml(-1)) than those at night (1.5+/-0.4 fmol x ml(-1)), the opposite to that seen with Mel. During acute study infusion of AVT resulted in reduced levels of plasma Mel, although this did not achieve statistical significance. Infusion of Mel did not alter circulating AVT concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号