共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Klante S. Steinlechner 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1995,177(6):775-780
In this study we investigated the influence of red light, which naturally occurs during dawn and dusk, on locomotor activity and body temperature rhythms of Djungarian hamsters (Phodopus sungarus). A single weak red light pulse given 2 h before regular lights on had acute as well as long-term effects persisting for several days following exposure. The hamsters immediately stopped their locomotor activity, accompanied by a drop in body temperature. In the following undisturbed nights (LD 168) the nocturnal activity stopped earlier than usual. This lasting effect of the light pulse was more pronounced than the acute effect. The activity phase compressed gradually during 3 to 5 days after the light pulse was administered while time of activity onset was almost unaffected. It took 6 to 11 days for complete recovery of the original activity phase. The maximal activity compression and the recovery period depended on the duration of the single red light pulse and its intensity. Red light pulses of 15 min duration were about twice effective as 1 min pulses; and the effect of a red light pulse of 130 mW/m2 was about 1.5 times stronger than a 30 mW/m2 red light pulse. The maximal value of activity phase compression reached in this experiment was 2.5+0.2 h with a recovery period of 11.1±0.3 days following a given red light pulse of 90 mW/m2 and 15 min. The morning oscillator seems to be persistently affected. This indicates a very high photosensitivity of the Djungarian hamster's circadian system to red light.Abbreviations T
b
body temperature
-
DD
constant darkness
-
LD
light:dark cycle
-
LL
constant light
-
duration of activity phase
-
CT
circadian time
-
PRC
phase response curve
-
SCN
suprachiasmatic nuclei 相似文献
2.
Sharma VK Chidambaram R Singh TJ Lingakumar K Subbaraj R Chandrashekaran MK 《Chronobiology international》2000,17(6):777-782
In the nocturnal field mouse Mus booduga, the responsiveness of the circadian system to UV-A light of 2.5 W/m2 and 30 minutes duration is known to be phase dependent. The results of our experiments indicate that the phase shifts evoked by UV-A at the two phases, CT14 (circadian time 14) and CT20 increases nonlinearly with irradiance. (Chronobiology International, 17(6), 777-782, 2000) 相似文献
3.
In previous research, it was determined that the altitude of origin altered the parameters of photic entrainment and free‐running rhythmicity of adult locomotor activity of the high‐altitude Himalayan (haH) strain (Hemkund‐Sahib, 4121 m above sea level) of Drosophila helvetica compared to the low‐altitude Himalayan (laH) strain (Birahi, 1132 m above sea level) of the same species. The present study investigated whether the altitude of origin also affects the parameters of the light pulse phase response curve (PRC) of the adult locomotor activity rhythm of the haH strain. Light pulse PRCs were determined for both strains against the background of constant darkness. Although both were “weak” or type 1 PRCs, the PRC for the haH strain differed from that of the laH strain in three basic parameters. The PRC for the haH strain was of low amplitude, had a protracted dead zone, and showed a ratio of the advance to delay region (A/D>1), while the PRC of the laH strain was characterized by high amplitude, absence of dead zone, and a A/D ratio<1. The asymmetric PRCs of these strains might explain the process of photic entrainment to 24 h light‐dark cycles, as the long period of the free‐running rhythm (τ) of the haH strain is complemented with a larger advance portion of its PRC (A/D>1), whereas the short τ of the laH strain is matched with a larger delay portion of its PRC (A/D<1). Prolonged dead zone and low amplitude in the PRC of the haH strain imply that the photic sensitivity of this strain has been drastically diminished as an adaptation to environmental conditions at the altitude of its origin. While adults of this strain begin activity in very bright light in the forenoon due to non‐permissible low temperature in the morning, the converse is true for the laH strain. 相似文献
4.
Luisa María Vera Louise Cairns Francisco Javier Sánchez-Vázquez 《Chronobiology international》2013,30(4):666-681
Behavioral rhythms of the Nile tilapia were investigated to better characterize its circadian system. To do so, the locomotor activity patterns of both male and female tilapia reared under a 12:12 h light-dark (LD) cycle were studied, as well as in males the existence of endogenous rhythmicity under free-running conditions (DD and 45 min LD pulses). When exposed to an LD cycle, the daily pattern of activity differed between individuals: some fish were diurnal, some nocturnal, and a few displayed an arrhythmic pattern. This variability would be typical of the plastic circadian system of fish. Moreover, reproductive events clearly affected the behavioral rhythms of female tilapia, a mouth-brooder teleost species. Under DD, 50% (6 of 12) of male fish showed circadian rhythms with an average period (τ) of 24.1±0.2 h, whereas under the 45 min LD pulses, 58% (7 of 12) of the fish exhibited free-running activity rhythms with an average τ of 23.9±0.5 h. However, interestingly in this case, activity was always confined to the dark phase. Furthermore, when the LD cycle was reversed, a third of the fish showed gradual resynchronization to the new phase, taking 7–10 days to be completely re-entrained. Taken together, these results suggest the existence of an endogenous circadian oscillator that controls the expression of locomotor activity rhythms in the Nile tilapia, although its anatomical localization remains unknown. 相似文献
5.
Whether a clock that generates a circatidal rhythm shares the same elements as the circadian clock is not fully understood. The mangrove cricket, Apteronemobius asahinai, shows simultaneously two endogenous rhythms in its locomotor activity; the circatidal rhythm generates active and inactive phases, and the circadian rhythm modifies activity levels by suppressing the activity during subjective day. In the present study, we silenced Clock (Clk), a master gene of the circadian clock, in A. asahinai using RNAi to investigate the link between the circatidal and circadian clocks. The abundance of Clk mRNA in the crickets injected with double-stranded RNA of Clk (dsClk) was reduced to a half of that in control crickets. dsClk injection also reduced mRNA abundance of another circadian clock gene period (per) and weakened diel oscillation in per mRNA expression. Examination of the locomotor rhythms under constant conditions revealed that the circadian modification was disrupted after silencing Clk expression, but the circatidal rhythm remained unaffected. There were no significant changes in the free-running period of the circatidal rhythm between the controls and the crickets injected with dsClk. Our results reveal that Clk is essential for the circadian clock, but is not required for the circatidal clock. From these results we propose that the circatidal rhythm of A. asahinai is driven by a clock, the molecular components of which are distinct from that of the circadian clock. 相似文献
6.
Alper Karakas 《Chronobiology international》2013,30(1-2):225-236
The suprachiasmatic nuclei (SCN) generate the circadian rhythm of many hormones. The hormone leptin is a metabolic signal that informs the brain about fat and energy stores of the body. We investigated whether the rhythm of leptin hormone release in Syrian hamsters is directly controlled by the SCN. Three experiments were performed: in the first, hamsters were SCN‐lesioned; in the second, hamsters were exposed to different feeding regimes; and in the third, hamsters were adrenalectomized and implanted with cortisol capsules to maintain constant glucocorticoid release. Blood samples were collected before and after the experiments at different clock times and examined for leptin levels by enzyme‐linked immunosorbant assay (ELISA). Different feeding regimes and constant glucocorticoid release did not alter the rhythm of leptin release; whereas, SCN lesions abolished the rhythm. The results of the present study suggest the rhythm in leptin release in Syrian hamsters may be controlled by the SCN. 相似文献
7.
The degu (Octodon degus) is a diurnal rodent, although phase inversions to nocturnal behavior have been reported under specific laboratory conditions. The reliability of this animal as a diurnal model of sleep therefore requires further characterization of intrinsic circadian pacemaker properties. A phase response curve to light has been reported in the degu, and is consistent with other diurnal animals. This study reports a phase response curve to melatonin in the degu, which is distinct in orientation from the light curve. 相似文献
8.
Thomas Ruf Martin Klingenspor Hannelore Preis Gerhard Heldmaier 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1991,160(6):609-615
Summary In Djungarian hamsters,Phodopus sungorus, daily torpor occurs spontaneously in winter in the presence of abundant food, but individuals show different tendencies to enter torpor. The results show that in hamsters fed rodent chow ad libitum individual torpor frequencies were negatively correlated with both food consumption and the amount of nocturnal locomotor activity. Provision of cafeteria diet at ambient temperatures below thermoneutrality significantly lowered torpor frequencies and induced body weight gains. However, in hamsters fed seeds with a high fat or carbohydrate content (i.e., sunflower seeds or wheat, respectively) neither a decrease of torpor frequencies nor an increase of body weights was observed. The results suggest that in Djungarian hamsters, daily torpor is an intrinsic component of energy balance control and is functionally linked to individual physiological adjustments of food consumption and foraging activity. In addition, the employment of daily torpor can be affected by social interactions, since the long-term pattern of alternations between torpor and normothermia was found to be synchronized in breeding pairs caged together.Abbreviations
T
a
ambient temperature
-
DIT
diet-induced thermogenesis 相似文献
9.
《Chronobiology international》2013,30(9):751-757
The effect of stocking density on the locomotor activity of African catfish C. gariepinus under different light regimes was investigated. C. gariepinus were stocked under different densities (1, 5, or 10 fish/tank), and their locomotor activity recorded under light-dark (LD), constant light (LL), constant darkness (DD), and LD-reversed (DL) regimens. Under the LD cycle, catfish showed a crepuscular activity pattern, irrespective of stocking density, with most of the daily activity concentrated around the light-onset and light-offset times. When fish were subjected to DD, all 4 tanks with medium (5 fish) and high (10 fish) stocking densities showed circadian rhythmicity, with an average period (τ) of 23.3?±?0.5 and 24.6?±?0.5?h, respectively. In contrast, only 2 low (1 fish) density tanks showed free-running rhythms. Under LL, activity levels decreased significantly in comparison with levels observed under LD and DD. Moreover, fish of 1, 2, and 3 out of the 4 tanks with low, medium, and high densities, respectively, showed free-running rhythms under these conditions. When the photocycle was reversed (DL), fish of 3, 2, and 4 out of the 4 tanks with low, medium, and high stocking densities, respectively, showed gradual resynchronization to the new phase, and transient cycles of activity were observed. These results suggest that stocking density of fish affected the display of circadian rhythmicity and the intensity of activity levels. Thus, fish kept in higher densities showed more robust rhythmicity and higher levels of daily activity, indicating that social interactions may have an influence on behavioral patterns in the African catfish. (Author correspondence: lmvera@um. es) 相似文献
10.
The mammalian circadian clock, located in the hypothalamic suprachiasmatic nuclei, synchronizes endogenous behavioral and physiological rhythms to a 24h period through responses to two types of stimuli: photic (light) and nonphotic (behaviorally induced arousal and/or increases in activity). Photic stimuli can block nonphotic effects and vice versa, although the mechanisms and levels of interactions between these two stimuli types are unknown. Here, we investigated whether 3 d of access to a novel running wheel alters the phase shift to light in vivo, and whether this effect could be seen on induction by light of the circadian gene per1. Through measurement of running wheel activity of golden hamsters, access to a new wheel for 3 d was shown to diminish photic phase delays with no effect on phase advances. As seen using in situ hybridization, however, there was no effect on levels of light-induced per1 mRNA. This study indicates a possible role for this paradigm as a model of interactions between photic and nonphotic stimuli. 相似文献
11.
《Chronobiology international》2013,30(6):1001-1017
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60‐liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free‐running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free‐running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior. 相似文献
12.
Daily light and temperature cycles entrain adult eclosion rhythms in many insect species, but little is known about their interaction. We studied this problem in the onion fly, Delia antiqua. Pupae were subjected to various combinations of a photoperiod of 12L:12D and thermoperiods. The thermoperiods consisted of 12 h warm phase (W) and 12 h cool phase (C), giving a mean temperature of 25 °C with different temperature steps of 8, 4 and 1 °C. As the phase relation of the two Zeitgebers was varied, the phase of eclosion rhythm was shifted, depending on the phase angle with the light cycle and the amplitude of the temperature cycle. When the temperature step in the thermoperiod was 8 °C (WC 29:21 °C), the eclosion rhythm was entrained mainly to thermoperiod rather than photoperiod. In the regime with a 4 °C temperature step (WC 27:23 °C), both thermoperiod and photoperiod affected eclosion rhythm, and a phase jump of the eclosion rhythm occurred when the warm phase of thermoperiod was delayed 15-18 h from light-on. In regimes with a 1 °C temperature step (WC 25.5:24.5 °C), the eclosion rhythm was completely entrained to photoperiod. The observed interacting effect of light and temperature cycle on the eclosion rhythm in D. antiqua can be explained by the two-oscillator model proposed by Pittendrigh and Bruce (1959). 相似文献
13.
生活在温带和寒带的哺乳动物在长期的进化过程中形成了季节性繁殖的生活史特征。哺乳动物的繁殖功能主要受到下丘脑-垂体-性腺轴(hypothalamic-pituitary-gonadal axis,HPGA)的调控。视交叉上核(suprachiasmatic nucleus,SCN)能够自发振荡并响应光周期信号的变化,引发褪黑素分泌的改变,并介导下游通路中下丘脑甲状腺激素、Kisspeptin和RF酰胺相关肽(RF amide-related peptide,RFRP)的节律性表达变化,从而调控哺乳动物的季节性繁殖。本文综述了哺乳动物季节性繁殖的内源年生物钟调控,并强调了光敏通路中包括甲状腺激素、Kisspeptin和RFRP在季节性繁殖调控中的重要作用。 相似文献
14.
We report period response curves (τRC) for two nocturnal Murid species from India, Mus booduga and Mus platythrix. We further discuss the method of phase shift estimation in the presence of τ-changes, because such changes pose a serious methodological problem in the estimation of phase shifts. Although the τRC indicates that most of the phase shifts are associated with small changes in τ, the period changes across all the phases showed a significant positive correlation with the phase shifts. We conclude that τRCs are a reality even in nocturnal mammals, although their amplitude is less than what is usually found in diurnal mammals, and requires a larger data set to be distinguished from noise. 相似文献
15.
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60-liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free-running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free-running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior. 相似文献
16.
Several distinct neuronal populations can be outlined in the suprachiasmatic nucleus (SCN) by employing immunohistochemistry. Understanding their interaction may serve as the key to the processes involved in the generation of circadian rhythms by the SCN. 15 adult rats were exposed to constant dim light (LL) and 3 animals as controls to an LD 12:12 light schedule over 140 days. When sacrificed 10 of the LL-animals had lost their circadian feeding rhythm while 5 were free-running and the controls kept an entrained rhythm. The brains were immunohistochemically stained for myelin basic protein, neurophysin (NPH), vasoactive intestinal peptide, neuropeptide Y, synaptophysin and the leucocyte epitopes FAL and HNK-1. Demarcation of intensely and very intensely stained NPH-positive areas by subjective gray-level-discrimination and computerized area measurement revealed that in rhythmic rats (n=8) the areas containing the stained material were twice as large (0.06 ± 0.03 mm2 vs. 0.028 ± 0.027 mm2; p=0.05) than in arrhythmic animals. It is hypothesized that low NPH-contents in arrhythmic animals reflect arrest of the ‘clockwork’ in the SCN at circadian time 12:00. 相似文献
17.
Trees, perennial phanerophytes, display a rich variety of rhythmic phenomena. These are either due to exclusive environmental
entrainment or due to the functioning of endogenous oscillators independent of the environment. Both types of rhythms are
covered in this review. Purely environment controlled rhythms may be considered as a prelude to endogenous rhythms. Environment
controlled rhythms discussed are (i) the diurnal rhythms of nyctinastic and heliotropic leaf movements and oscillatory phenomena
of photosynthesis, such as the midday depression and Crassulacean acid metabolism (CAM), and (ii) the annual rhythms of annual
growth ring formation, autumnal leaf senescence, over wintering mechanisms and flowering. Among the diurnal rhythms, nyctinastic
movements and CAM are also free-running endogenous rhythms showing the operation of circadian clocks in trees. In leaf senescence,
over wintering, and flowering control, photoperiod sensing is involved which suggests the participation of endogenous clocks.
A question asked is if diurnal and annual rhythms are mechanistically correlated. Evidently, phenological phenomena based
on photoperiodism (as dependent on measurement of night length) are co-ordinately regulated by the phytochrome system and
the circadian clocks and many aspects of annual developments and over wintering are linked to photoperiodism. The existence
in trees of circadian clock genes as known to be anchored in the genome of A. thaliana can be assessed by attempts of alignment with the sequenced genome of Populus or by isolating cDNA clones from trees to check them against the genome of A. thaliana. At extreme latitudes near the equator and north of the polar circle trees also display photoperiod-independent phenological
phenomena. In the polar region, total irradiance of red and far red light could possibly be involved and the signalling pathway
then involves phytochrome, and thus, may still be similar to that of photoperiodism. At the equator, total daily light irradiance
received or sensing the dynamics of daily changes in solar irradiance are essential and it remains enigmatic whether signalling
cascades are either attached to the circadian clocks in a still unknown way or totally independent of circadian clocks. 相似文献
18.
拟南芥生物钟分子机制研究进展 总被引:2,自引:0,他引:2
本文主要概述了目前拟南芥生物钟分子机制的研究进展.生物钟通过调控导引节律的相位来调节植物的生理活动.拟南芥生物钟由CCAJ、LHy和TOCJ 3个主要基因构成了一个稳定的负反馈环,来调节昼夜节律中各个基因如APRR/TOC15重奏的作用,从而调控昼夜节律的相位.在开花的光周期调控中,提出了外协和模型,其中的关键基因是CO,它与拟南芥的开花时间直接相关. 相似文献
19.
R. Kirsch A. Ouarour P. Pévet 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1991,168(1):121-128
1. The daily torpor was measured by oxygen uptake in Djungarian hamsters during adaptation to a short photoperiod (SP: 10L, 14D) at 20 degrees C. In these constant conditions the torpor presented metabolic characteristics and a daily time course independent of the duration of adaptations to SP. 2. The frequency of torpor bouts increased during SP exposure and its maximum was reached after about 130 days. The frequency of torpor was greater in males than in females. 3. The incidence of torpor was increased by constant dark exposure and this is discussed as a protective mechanism for the individual animal's ability to survive. 4. The temporal organization of daily torpor was demonstrated to be directly synchronized by the day-night cycle and to be controlled by an endogenous circadian function. 相似文献
20.
A. Chiba M. Kikuchi K. Aoki 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,172(6):683-691
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations
circadian period
- DD
constant darkness
- LD
cycle, light-dark cycle
- LD 12:12
light-dark cycle of 12 h light and 12 h darkness 相似文献