首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of insecticides on Trichogramma exiguum Pinto & Platner emergence, adult survival, and fitness parameters was investigated. Insecticides tested were lambda cyhalothrin, cypermethrin, thiodicarb, profenophos, spinosad, methoxyfenozide, and tebufenozide. All insecticides, with the exception of methoxyfenozide and tebufenozide, adversely affected Trichogramma emergence from Helicoverpa zea (Boddie) host eggs when exposed at different preimaginal stages of development (larval, prepupal, or pupal). Regardless of the developmental stage treated, none of the insecticides tested had a significant effect on the sex ratio or frequency of brachyptery of emerged females. However, the mean life span of emerged T. exiguum females significantly varied among insecticide treatments, and was significantly affected by the developmental stage of parasitoid when treated. Based on LC50 values, spinosad and prophenofos were the most toxic compounds to female T. exiguum adults, followed by lambda cyhalothrin, cypermethrin, and thiodicarb. Insecticides field-weathered for four to 6 d on cotton leaves showed no activity against female T. exiguum adults.  相似文献   

2.
The insect growth regulators (IGRs) tebufenozide and methoxyfenozide and the broad-spectrum insecticides azinphosmethyl, carbaryl, and fenpropathrin were compared for their activity against adult, egg, and larval stages of the grape berry moth, Endopiza viteana (Clemens) (Lepidoptera: Tortricidae), under laboratory and vineyard conditions. Adult mortality was not affected by exposure to field-equivalent rates of tebufenozide or methoxyfenozide on grape clusters, whereas all the broad-spectrum compounds significantly reduced adult survival, compared with the untreated controls. Surviving adult moths laid significantly more eggs on berries treated with the IGRs than on berries treated with any of the broad-spectrum insecticides. Survival of these eggs through to late larval and pupal stages was significantly lower on methoxyfenozide-treated grapes than on untreated grapes, and no pupae were found when grapes were treated with azinphosmethyl or fenpropathrin. Neither of the growth regulator insecticides limited egg eclosion or larval development by E. viteana when insecticides were applied before egg laying, whereas broad-spectrum insecticides were effective against both eggs and neonates at this timing. When applied after egg eclosion, all insecticide treatments significantly reduced survival of grape berry moth larvae. Under vineyard conditions, berries with 1-d-old residues of tebufenozide or methoxyfenozide received more E. viteana eggs than berries treated with broad-spectrum compounds. After aging for 7 or 14 d, no significant effects on E. viteana survival were detected among treatments. Whereas broad-spectrum insecticides provide control of multiple life stages of E. viteana, integration of tebufenozide or methoxyfenozide into vineyard management programs for control of this pest will be most successful if applications are timed for egg hatch.  相似文献   

3.
The tobacco whitefly, Bemisia tabaci, is one of the major insects infesting vegetable plants. This pest is well known in Alhassa oasis, Saudi Arabia; which is historically agricultural land cultivated with date palm trees and different vegetables. A molecular key based on the sequence of the mitochondrial cytochrome oxidase gene CO1 was used for the identification of strains of the tobacco whitefly Bemisia tabaci collected from farms located in four areas of the Alhassa oasis; Northern, Southern, Eastern and Western. Only one biotype (B‐biotype) of B. tabaci was reported in the oasis. Resistance of B. tabaci was tested against eight insecticides, the results showed moderate to low levels of resistance to the tested insecticides. However, the resistance to neonicotinoid insecticides was low and established at 1.3 fold to both Imidacloprid and Acetamiprid. In addition, medium levels of resistance were detected to the insect growth regulator Pyriproxyfen (30 fold), and the pyrethroid Deltamethrin (30 fold), Bifenthrin (24 fold) and Cypermethrin (13 fold). A medium level of resistance was also detected to the carbamate insecticide Carbosulfan and was 40 fold of the laboratory strains. A low level of resistance to the organophosphorus insecticide was detected to Phenthoate (11 fold). However, these results reflect that the farmers were less dependent on the use of insecticides to control B. tabaci in the oasis and they may be implementing other environmentally sound techniques to keep the pest below the damage threshold.  相似文献   

4.

The overuse of insecticides to control vector insects such as Diaphorina citri Kuwayama in citrus groves has altered the population dynamics of pest mites. Among phytophagous mites, population outbreaks of citrus leprosis mite, Brevipalpus yothersi Baker, have been increasingly intense and frequent in Brazilian citrus groves. Despite the great importance of the B. yothersi mite for citrus production, the lethal and sublethal effects of insecticides on this mite have not yet been studied. Therefore, in this study, the effects of insecticides commonly used for D. citri control on B. yothersi mortality, reproduction, and instantaneous growth rate were assessed. For this, two experiments were carried out, one under controlled conditions and another in a greenhouse. The insecticides tested were beta-cyfluthrin, bifenthrin, buprofezin, chlorpyrifos, dimethoate, pyriproxyfen, and thiamethoxam at 0 (control), 0.0625, 0.125, 0.25, 0.5, 1, and twofold the recommended insecticide concentration for D. citri control. The pyriproxyfen insecticide provided high mortality of B. yothersi even at low concentrations. Furthermore, this insecticide negatively interfered with the reproduction of this mite. Beta-cyfluthrin, bifenthrin, buprofezin, chlorpyrifos, dimethoate, and thiamethoxam, in the tested concentrations, showed low impact on citrus leprosis mite. Regarding the reproduction of the mite, no significant increase in fecundity was observed on B. yothersi females exposed to insecticide residues, regardless of the concentration tested. Therefore, the application of these insecticides in the management of pest insects is unlikely to promote an increase in the citrus leprosis mite population.

  相似文献   

5.
The toxicity of two biorational insecticides, spinosad (Tracer) and methoxyfenozide (RH-2485), was tested against eggs, larvae, and pupae of the noctuid Spodoptera littoralis (Boisduval). In the first experiment, filter paper circles containing egg masses of two different age classes, young (<24 h old) and old (24-48 h old), were dipped in different concentrations of each insecticide diluted in either water or acetone. No ovicidal activity was recorded when insecticides were diluted in water. In contrast, when insecticides were diluted in acetone, both egg age classes generally showed a concentration-dependent response for both compounds. Mortality of larvae that hatched from both egg age classes was significantly increased, compared with control larvae, at all concentrations of both insecticides when diluted in water or acetone alike. The prevalence of mortality was similar with each insecticide. In the second experiment, third instars of S. littoralis were fed semisynthetic diet containing different concentrations of both insecticides. According to LC50 values, no significant differences were observed between spinosad (2.11 mg [AI]/kg diet) and methoxyfenozide (3.98 mg [AI]/kg diet) after 48 h of treatment, based on the overlap of 95% CL. Toxic effects on the mortality of pupae, adult emergence, and the prevalence of deformed adults after topical application on young pupae also were examined. Only methoxyfenozide caused pupal mortality and deformed adults. Our results suggest that spinosad and methoxyfenozide are potentially potent compounds for control of S. littoralis.  相似文献   

6.
Intensive use of chemical insecticides against Helicoverpa armigera has led to the development of resistance to the major chemical families of insecticides. Consequently, management of H. armigera using conventional chemical insecticides is increasingly difficult. Methoxyfenozide is an agonist of the insect moulting hormone 20-hydroxyecdysone that acts faster than chitin synthesis inhibitors. The present work is aimed to assess the effectiveness of methoxyfenozide for use against H. armigera on cotton in Benin, West Africa. Laboratory tests and field experiments have been carried out. For laboratory studies, topical application of methoxyfenozide was done using L2 and L5 instar larva of H. armigera. Tested methoxyfenozide concentrations varied from 24 μl/ml to 144 μl/ml and the control is water only. For field experiments, a complete randomised block design was used with methoxyfenozide (72 μl/ml) and a control (no spraying). Berthoud Ultra Low Volume sprayer was used to spray methoxyfenozide suspension at 60-l per hectare. Two sprays were applied, 7 days apart. Laboratory tests indicated that 24 h after application of methoxyfenozide, about 100% of treated L2 and L5 larva were morbid or dead compared with 0% for the control larva. There are no significant differences between tested concentrations. Morbid larvae died within 2 days. In field experiments, cotton yield harvested on methoxyfenozide treated plants was double of that obtained on untreated plants (9375 kg and 4875 kg per hectare respectively). Thus methoxyfenozide may be used as component of Integrated Pest Control Programme on cotton in Benin, West Africa.  相似文献   

7.
Abstract Liriomyza trifolii is an important pest of vegetables and ornamental crops around the world. This pest is attacked by many parasitoid species. The principal management tactic used against L. trifolii is insecticide application. Insecticides vary in their effects on parasitoid species and insecticides that have less harmful effects should be preferred for the control of this pest. In this study, novaluron, abamectin, λ‐cyhalothrin and spinetoram were investigated for their lethal effects on adults of Neochrysocharis formosa and Ganaspidium nigrimanus, two important parasitoids of L. trifolii. Three different bioassays were used on adult parasitoids: direct insecticide application, insecticide intake and insecticide residue. Adult parasitoid response to novaluron exhibited the least lethal effects among the bioassays and insecticides tested. Abamectin had significant mortality to both parasitoid species in the direct application and insecticide intake bioassays and mortality were high for G. nigrimanus in the residue bioassay. Spinetoram was the most harmful insecticide to the adult parasitoids in all three bioassays. λ‐cyhalothrin effects varied between the two parasitoids. In the direct application, it was harmful to G. nigrimanus and had no effect on N. formosa. In the insecticide intake bioassay λ‐cyhalothrin had no effect in survival of either species, and in the residue bioassay it reduced parasitoid survival of both species. Potential tolerance of N. formosa to λ‐cyhalothrin is discussed.  相似文献   

8.
Pyralid moths, Ephestia kuehniella and Plodia interpunctella, are prevalent stored product pests. The insecticides are the main tool to control these moths in the stores. The data describing the response of these moths to insecticides are scarce. The lethal effect of the organophosphate, pyrethroid, and halogenated-pyrrole on moths larvae were compared in laboratory test. The hypothesis was that the very polyphagous P. interpunctella would have generally higher insecticide tolerance than that of the stenophagous E. kuehniella. Different insecticide concentrations were applied onto the inner surface of glass tube vials. Ten larvae of 14 or 21 d old of E. kuehniella and 7 or 14 d old of P. interpunctella were used by treatment. The larval mortality was checked after 24 h of exposure. The mortality was significantly influenced by age of larvae and the groups of chemicals. No differences among the efficacies of the tested formulations with identical active compounds were found, except significant different mortality of E. kuehniella on deltamethrin formulations. A comparison of analytical standards showed that P. interpunctella was less susceptible to the active ingredient pirimiphos-methyl than E. kuehniella, while E. kuehniella was less susceptible to deltamethrin than P. interpunctella. No differences between the two species were observed for chlorfenapyr. We therefore rejected the hypothesis that polyphagy/stenophagy can be a general predictor of insecticide tolerance in the two tested storage moths. The most important finding for effective use was that the young larvae of both species were more susceptible to tested insecticides than older larvae.  相似文献   

9.
This study aimed to identify factors associated with dermal exposure to cypermethrin and assess the health risks among young children in an agricultural community in Thailand. Face-to-face interviews were conducted with the parents/caregivers of 58 children (aged 1–3 years). Wipe samples were analyzed for cypermethrin by gas chromatography-microelectron capture detection (GC-µECD). Health risk assessments were based on the cypermethrin concentration on the children’s hands and feet. Spearman’s correlation indicated significant associations among cypermethrin concentrations on the hands, feet, floors/wooden beds, and toys (rho?=?0.438–0.613, p-value <0.001). Cypermethrin concentrations on the hands were significantly and inversely correlated with the child’s caregiver being the child’s mother and insecticide use (p?<?0.01). Concentrations on the feet were significantly correlated with insecticide use (p?<?0.05) and showering (p?<?0.01). The hazard quotient calculated from dermal exposure via the hands and feet showed no risk for potential noncarcinogenic effects (5.586?×?10?5 in the dry season and 4.301?×?10?4 in the wet season). These findings suggest that young children might not be at risk for cypermethrin exposure through the dermal route. Residential exposure among young children may be reduced by improved hygiene. Health risk assessments of environmental insecticide exposure via the oral and inhalation routes require further investigation.  相似文献   

10.
The role of insecticidal application and host plant resistance in managing Spodoptera exigua has been well documented, but the effect of different host plants, on which the pest cycles its population in the field, has seldom been investigated. Therefore, we have studied the vulnerability of S. exigua against commonly used insecticides (cypermethrin, chlorpyrifos, lufenuron, and emamectin benzoate) with different mode of actions when it switches its generations from natal to auxiliary hosts and vice versa. Different field populations being established on different host plants including castor, cauliflower, cotton, okra, and spinach were collected and reared in the laboratory before insecticidal bioassays. The role of larval diet and host plant switching on their response to tolerate applied insecticides was studied using leaf‐dip bioassay methods. Host switching demonstrated a significant role in altering the vulnerability of S. exigua populations to tested insecticides. Spodoptera exigua sourced from castor, when switched host to okra and spinach, exhibited 50% higher mortality when treated with emamectin benzoate. This trend in mortality was consistent upon complete host switch cycle (natal—auxiliary—natal host). However, the highest increase (92%) in vulnerability was recorded when the larvae were shifted to spinach from cotton. In general, chlorpyrifos and lufenuron had highest efficacies in terms of larval mortality. The findings of present studies provide insights to a better understanding the behavior of polyphagous pests and the role of different host plants in altering the susceptibility of these pests against applied insecticides. Ultimately the results warrant that due consideration should be given to cropping patterns and time of host switching by pest population during planning and executing chemical control.  相似文献   

11.
Circadian clocks govern daily physiological and molecular rhythms, and putative rhythms in the expression of metabolizing xenobiotics have been described in insects. Such rhythms could have important consequences for outcomes of chemical exposures at different times of the day. The proportion of photophase (light) and scotophase (dark) also influence the enzyme activities. Several studies have been done on the mechanism of insecticide resistance in Spodoptera litura exposed to chemical insecticides. This study is aimed at understanding the circadian variations of cypermethrin detoxification mechanisms in S. litura. The toxicity of insecticide, cypermethrin exposed to three different photoperiods in 3rd instar larvae of S. litura has been investigated. Detoxification enzyme profiles of α- and β-esterases, glutathione S-transferase (GST), and cytochrome P450 (Cyt P450) were assessed. The results showed that larvae were more tolerant to cypermethrin treated larvae at 8 h L: 16 h D photoperiod as compared with two other photoperiods tested. We observed significant increases in α- and β-esterases and cyt P450 activities in 4 and 8 h at different photoperiods. GST activity was significantly changed at different photoperiods at different timings. Activities of specific detoxification enzymes fluctuated during the time, and for specific insecticides, the concentration resulting in 50% mortality varied significantly during the different photoperiods. The time of the day when chemical exposure is imposed should be an important consideration in the experimental design, and use of pesticides.  相似文献   

12.
The efficacy of combining insecticides with a microencapsulated formulation of ethyl (2E,4Z) -2,4-decadienoate (pear ester, PE-MEC) was evaluated in walnuts, Juglans regia L., for codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), and navel orangeworm, Amyelois transitella Walker (Lepidoptera, Pyralidae). Two types of studies were conducted to compare the use of insecticides with and without PE-MEC. In the first study, PE-MEC in combination with reduced rates of insecticides, including chlorpyrifos, phosmet, methoxyfenozide, and codling moth granulovirus were evaluated in single tree replicates. PE-MEC was tested at one to three rates (0.6, 1.8, and 4.4 g active ingredient ha(-1)) with each insecticide. In the second study, seasonal programs including sprays of esfenvalerate, chlorpyrifos, and ethyl parathion at full rates were evaluated in replicated two ha blocks. Significant reductions in nut injury occurred in the single-tree trial with treatments of PE-MEC plus insecticide compared with the insecticides used alone against both pest species; except with methoxyfenozide for navel orangeworm. Similarly, nut injury in the large plots was significantly reduced with the addition of PE-MEC, except for navel orangeworm in one of the two studies. These results suggest that adding pear ester as a microencapsulated spray can improve the efficacy of a range of insecticides for two key pests and foster the development of integrated pest management tactics with reduced insecticide use in walnut.  相似文献   

13.
Grasshoppers are among the invertebrate herbivores that cause most economic losses in grasslands throughout Argentina’s Pampas and parts of Patagonia. Chemical insecticides remain the sole option for grasshopper control in this area, despite being of significant environmental concern. Our aim was to evaluate the efficacy of combinations between three entomopathogenic fungi strains (Beauveria bassiana LPSc 1067 and LPSc1082), and Metarhizium anisopliae (LPSc 907), two biorational insecticides (luphenuron and methoxyfenozide), and a new synthetic chemical pesticide (rynaxypyr) in the control of the pest grasshopper Dichroplus maculipennis under field cage conditions. Fungal strains used were adjusted to 1 × 108, 1 × 106 and 1 × 104 conidia/ml. Insecticides were tested at three concentrations: the average concentration recommended for application in the field (100%), 50% of that level and finally 25%. Combinations of the insecticides with B. bassiana (LPSc 1067, LPSc 1082) and M. anisopliae (LPSc 907) caused higher mortality to D. maculipennis nymphs than any of the individual agents used alone. The three insecticides tested did not negatively affect the isolates of the two species of entomopathogenic fungi employed.  相似文献   

14.
Toxicity of four insecticides commonly used in rice pest management, chlorpyrifos, dimethoate, carbaryl and carbosulfan, to the fry of common carp was assessed through median lethal concentrations (LC50) and in vivo inhibition of the brain acetylcholinesterase (AChE) enzyme at sublethal concentrations. The 96‐h LC50 values for these four insecticides were determined to be 0.008, 26.11, 7.85 and 0.60 mg L?1 respectively. Exposure of fish to a series of sublethal concentrations (0.5–5% LC50) of each insecticide for 14 days resulted in concentration‐dependent inhibition in AChE activity in comparison with the controls. AChE activity was greatly inhibited in the fish exposed to sublethal concentrations of chlorpyrifos. Upon transfer to insecticide‐free water, AChE activities in fry exposed to 0.5 and 1% LC50 concentrations of carbaryl and carbosulfan were restored to the control level within 7–21 days whereas the fish exposed to chlorpyrifos or dimethoate did not fully recover from the insecticide‐induced anticholinesterase action. Of the four insecticides tested, chlorpyrifos was the most toxic for the fry of common carp. Although dimethoate was least toxic for the fish under acute exposure, the restoration level of normal AChE activity was slower under chronic exposure in comparison with carbaryl and carbosulfan. Hence, the use of carbamates, especially carbaryl, to control insect pests of rice in rice‐cum‐carp culture systems is recommended when considering survival, restoration of the normal AChE activity and stamina of the cultured fish.  相似文献   

15.
Phthalic acid diamide insecticides are the most effective insecticides used against most of the lepidopteran pests including Helicoverpa armigera, a polyphagous pest posing threat to several crops worldwide. The present studies were undertaken to understand different target sites and their interaction with insect ryanodine receptors (RyR). Bioassays indicated that flubendiamide inhibited the larval growth in dose‐dependent manner with LD50 value of 0.72 μM, and at 0.8 μM larval growth decreased by about 88%. Flubendiamide accelerated the Ca2+‐ATPase activity in dose‐dependent trend, and at 0.8 μM, the activity was increased by 77.47%. Flubendiamide impedes mitochondrial function by interfering with complex I and F0F1‐ATPase activity, and at 0.8 μM the inhibition was found to be about 92% and 50%, respectively. In vitro incubation of larval mitochondria with flubendiamide induced the efflux of cytochrome c, indicating the mitochondrial toxicity of the insecticide. Flubendiamide inhibited lactate dehydrogenase and the accumulation of H2O2, thereby preventing the cells from lipid peroxidation compared to control larvae. At 0.8 μM the LDH, H2O2 content and lipid peroxidation was inhibited by 98.44, 70.81, and 70.81%, respectively. Cytochrome P450, general esterases, AChE, and antioxidant enzymes (catalase and superoxide dismutase) exhibited a dose‐dependent increasing trend, whereas alkaline phosphatase and the midgut proteases, except amino peptidase, exhibited dose‐dependent inhibition in insecticide‐fed larvae. The results suggest that flubendiamide induced the harmful effects on the growth and development of H. armigera larvae by inducing mitochondrial dysfunction and inhibition of midgut proteases, along with its interaction with RyR.  相似文献   

16.
An entomopathogenic fungal strain, Beauveria bassiana PfBb, was identified from Phauda flammans (Lepidoptera: Phaudidae) larvae. The compatibility and synergy of B. bassiana PfBb employed in combination with three concentrations (i.e., recommended concentration, 20% and 10% of the recommended concentration) of five commercial insecticides were determined. Beta cypermethrin at 10% of recommended concentration had the lowest inhibitory effect on the mycelial growth of B. bassiana PfBb compared with other insecticides. Insecticides utilized at recommended concentration had no significant effect on the sporulation of B. bassiana PfBb, while the extent of their effect at 20% and 10% of recommended concentration differed among insecticides. Insecticides at 10% of recommended concentration had the lowest inhibition of sporulation and conidial germination compared with other concentrations. The conidial germination of B. bassiana PfBb was the highest after treatment with beta cypermethrin at 10% of recommended concentration. The cumulative mortality for 1 × 107 spores/mL B. bassiana PfBb combined with each insecticide at 10% of recommended concentration was higher than that observed with the application of insecticides alone. The percent cadavers of Phauda flammans larvae observed after treatment with B. bassiana PfBb combined with beta cypermethrin at 10% of recommended concentration were not significantly different from those observed after infection with B. bassiana PfBb alone. Our findings demonstrate that B. bassiana PfBb combined with beta cypermethrin at 10% of recommended concentration could increase the efficiency of this insecticide.  相似文献   

17.
Helicoverpa armigera has been controlled effectively with chemical insecticides in the major cotton crop production areas of northern Greece for many years. However, a resurgence of the pest was observed in 2010, which significantly affected crop production. During a 4‐year survey (2007 – 2010), we examined the insecticide resistance status of H. armigera populations from two major and representative cotton production areas in northern Greece against seven insecticides (chlorpyrifos, diazinon, methomyl, alpha‐cypermethrin, cypermethrin, gamma‐cyhalothrin and endosulfan). Full dose‐response bioassays on third instar larvae were performed by topical application. Lethal doses at 50% were estimated by probit analysis and resistance factors (RF) were calculated, compared to a susceptible laboratory reference strain. Resistance levels were relatively moderate until 2009, with resistance ratios below 10‐fold for organophosphates and carbamates and up to 16‐fold for the pyrethroid alpha‐cypermethrin. However, resistance rose to 46‐ and 81‐fold for chlorpyrifos and alpha‐cypermethrin, respectively in 2010, when the resurgence of the pest was observed. None of the known pyrethroid resistance mutations were found in the pyrethroid‐resistant insects. The possible association between resistance and H. armigera resurgence in Greece is discussed.  相似文献   

18.
The toxicity, persistence and effect on parasitism of 10 insecticides, eight fungicides and one acaricide on Trichogrammatoidea armigera Nagaraja, an egg parasitoid of a Helicoverpa armigera (Hb), were investigated in the laboratory and under field conditions. At field recommended dosages, the fungicides oxycarboxin, copperoxychloride, streptomycin sulphate + tetracycline hydrochloride and 2‐bromo‐2‐nitropropane‐1,3‐diol and the acaricide dicofol were safe, while the insecticide phosalone and fungicide tridemorph were moderately toxic to adults. All other insecticides tested, namely dimethoate, fenitrothion, monocrotophos, phosphamidon, endosulfan, cypermethrin, decamethrin, fenvalerate and fluvalinate, and the fungicides carbendazim, methyl thiophenate and carboxin were toxic to adults. A high level of parasitism was recorded for all fungicide treatments and for dicofol and fluvalinate. The larval stage of the parasitoid was more tolerant than other stages. The residual toxicity of all fungicides, and dicofol, did not affect the ability of the parasitoid to parasitize its host, while the insecticides phosalone and fluvalinate were slightly persistent, favouring 44.7% and 49.3% parasitism after 15 days. Residues of dimethoate, decamethrin, cypermethrin, fenvalerate, monocrotophos and phosphanidon were moderately persistent, while fenitrothion and endosulfan were persistent.  相似文献   

19.
20.
The effect of 9 insecticides recommended for the control of cotton bollworms was studied, under laboratory conditions, on the emergence ofTrichogramma brasiliensis Ashmead from the parasitized eggs ofCorcyra cephalonica (Stainton) of different age groups. The insecticide concentrations tested were equivalent to those recommended for field application viz. phenthoate 0.14%, phosalone 0.15%, endosulfan 0.25%, permethrin 0.014%, monocrotophos 0.13%, fenvalerate 0.014%, cypermethrin 0.014%, fenitrothion 0.30% and quinalphos 0.14%, quinalphos and fenitrothion caused complete inhibition of emergence of the parasitoid from parasitized host eggs of all ages (1 to 7 days); but in general, adverse effect of insecticides on the disruption of emergence decreased with the advancement in the age of the parasitized eggs. For 1 day old parasitized host eggs, emergence ofT. brasiliensis adults varied from 33 to 57% for the remaining 7 treatments. For the 7 days old parasitized host eggs, emergence of parasitoids from the treatments with endosulfan, phosalone and phenthoate was similar to that from control. However, 46 to 59% inhibition of emergence was observed for permethrin, monocrotophos and cypermethrin. Fenvalerate treatment also significantly inhibited the emergence but at a comparatively lower level (40%). Out of 9 insecticides tested, phosalone and fenvalerate were considered to be relatively safe toT. brasiliensis.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号