共查询到20条相似文献,搜索用时 15 毫秒
1.
Diurnal and seasonal rhythms of cortisol, testosterone, and DHEA were examined, as little is known about the relationship between these rhythmicities and pubertal development. Salivary samples were obtained from 60 boys and 60 girls at approximately 07:45, 08:00, 08:30, 12:00, 16:50, and 21:00 h. The participants' ages ranged from 8-14 yrs, and each participant was tested three times at six-month intervals. The study was conducted at a General Clinical Research Center (GCRC) and at the homes of the participants. All hormones showed diurnal fluctuations. The acrophase (peak time) of cortisol occurred earlier than for testosterone or DHEA and showed a seasonal effect, with the acrophase occurring earlier in spring than in summer. The cortisol acrophase also occurred later in the day for boys than for girls during later puberty. Seasonal effects were found only for cortisol with higher concentrations in the spring and summer. Cortisol concentrations were relatively stable across pubertal maturation, but significantly lower concentrations were observed at pubertal stage 3 compared to the other stages. Morning cortisol levels were also higher in boys at pubertal stage 2. Testosterone concentrations were higher in boys at pubertal stages 3 and 4, and DHEA was lower at pubertal stage 1 than 3 and 4 for both boys and girls. For the total sample, there was a positive correlation between DHEA and testosterone during early puberty (stages 1-3) but not later puberty (stages 4-5). Awakening secretory activity correlated with daytime secretory activity for testosterone and DHEA, but not for cortisol. These data provide novel chronobiological information on cortisol, testosterone, and DHEA as it relates to sexual maturation and encourage further study on both normal and abnormal endocrine rhythms. 相似文献
2.
《Journal of Physiology》2013,107(4):327-334
The relationships between biological rhythms and human aggressive behavior are addressed and discussed in this article: First, circadian rhythms and aggression are considered. Studies of sleep/waking cycle disturbances in aggression are reported. Severe aggression is associated with profound changes in sleep architecture. Causal link is difficult to establish given that sleep disturbance and aggressive behavior could be the symptoms of the same disorder. Specific aggressive behavior developed during sleep is also described. In addition, hormonal circadian rhythm studies are reported. Thus, low cortisol levels, in particular low cortisol variability, are associated with aggressive behavior, suggesting an inhibitory role of cortisol. Testosterone has daily and seasonal fluctuations, but no link with aggression has been established. Neurophysiological underlying mechanisms are discussed in the last part of this article, with a focus on the relationship between brain rhythm and aggression. Increase of slow-wave EEG activities is observed in individuals with aggressive behavior. Epilepsy, as a disease of brain rhythm could be associated with aggressive behavior, in pre, post and inter ictal periodes. Incidence of aggression is not likely more prevalent in epileptic individuals compared to those with other neurological conditions. Ictal changes take the form of profound behavioral changes, including aggressive behavior which has been interpreted as the emergence of “archeical” or innate motor patterns. In this multidisciplinary approach, the main difficulty is the categorization of the differents types of aggression. Finally, taken together, these studies suggest that biological rhythms, especially circadian rhythms, could provide therapeutic benefits to human aggressive behavior. Biological rhythymicity seems to be a necessary permanent training offering interesting perspectives for the adaptation to changes in the field of aggression. 相似文献
3.
Puberty represents the final stage of sexual differentiation when the individual acquires reproductive capacity. Puberty is not only characterized by maturation of sexual organs and the formation of oocytes and mature spermatozoa, but also by the development of secondary sexual dimorphism. In industrialized countries, the age of puberty has decreased steadily over the last 150 years in association with improved socio-economic conditions. However, the decreased onset of puberty, especially in females, is associated with problematic changes in behaviour such as early onset of sexual activity resulting in high-risk teenage pregnancies. In our study, we analysed the association between body composition (fat tissue and fat-free body mass, estimated by BIA analyses), height, body mass index and fat distribution and signs of puberty such as the timing of menarche in 228 girls and voice breaking and facial hair growth in 191 boys ageing between 10 and 15 years. In both sexes, signs of puberty were associated, highly significantly, with body composition parameters. Nevertheless, marked differences between the two sexes were observed: Female puberty was positively associated with weight status and the absolute and relative amount of body fat, while in males, puberty was positively related with a higher amount of fat-free body mass and a decreased fat mass. Male voice breaking was significantly associated with increased stature, body weight, waist and hip circumference, lean body mass and total body water. In contrast, voice breaking was significantly negatively associated with the fat percentage, the total fat mass and the waist-to-hip ratio. Female menarche was significantly positively associated with increased body weight, weight status, waist and hip circumference and also with increased absolute and relative fat mass, relative hip circumference, lean body mass and total body water. Only the waist-to-hip ratio was significantly negatively associated with the onset of menarche. 相似文献
4.
《Endocrine practice》2020,26(3):267-284
Objective: Delayed puberty is a common condition, and typical management includes “watchful waiting” and/or sex-steroid therapy. We sought to characterize treatment practices and to assess provider comfort with the management of delayed puberty in girls and boys.Methods: A national survey of pediatric endocrine providers assessed definitions of delayed puberty, practices around sex-steroid therapy, reasons for treatment, and comfort in managing delayed puberty in girls and boys.Results: Of 184 respondents (12% participation rate), 64% and 71% used the traditional age cutoffs for defining delayed puberty of 13 years for girls and 14 years for boys, respectively. Nearly half (45%) of providers would treat boys relatively earlier than girls, compared to 18% who would treat girls relatively earlier (P<.0001). Providers were more likely to cite bone density as a reason to treat girls and alleviating patient and parental distress, accelerating growth, and “jump starting” puberty as reasons to treat boys. Greater experience in endocrine practice was associated with greater comfort managing delayed puberty in both boys and girls. Approximately 80% of providers agreed that clinical guidelines are needed for the management of delayed puberty.Conclusion: There is a high degree of variability in the clinical management of delayed puberty, and our results suggest that providers are more hesitant to treat girls compared to boys and have different reasons for treating each. It remains to be determined if these discrepancies in treatment are justified by biologic differences between girls and boys or represent nonevidence-based disparities in care.Abbreviation: U.S. = United States 相似文献
5.
Recent research suggests that testosterone and cortisol jointly regulate dominance motivation and, perhaps, the status relationships that are affected by it. For this article, the results of six different studies of women's intercollegiate athletic competition were combined to give a sample size of almost ninety women for whom we had before- and after-competition values for salivary cortisol and testosterone for at least one and sometimes two competitions. For many of these women, we had surveys that allowed us to assess their status with teammates. In no matter what sport (soccer, softball, volleyball, and tennis) levels of salivary cortisol and testosterone increased when women participated in athletic competition. Salivary levels of C and T appear to rise in parallel during competition and increases in levels of one hormone are significantly related to increases in the other. Salivary levels of these hormones typically decreased for teammates who did not play but watched the competition from the sidelines. For women who played in two competitions, individual differences in the positive effect of competition on cortisol and testosterone were conserved from one competition to the next, affirming the personal consistency of endocrine responses to competition. Status with teammates was positively related to before-competition levels of testosterone, but only for women with relatively low before-competition levels of cortisol. This result provides novel support for the “dual-hormone hypothesis” as it relates to predicting social status in women's athletic teams — natural social groups of individuals who know each other and whose social hierarchy has evolved over the course of practice and play for at least one and, in some cases, several years of intercollegiate athletic competition. 相似文献
6.
A. Berger K. -M. Scheibe A. Brelurut F. Schober W. J. Streich 《Biological Rhythm Research》2002,33(3):237-253
To describe the normal rhythmic behavioural patterns and to test procedures for the detection of short-time disturbances, 4 red deer were studied in 2 quasi-natural enclosures. Activity and feeding were recorded by means of the storage-telemetrysystem ETHOSYS®. Daily and monthly mean values, power spectra and 'Degrees of Functional Coupling' (DFC) were calculated. DFC were applied to measure stability and harmonic synchronisation between ultradian rhythms and the 24-hours period. The general patterns of activity and feeding were nearly identical in all animals and closely related to photoperiod change. Levels of total activity and feeding were lowest in winter and highest in summer. In winter highest activity was generally observed in daylight hours and shifted gradually to dark hours in summer. Spectral analysis of activity and feeding revealed a time pattern in which ultradian components, between 4.8 and 12 hrs in period length, mostly exceeded the diurnal rhythm power. Compared to winter higher frequencies were found in activity and feeding in spring, summer and autumn. During such periods up to 8 strong bouts of activity per day (3-hrs rhythm) were observed. These rhythmic patterns are discussed in the context of red deer feeding strategy. Short-term disturbances by humans and changing feeding conditions resulted in lowered DFCs. Time pattern analysis of long-term and continuously measured behavioural parameters proved to be an appropriate approach for observing general living conditions and for detecting disturbances. 相似文献
7.
《Chronobiology international》2013,30(4):675-705
Diurnal variation of sports performance usually peaks in the late afternoon, coinciding with increased body temperature. This circadian pattern of performance may be explained by the effect of increased core temperature on peripheral mechanisms, as neural drive does not appear to exhibit nycthemeral variation. This typical diurnal regularity has been reported in a variety of physical activities spanning the energy systems, from Adenosine triphosphate-phosphocreatine (ATP-PC) to anaerobic and aerobic metabolism, and is evident across all muscle contractions (eccentric, isometric, concentric) in a large number of muscle groups. Increased nerve conduction velocity, joint suppleness, increased muscular blood flow, improvements of glycogenolysis and glycolysis, increased environmental temperature, and preferential meteorological conditions may all contribute to diurnal variation in physical performance. However, the diurnal variation in strength performance can be blunted by a repeated-morning resistance training protocol. Optimal adaptations to resistance training (muscle hypertrophy and strength increases) also seem to occur in the late afternoon, which is interesting, since cortisol and, particularly, testosterone (T) concentrations are higher in the morning. T has repeatedly been linked with resistance training adaptation, and higher concentrations appear preferential. This has been determined by suppression of endogenous production and exogenous supplementation. However, the cortisol (C)/T ratio may indicate the catabolic/anabolic environment of an organism due to their roles in protein degradation and protein synthesis, respectively. The morning elevated T level (seen as beneficial to achieve muscle hypertrophy) may be counteracted by the morning elevated C level and, therefore, protein degradation. Although T levels are higher in the morning, an increased resistance exercise–induced T response has been found in the late afternoon, suggesting greater responsiveness of the hypothalamo-pituitary-testicular axis then. Individual responsiveness has also been observed, with some participants experiencing greater hypertrophy and strength increases in response to strength protocols, whereas others respond preferentially to power, hypertrophy, or strength endurance protocols dependent on which protocol elicited the greatest T response. It appears that physical performance is dependent on a number of endogenous time-dependent factors, which may be masked or confounded by exogenous circadian factors. Strength performance without time-of-day–specific training seems to elicit the typical diurnal pattern, as does resistance training adaptations. The implications for this are (a) athletes are advised to coincide training times with performance times, and (b) individuals may experience greater hypertrophy and strength gains when resistance training protocols are designed dependent on individual T response. (Author correspondence: Lawrence. hayes@uws. ac. uk) 相似文献
8.
Day LB Fusani L Hernandez E Billo TJ Sheldon KS Wise PM Schlinger BA 《Hormones and behavior》2007,51(1):69-76
Male golden-collared manakins gather on leks and perform an acrobatic display to attract females. In temperate breeding species, testosterone (T) activation of courtship displays has been well studied. Few studies have examined T activation of displays in tropical species; even fewer have explored the activational role of T in elaborate courtship displays such as in the manakin. In some tropical species, including manakins, territorial aggression or song behavior are uncoupled from T. We have previously shown that T activates display behavior in manakin males when endogenous T levels are low in the non-courtship season. To understand how T functions in breeding birds, we examined T levels in a large group of manakins sampled during the courtship and non-courtship season. In addition, during the courtship season, we gave T implants to adult males, juvenile males, and females. We found that T levels were low during the non-courtship season and comparatively higher on average during the courtship season. However, T levels were low in many adult males during the courtship season, especially when compared to temperate breeding species. Regardless of initial endogenous T levels during the courtship season, T implants did not increase the display frequency of adult males. T-treated females and juvenile males did display under similar conditions. Our data suggest that the effects of T on manakin display vary with season, sex, and age and that high T is not necessary for display. 相似文献
9.
This article is part of a Special Issue “Puberty and Adolescence”. 相似文献
10.
《Chronobiology international》2013,30(1):131-146
Both testosterone (T) and cortisol (C) exhibit circadian rhythmicity being highest in the morning and lowest in the evening. T is a potent stimulator of protein synthesis and may possess anti-catabolic properties within skeletal muscle, and C affects protein turnover, thereby altering the balance between hormone-mediated anabolic and catabolic activity. Physiological reactions of these hormones and training adaptations may influence the post-exercise recovery phase by modulating anabolic and catabolic processes, therefore affecting metabolic equilibrium, and may lead to intensification of catabolic processes. We investigated the effect of the circadian system on the T and C response of weight-trained men to heavy resistance exercise. Thirteen young (21.8±2.2 yr) weight-trained men (12 months training experience) performed an eight-station heavy-resistance exercise protocol on two separate occasions (AM: 06:00 h and PM: 18:00 h), completing 3 sets of 8–10 repetitions at 75% of each subject's one-repetition maximum (1-RM). Blood samples were obtained prior to, during, and following the exercise bout, and serum total T and C concentrations were determined by competitive immunoassay technique. Performing the single bout of heavy-resistance exercise in the PM as compared to the AM positively altered the C and T/C ratio hormonal response. Pre-exercise C concentrations were significantly lower (p < 0.05) in the PM session, which resulted in a lower peak value, and the accompanying increased T/C ratio suggested a reduced catabolic environment. These data demonstrate that the exercise-induced hormonal profile can be influenced by the circadian time structure toward a profile more favorable for anabolism, therefore optimizing skeletal muscle hypertrophic adaptations associated with resistance exercise. 相似文献
11.
Circadian clocks synchronize the physiology and behavior of most animals with the day to night cycle. A fundamental property
of the molecular pacemakers generating circadian rhythms is their self-sustained nature: they keep oscillating even under
constant conditions, with a period close to, but not exactly, 24 h. However, circadian pacemakers have to be sensitive to
environmental cues to be beneficial. They need to be reset every day to keep a proper phase relationship with the day to night
cycle, and they have to be able to adjust to seasonal changes in day length and temperature. Here, we review our current knowledge
of the molecular and neural mechanisms contributing to the plasticity of Drosophila circadian rhythms, which are proving to be remarkably sophisticated and complex. 相似文献
12.
13.
Traditional theories propose that testosterone should increase dominance and other status-seeking behaviors, but empirical support has been inconsistent. The present research tested the hypothesis that testosterone's effect on dominance depends on cortisol, a glucocorticoid hormone implicated in psychological stress and social avoidance. In the domains of leadership (Study 1, mixed-sex sample) and competition (Study 2, male-only sample), testosterone was positively related to dominance, but only in individuals with low cortisol. In individuals with high cortisol, the relation between testosterone and dominance was blocked (Study 1) or reversed (Study 2). Study 2 further showed that these hormonal effects on dominance were especially likely to occur after social threat (social defeat). The present studies provide the first empirical support for the claim that the neuroendocrine reproductive (HPG) and stress (HPA) axes interact to regulate dominance. Because dominance is related to gaining and maintaining high status positions in social hierarchies, the findings suggest that only when cortisol is low should higher testosterone encourage higher status. When cortisol is high, higher testosterone may actually decrease dominance and in turn motivate lower status. 相似文献
14.
15.
Jolanta B. Zawilska Anna Lorenc Małgorzata Berezińska Berthe Vivien‐Roels Paul Pévet Debra J. Skene 《Chronobiology international》2013,30(1-2):341-350
The aim of the present study was to examine arylalkylamine N‐acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light‐dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night‐time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high‐amplitude melatonin rhythms in the turkey. 相似文献
16.
生活在温带和寒带的哺乳动物在长期的进化过程中形成了季节性繁殖的生活史特征。哺乳动物的繁殖功能主要受到下丘脑-垂体-性腺轴(hypothalamic-pituitary-gonadal axis,HPGA)的调控。视交叉上核(suprachiasmatic nucleus,SCN)能够自发振荡并响应光周期信号的变化,引发褪黑素分泌的改变,并介导下游通路中下丘脑甲状腺激素、Kisspeptin和RF酰胺相关肽(RF amide-related peptide,RFRP)的节律性表达变化,从而调控哺乳动物的季节性繁殖。本文综述了哺乳动物季节性繁殖的内源年生物钟调控,并强调了光敏通路中包括甲状腺激素、Kisspeptin和RFRP在季节性繁殖调控中的重要作用。 相似文献
17.
《Chronobiology international》2013,30(5):311-323
Previous studies paired diurnal Octodon degus undergoing/phase advances (phase-shifters) with those entrained to a light-dark (LD) cycle (donors). Results included opposite outcomes of male and female social cues on resynchronization following 6-h advances in females, but no effect of social cues on male resynchronization. The first experiment determined if social cues could influence resynchronization rates of circadian rhythms in male and female degus following a 6-h phase delay of the LD cycle. Female phase-shifters resynchronized temperature and activity rhythms 20–35% faster when housed with either entrained (donor) females or males compared with females housed alone. No significant differences in resynchronization rate for phase-shifting males existed between test conditions. This experiment extends the previous finding that females, but not males, respond strongly to donor cues to increase resynchronization rates in the presence of light. A second experiment determined that accelerated resynchronization rates of female phase-shifters housed with female donors were due to social cues directly affecting the circadian system rather than the result of social masking. On the day following resynchronization with or without a female donor present, phaseshifters were transferred individually to constant conditions (DD). The temperature and activity rhythms of female phase-shifters free-ran from the point at which resynchronization occurred for both the control and experimental females. Thus, social cues accelerate true reentrainment, not masking, of the circadian system in the presence of a LD cycle in female degus. Donor cues from females enhance reentrainment after advances and delays, but the effect of male donor cues is dependent on the direction of the phase shift. 相似文献
18.
Previous studies paired diurnal Octodon degus undergoing/phase advances (phase-shifters) with those entrained to a light-dark (LD) cycle (donors). Results included opposite outcomes of male and female social cues on resynchronization following 6-h advances in females, but no effect of social cues on male resynchronization. The first experiment determined if social cues could influence resynchronization rates of circadian rhythms in male and female degus following a 6-h phase delay of the LD cycle. Female phase-shifters resynchronized temperature and activity rhythms 20-35% faster when housed with either entrained (donor) females or males compared with females housed alone. No significant differences in resynchronization rate for phase-shifting males existed between test conditions. This experiment extends the previous finding that females, but not males, respond strongly to donor cues to increase resynchronization rates in the presence of light. A second experiment determined that accelerated resynchronization rates of female phase-shifters housed with female donors were due to social cues directly affecting the circadian system rather than the result of social masking. On the day following resynchronization with or without a female donor present, phaseshifters were transferred individually to constant conditions (DD). The temperature and activity rhythms of female phase-shifters free-ran from the point at which resynchronization occurred for both the control and experimental females. Thus, social cues accelerate true reentrainment, not masking, of the circadian system in the presence of a LD cycle in female degus. Donor cues from females enhance reentrainment after advances and delays, but the effect of male donor cues is dependent on the direction of the phase shift. 相似文献
19.
Circadian rhythms of plasma insulin, Cortisol, and glucose concentrations were examined in scotosensitive (reproductively sensitive to inhibitory effects of short daylengths) and scotorefractory male and female Syrian hamsters (Mesocricetus auratus) maintained on short (LD 10:14) and long (LD 14:10) daylengths. The baseline concentration (mean of all values obtained every 4 hr six times of day) of insulin was much greater in female than in male scotosensitive hamsters kept on short daylengths. These differences in insulin concentration may account for the observed heavy fat stores in female and low fat stores in male scotosensitive hamsters kept on short daylengths. The baseline concentrations of Cortisol were approximately equal in both scotosensitive and scotorefractory males held on short and long daylengths, but were relatively low in females held on short daylengths and especially high in scotorefractory females held on long daylengths.
The plasma concentrations of both cortisol and insulin varied throughout the day in many of the groups tested. However, the variations were not equivalent. The circadian variations of cortisol were similar irrespective of sex, seasonal condition and daylength. Peak concentrations generally occurred about 12 hr after light onset. In contrast, the circadian variations of insulin differed markedly. For example in male hamsters, robust daily variations were found in scotosensitive hamsters held on short daylengths but not on long daylengths and in scotorefractory hamsters held on long daylengths but not on short daylengths. Furthermore, the daily peak occurred during the light in the scotosensitive hamsters and during the dark in the scotorefractory animals. Neither the daily feeding pattern (about 60% consumed during dark) nor the daily variations of glucose concentration varied appreciably with seasonal condition or daylength. They do not appear to determine nor directly reflect the variations in cortisol and glucose concentrations. It is postulated that the daily rhythms of cortisol and insulin are regulated by different neural pacemaker systems and that changes in the phase relations of circadian systems account in part for seasonal changes in body fat stores. 相似文献
The plasma concentrations of both cortisol and insulin varied throughout the day in many of the groups tested. However, the variations were not equivalent. The circadian variations of cortisol were similar irrespective of sex, seasonal condition and daylength. Peak concentrations generally occurred about 12 hr after light onset. In contrast, the circadian variations of insulin differed markedly. For example in male hamsters, robust daily variations were found in scotosensitive hamsters held on short daylengths but not on long daylengths and in scotorefractory hamsters held on long daylengths but not on short daylengths. Furthermore, the daily peak occurred during the light in the scotosensitive hamsters and during the dark in the scotorefractory animals. Neither the daily feeding pattern (about 60% consumed during dark) nor the daily variations of glucose concentration varied appreciably with seasonal condition or daylength. They do not appear to determine nor directly reflect the variations in cortisol and glucose concentrations. It is postulated that the daily rhythms of cortisol and insulin are regulated by different neural pacemaker systems and that changes in the phase relations of circadian systems account in part for seasonal changes in body fat stores. 相似文献
20.
Sixty subjects were tested five times per waking day on two occasions for accuracy and reliability in throwing 20 darts at a target. Two experimental conditions were investigated: following a normal nocturnal sleep (7–8 h sleep, normal) and after having retired to bed 4 h later than normal the previous night but rising at the normal time (3–4 h sleep, sleep deprivation). Sublingual (core) temperature and subjective estimates of alertness and fatigue were measured in all sessions. Performance at throwing darts was assessed by three methods: mean distance of the dart from the bulls-eye; number of times the target was missed; and variability of the scores from the darts thrown. There was no evidence that performance was affected by physical fatigue arising during the course of throwing the 20 darts. All variables showed significant diurnal rhythms, those of alertness and performance being phased over 1 h earlier than core temperature, and that of fatigue over 1 h earlier than the inverse of temperature. Core temperature was not affected by sleep deprivation, but all other variables showed significant changes, indicative of mood and performance decrement. Increasing time awake was associated with decreased alertness and increased fatigue, as well as slight negative effects upon performance. We conclude that the simple task of throwing darts at a target provides information about chronobiological changes in circumstances where time awake and sleep loss might affect psychomotor performance. (Author correspondence: b.j.edwards@ljmu.ac.uk) 相似文献